/* clang-format off */ /* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "third_party/mbedtls/test/test.inc" /* * *** THIS FILE WAS MACHINE GENERATED *** * * This file has been machine generated using the script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * Test file : ./test_suite_asn1write.c * * The following files were used to create this file. * * Main code file : suites/main_test.function * Platform code file : suites/host_test.function * Helper file : suites/helpers.function * Test suite file : suites/test_suite_asn1write.function * Test suite data : suites/test_suite_asn1write.data * */ #define TEST_SUITE_ACTIVE #if defined(MBEDTLS_ASN1_WRITE_C) #include "third_party/mbedtls/asn1write.h" #define GUARD_LEN 4 #define GUARD_VAL 0x2a typedef struct { unsigned char *output; unsigned char *start; unsigned char *end; unsigned char *p; size_t size; } generic_write_data_t; int generic_write_start_step( generic_write_data_t *data ) { mbedtls_test_set_step( data->size ); ASSERT_ALLOC( data->output, data->size == 0 ? 1 : data->size ); data->end = data->output + data->size; data->p = data->end; data->start = data->end - data->size; return( 1 ); exit: return( 0 ); } int generic_write_finish_step( generic_write_data_t *data, const data_t *expected, int ret ) { int ok = 0; if( data->size < expected->len ) { TEST_EQUAL( ret, MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); } else { TEST_EQUAL( ret, data->end - data->p ); TEST_ASSERT( data->p >= data->start ); TEST_ASSERT( data->p <= data->end ); ASSERT_COMPARE( data->p, (size_t)( data->end - data->p ), expected->x, expected->len ); } ok = 1; exit: mbedtls_free( data->output ); data->output = NULL; return( ok ); } void test_mbedtls_asn1_write_null( data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_null( &data.p, data.start ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_null_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; test_mbedtls_asn1_write_null( &data0 ); } void test_mbedtls_asn1_write_bool( int val, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_bool( &data.p, data.start, val ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_bool_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; test_mbedtls_asn1_write_bool( *( (int *) params[0] ), &data1 ); } void test_mbedtls_asn1_write_int( int val, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_int( &data.p, data.start, val ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_int_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; test_mbedtls_asn1_write_int( *( (int *) params[0] ), &data1 ); } void test_mbedtls_asn1_write_enum( int val, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_enum( &data.p, data.start, val ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_enum_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; test_mbedtls_asn1_write_enum( *( (int *) params[0] ), &data1 ); } #if defined(MBEDTLS_BIGNUM_C) void test_mbedtls_asn1_write_mpi( data_t *val, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; mbedtls_mpi mpi; int ret; mbedtls_mpi_init( &mpi ); TEST_ASSERT( mbedtls_mpi_read_binary( &mpi, val->x, val->len ) == 0 ); for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_mpi( &data.p, data.start, &mpi ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; if( expected->len > 10 && data.size == 8 ) data.size = expected->len - 2; } exit: mbedtls_mpi_free( &mpi ); mbedtls_free( data.output ); } void test_mbedtls_asn1_write_mpi_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; test_mbedtls_asn1_write_mpi( &data0, &data2 ); } #endif /* MBEDTLS_BIGNUM_C */ void test_mbedtls_asn1_write_string( int tag, data_t *content, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; switch( tag ) { case MBEDTLS_ASN1_OCTET_STRING: ret = mbedtls_asn1_write_octet_string( &data.p, data.start, content->x, content->len ); break; case MBEDTLS_ASN1_OID: ret = mbedtls_asn1_write_oid( &data.p, data.start, (const char *) content->x, content->len ); break; case MBEDTLS_ASN1_UTF8_STRING: ret = mbedtls_asn1_write_utf8_string( &data.p, data.start, (const char *) content->x, content->len ); break; case MBEDTLS_ASN1_PRINTABLE_STRING: ret = mbedtls_asn1_write_printable_string( &data.p, data.start, (const char *) content->x, content->len ); break; case MBEDTLS_ASN1_IA5_STRING: ret = mbedtls_asn1_write_ia5_string( &data.p, data.start, (const char *) content->x, content->len ); break; default: ret = mbedtls_asn1_write_tagged_string( &data.p, data.start, tag, (const char *) content->x, content->len ); } if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; if( expected->len > 10 && data.size == 8 ) data.size = expected->len - 2; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_string_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; test_mbedtls_asn1_write_string( *( (int *) params[0] ), &data1, &data3 ); } void test_mbedtls_asn1_write_algorithm_identifier( data_t *oid, int par_len, data_t *expected ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = mbedtls_asn1_write_algorithm_identifier( &data.p, data.start, (const char *) oid->x, oid->len, par_len ); /* If params_len != 0, mbedtls_asn1_write_algorithm_identifier() * assumes that the parameters are already present in the buffer * and returns a length that accounts for this, but our test * data omits the parameters. */ if( ret >= 0 ) ret -= par_len; if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_mbedtls_asn1_write_algorithm_identifier_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; test_mbedtls_asn1_write_algorithm_identifier( &data0, *( (int *) params[2] ), &data3 ); } #if defined(MBEDTLS_ASN1_PARSE_C) void test_mbedtls_asn1_write_len( int len, data_t * asn1, int buf_len, int result ) { int ret; unsigned char buf[150]; unsigned char *p; size_t i; size_t read_len; memset( buf, GUARD_VAL, sizeof( buf ) ); p = buf + GUARD_LEN + buf_len; ret = mbedtls_asn1_write_len( &p, buf + GUARD_LEN, (size_t) len ); TEST_ASSERT( ret == result ); /* Check for buffer overwrite on both sides */ for( i = 0; i < GUARD_LEN; i++ ) { TEST_ASSERT( buf[i] == GUARD_VAL ); TEST_ASSERT( buf[GUARD_LEN + buf_len + i] == GUARD_VAL ); } if( result >= 0 ) { TEST_ASSERT( p + asn1->len == buf + GUARD_LEN + buf_len ); TEST_ASSERT( memcmp( p, asn1->x, asn1->len ) == 0 ); /* Read back with mbedtls_asn1_get_len() to check */ ret = mbedtls_asn1_get_len( &p, buf + GUARD_LEN + buf_len, &read_len ); if( len == 0 ) { TEST_ASSERT( ret == 0 ); } else { /* Return will be MBEDTLS_ERR_ASN1_OUT_OF_DATA because the rest of * the buffer is missing */ TEST_ASSERT( ret == MBEDTLS_ERR_ASN1_OUT_OF_DATA ); } TEST_ASSERT( read_len == (size_t) len ); TEST_ASSERT( p == buf + GUARD_LEN + buf_len ); } exit: ; } void test_mbedtls_asn1_write_len_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; test_mbedtls_asn1_write_len( *( (int *) params[0] ), &data1, *( (int *) params[3] ), *( (int *) params[4] ) ); } #endif /* MBEDTLS_ASN1_PARSE_C */ void test_test_asn1_write_bitstrings( data_t *bitstring, int bits, data_t *expected, int is_named ) { generic_write_data_t data = { NULL, NULL, NULL, NULL, 0 }; int ret; int ( *func )( unsigned char **p, unsigned char *start, const unsigned char *buf, size_t bits ) = ( is_named ? mbedtls_asn1_write_named_bitstring : mbedtls_asn1_write_bitstring ); for( data.size = 0; data.size < expected->len + 1; data.size++ ) { if( ! generic_write_start_step( &data ) ) goto exit; ret = ( *func )( &data.p, data.start, bitstring->x, bits ); if( ! generic_write_finish_step( &data, expected, ret ) ) goto exit; } exit: mbedtls_free( data.output ); } void test_test_asn1_write_bitstrings_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; test_test_asn1_write_bitstrings( &data0, *( (int *) params[2] ), &data3, *( (int *) params[5] ) ); } void test_store_named_data_find( data_t *oid0, data_t *oid1, data_t *oid2, data_t *oid3, data_t *needle, int from, int position ) { data_t *oid[4] = {oid0, oid1, oid2, oid3}; mbedtls_asn1_named_data nd[] ={ { {0x06, 0, NULL}, {0, 0, NULL}, NULL, 0 }, { {0x06, 0, NULL}, {0, 0, NULL}, NULL, 0 }, { {0x06, 0, NULL}, {0, 0, NULL}, NULL, 0 }, { {0x06, 0, NULL}, {0, 0, NULL}, NULL, 0 }, }; mbedtls_asn1_named_data *pointers[ARRAY_LENGTH( nd ) + 1]; size_t i; mbedtls_asn1_named_data *head = NULL; mbedtls_asn1_named_data *found = NULL; for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) pointers[i] = &nd[i]; pointers[ARRAY_LENGTH( nd )] = NULL; for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) { ASSERT_ALLOC( nd[i].oid.p, oid[i]->len ); memcpy( nd[i].oid.p, oid[i]->x, oid[i]->len ); nd[i].oid.len = oid[i]->len; nd[i].next = pointers[i+1]; } head = pointers[from]; found = mbedtls_asn1_store_named_data( &head, (const char *) needle->x, needle->len, NULL, 0 ); /* In any case, the existing list structure must be unchanged. */ for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) TEST_ASSERT( nd[i].next == pointers[i+1] ); if( position >= 0 ) { /* position should have been found and modified. */ TEST_ASSERT( head == pointers[from] ); TEST_ASSERT( found == pointers[position] ); } else { /* A new entry should have been created. */ TEST_ASSERT( found == head ); TEST_ASSERT( head->next == pointers[from] ); for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) TEST_ASSERT( found != &nd[i] ); } exit: if( found != NULL && found == head && found != pointers[from] ) { mbedtls_free( found->oid.p ); mbedtls_free( found ); } for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) mbedtls_free( nd[i].oid.p ); } void test_store_named_data_find_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; data_t data8 = {(uint8_t *) params[8], *( (uint32_t *) params[9] )}; test_store_named_data_find( &data0, &data2, &data4, &data6, &data8, *( (int *) params[10] ), *( (int *) params[11] ) ); } void test_store_named_data_val_found( int old_len, int new_len ) { mbedtls_asn1_named_data nd = { {0x06, 3, (unsigned char *) "OID"}, {0, 0, NULL}, NULL, 0 }; mbedtls_asn1_named_data *head = &nd; mbedtls_asn1_named_data *found = NULL; unsigned char *old_val = NULL; unsigned char *new_val = (unsigned char *) "new value"; if( old_len != 0 ) { ASSERT_ALLOC( nd.val.p, (size_t) old_len ); old_val = nd.val.p; nd.val.len = old_len; memset( old_val, 'x', old_len ); } if( new_len <= 0 ) { new_len = - new_len; new_val = NULL; } found = mbedtls_asn1_store_named_data( &head, "OID", 3, new_val, new_len ); TEST_ASSERT( head == &nd ); TEST_ASSERT( found == head ); if( new_val != NULL) ASSERT_COMPARE( found->val.p, found->val.len, new_val, (size_t) new_len ); if( new_len == 0) TEST_ASSERT( found->val.p == NULL ); else if( new_len == old_len ) TEST_ASSERT( found->val.p == old_val ); else TEST_ASSERT( found->val.p != old_val ); exit: mbedtls_free( nd.val.p ); } void test_store_named_data_val_found_wrapper( void ** params ) { test_store_named_data_val_found( *( (int *) params[0] ), *( (int *) params[1] ) ); } void test_store_named_data_val_new( int new_len ) { mbedtls_asn1_named_data *head = NULL; mbedtls_asn1_named_data *found = NULL; const unsigned char *oid = (unsigned char *) "OID"; size_t oid_len = strlen( (const char *) oid ); const unsigned char *new_val = (unsigned char *) "new value"; if( new_len <= 0 ) new_val = NULL; if( new_len < 0 ) new_len = - new_len; found = mbedtls_asn1_store_named_data( &head, (const char *) oid, oid_len, new_val, (size_t) new_len ); TEST_ASSERT( found != NULL ); TEST_ASSERT( found == head ); TEST_ASSERT( found->oid.p != oid ); ASSERT_COMPARE( found->oid.p, found->oid.len, oid, oid_len ); if( new_len == 0 ) TEST_ASSERT( found->val.p == NULL ); else if( new_val == NULL ) TEST_ASSERT( found->val.p != NULL ); else { TEST_ASSERT( found->val.p != new_val ); ASSERT_COMPARE( found->val.p, found->val.len, new_val, (size_t) new_len ); } exit: if( found != NULL ) { mbedtls_free( found->oid.p ); mbedtls_free( found->val.p ); } mbedtls_free( found ); } void test_store_named_data_val_new_wrapper( void ** params ) { test_store_named_data_val_new( *( (int *) params[0] ) ); } #endif /* MBEDTLS_ASN1_WRITE_C */ /*----------------------------------------------------------------------------*/ /* Test dispatch code */ /** * \brief Evaluates an expression/macro into its literal integer value. * For optimizing space for embedded targets each expression/macro * is identified by a unique identifier instead of string literals. * Identifiers and evaluation code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param exp_id Expression identifier. * \param out_value Pointer to int to hold the integer. * * \return 0 if exp_id is found. 1 otherwise. */ int get_expression( int32_t exp_id, int32_t * out_value ) { int ret = KEY_VALUE_MAPPING_FOUND; (void) exp_id; (void) out_value; switch( exp_id ) { #if defined(MBEDTLS_ASN1_WRITE_C) case 0: { *out_value = MBEDTLS_ASN1_OCTET_STRING; } break; case 1: { *out_value = MBEDTLS_ASN1_UTF8_STRING; } break; case 2: { *out_value = MBEDTLS_ASN1_PRINTABLE_STRING; } break; case 3: { *out_value = MBEDTLS_ASN1_IA5_STRING; } break; case 4: { *out_value = MBEDTLS_ASN1_IA5_STRING | MBEDTLS_ASN1_CONTEXT_SPECIFIC; } break; case 5: { *out_value = MBEDTLS_ASN1_OID; } break; case 6: { *out_value = MBEDTLS_ERR_ASN1_BUF_TOO_SMALL; } break; case 7: { *out_value = -1; } break; case 8: { *out_value = -4; } break; #endif default: { ret = KEY_VALUE_MAPPING_NOT_FOUND; } break; } return( ret ); } /** * \brief Checks if the dependency i.e. the compile flag is set. * For optimizing space for embedded targets each dependency * is identified by a unique identifier instead of string literals. * Identifiers and check code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param dep_id Dependency identifier. * * \return DEPENDENCY_SUPPORTED if set else DEPENDENCY_NOT_SUPPORTED */ int dep_check( int dep_id ) { int ret = DEPENDENCY_NOT_SUPPORTED; (void) dep_id; switch( dep_id ) { #if defined(MBEDTLS_ASN1_WRITE_C) #endif default: break; } return( ret ); } /** * \brief Function pointer type for test function wrappers. * * A test function wrapper decodes the parameters and passes them to the * underlying test function. Both the wrapper and the underlying function * return void. Test wrappers assume that they are passed a suitable * parameter array and do not perform any error detection. * * \param param_array The array of parameters. Each element is a `void *` * which the wrapper casts to the correct type and * dereferences. Each wrapper function hard-codes the * number and types of the parameters. */ typedef void (*TestWrapper_t)( void **param_array ); /** * \brief Table of test function wrappers. Used by dispatch_test(). * This table is populated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * */ TestWrapper_t test_funcs[] = { /* Function Id: 0 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_null_wrapper, #else NULL, #endif /* Function Id: 1 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_bool_wrapper, #else NULL, #endif /* Function Id: 2 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_int_wrapper, #else NULL, #endif /* Function Id: 3 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_enum_wrapper, #else NULL, #endif /* Function Id: 4 */ #if defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_BIGNUM_C) test_mbedtls_asn1_write_mpi_wrapper, #else NULL, #endif /* Function Id: 5 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_string_wrapper, #else NULL, #endif /* Function Id: 6 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_mbedtls_asn1_write_algorithm_identifier_wrapper, #else NULL, #endif /* Function Id: 7 */ #if defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_ASN1_PARSE_C) test_mbedtls_asn1_write_len_wrapper, #else NULL, #endif /* Function Id: 8 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_test_asn1_write_bitstrings_wrapper, #else NULL, #endif /* Function Id: 9 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_store_named_data_find_wrapper, #else NULL, #endif /* Function Id: 10 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_store_named_data_val_found_wrapper, #else NULL, #endif /* Function Id: 11 */ #if defined(MBEDTLS_ASN1_WRITE_C) test_store_named_data_val_new_wrapper, #else NULL, #endif }; /** * \brief Execute the test function. * * This is a wrapper function around the test function execution * to allow the setjmp() call used to catch any calls to the * parameter failure callback, to be used. Calls to setjmp() * can invalidate the state of any local auto variables. * * \param fp Function pointer to the test function. * \param params Parameters to pass to the #TestWrapper_t wrapper function. * */ void execute_function_ptr(TestWrapper_t fp, void **params) { #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) mbedtls_test_enable_insecure_external_rng( ); #endif #if defined(MBEDTLS_CHECK_PARAMS) mbedtls_test_param_failed_location_record_t location_record; if ( setjmp( mbedtls_test_param_failed_get_state_buf( ) ) == 0 ) { fp( params ); } else { /* Unexpected parameter validation error */ mbedtls_test_param_failed_get_location_record( &location_record ); mbedtls_test_fail( location_record.failure_condition, location_record.line, location_record.file ); } mbedtls_test_param_failed_reset_state( ); #else fp( params ); #endif #if defined(MBEDTLS_TEST_MUTEX_USAGE) mbedtls_test_mutex_usage_check( ); #endif /* MBEDTLS_TEST_MUTEX_USAGE */ } /** * \brief Dispatches test functions based on function index. * * \param func_idx Test function index. * \param params The array of parameters to pass to the test function. * It will be decoded by the #TestWrapper_t wrapper function. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int dispatch_test( size_t func_idx, void ** params ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof( test_funcs ) / sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp ) execute_function_ptr(fp, params); else ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } /** * \brief Checks if test function is supported in this build-time * configuration. * * \param func_idx Test function index. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int check_test( size_t func_idx ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof(test_funcs)/sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp == NULL ) ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } int main( int argc, const char *argv[] ) { int ret; mbedtls_test_platform_setup(); ret = execute_tests( argc, argv, "/zip/third_party/mbedtls/test/test_suite_asn1write.datax" ); mbedtls_test_platform_teardown(); return( ret ); }