/* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "third_party/mbedtls/test/test.inc" /* * *** THIS FILE WAS MACHINE GENERATED *** * * This file has been machine generated using the script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * Test file : ./test_suite_hmac_drbg.nopr.c * * The following files were used to create this file. * * Main code file : suites/main_test.function * Platform code file : suites/host_test.function * Helper file : suites/helpers.function * Test suite file : suites/test_suite_hmac_drbg.function * Test suite data : suites/test_suite_hmac_drbg.nopr.data * */ #define TEST_SUITE_ACTIVE #if defined(MBEDTLS_HMAC_DRBG_C) #include "third_party/mbedtls/hmac_drbg.h" typedef struct { unsigned char *p; size_t len; } entropy_ctx; static int mbedtls_test_entropy_func( void *data, unsigned char *buf, size_t len ) { entropy_ctx *ctx = (entropy_ctx *) data; if( len > ctx->len ) return( -1 ); memcpy( buf, ctx->p, len ); ctx->p += len; ctx->len -= len; return( 0 ); } void test_hmac_drbg_entropy_usage( int md_alg ) { unsigned char out[16]; unsigned char buf[1024]; const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; entropy_ctx entropy; size_t i, reps = 10; size_t default_entropy_len; size_t expected_consumed_entropy = 0; mbedtls_hmac_drbg_init( &ctx ); memset( buf, 0, sizeof( buf ) ); memset( out, 0, sizeof( out ) ); entropy.len = sizeof( buf ); entropy.p = buf; md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); if( mbedtls_md_get_size( md_info ) <= 20 ) default_entropy_len = 16; else if( mbedtls_md_get_size( md_info ) <= 28 ) default_entropy_len = 24; else default_entropy_len = 32; /* Set reseed interval before seed */ mbedtls_hmac_drbg_set_reseed_interval( &ctx, 2 * reps ); /* Init must use entropy */ TEST_ASSERT( mbedtls_hmac_drbg_seed( &ctx, md_info, mbedtls_test_entropy_func, &entropy, NULL, 0 ) == 0 ); /* default_entropy_len of entropy, plus half as much for the nonce */ expected_consumed_entropy += default_entropy_len * 3 / 2; TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); /* By default, PR is off, and reseed interval was set to * 2 * reps so the next few calls should not use entropy */ for( i = 0; i < reps; i++ ) { TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) - 4 ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, out, sizeof( out ) - 4, buf, 16 ) == 0 ); } TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); /* While at it, make sure we didn't write past the requested length */ TEST_ASSERT( out[sizeof( out ) - 4] == 0 ); TEST_ASSERT( out[sizeof( out ) - 3] == 0 ); TEST_ASSERT( out[sizeof( out ) - 2] == 0 ); TEST_ASSERT( out[sizeof( out ) - 1] == 0 ); /* There have been 2 * reps calls to random. The next call should reseed */ TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); expected_consumed_entropy += default_entropy_len; TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); /* Set reseed interval after seed */ mbedtls_hmac_drbg_set_reseed_interval( &ctx, 4 * reps + 1); /* The new few calls should not reseed */ for( i = 0; i < (2 * reps); i++ ) { TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, out, sizeof( out ) , buf, 16 ) == 0 ); } TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); /* Now enable PR, so the next few calls should all reseed */ mbedtls_hmac_drbg_set_prediction_resistance( &ctx, MBEDTLS_HMAC_DRBG_PR_ON ); TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); expected_consumed_entropy += default_entropy_len; TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); /* Finally, check setting entropy_len */ mbedtls_hmac_drbg_set_entropy_len( &ctx, 42 ); TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); expected_consumed_entropy += 42; TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); mbedtls_hmac_drbg_set_entropy_len( &ctx, 13 ); TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); expected_consumed_entropy += 13; TEST_EQUAL( sizeof( buf ) - entropy.len, expected_consumed_entropy ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_entropy_usage_wrapper( void ** params ) { test_hmac_drbg_entropy_usage( *( (int *) params[0] ) ); } #if defined(MBEDTLS_FS_IO) void test_hmac_drbg_seed_file( int md_alg, char * path, int ret ) { const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; mbedtls_hmac_drbg_init( &ctx ); md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); TEST_ASSERT( mbedtls_hmac_drbg_seed( &ctx, md_info, mbedtls_test_rnd_std_rand, NULL, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_write_seed_file( &ctx, path ) == ret ); TEST_ASSERT( mbedtls_hmac_drbg_update_seed_file( &ctx, path ) == ret ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_seed_file_wrapper( void ** params ) { test_hmac_drbg_seed_file( *( (int *) params[0] ), (char *) params[1], *( (int *) params[2] ) ); } #endif /* MBEDTLS_FS_IO */ void test_hmac_drbg_buf( int md_alg ) { unsigned char out[16]; unsigned char buf[100]; const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; size_t i; mbedtls_hmac_drbg_init( &ctx ); memset( buf, 0, sizeof( buf ) ); memset( out, 0, sizeof( out ) ); md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); TEST_ASSERT( mbedtls_hmac_drbg_seed_buf( &ctx, md_info, buf, sizeof( buf ) ) == 0 ); /* Make sure it never tries to reseed (would segfault otherwise) */ mbedtls_hmac_drbg_set_reseed_interval( &ctx, 3 ); mbedtls_hmac_drbg_set_prediction_resistance( &ctx, MBEDTLS_HMAC_DRBG_PR_ON ); for( i = 0; i < 30; i++ ) TEST_ASSERT( mbedtls_hmac_drbg_random( &ctx, out, sizeof( out ) ) == 0 ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_buf_wrapper( void ** params ) { test_hmac_drbg_buf( *( (int *) params[0] ) ); } void test_hmac_drbg_no_reseed( int md_alg, data_t * entropy, data_t * custom, data_t * add1, data_t * add2, data_t * output ) { unsigned char data[1024]; unsigned char my_output[512]; entropy_ctx p_entropy; const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; mbedtls_hmac_drbg_init( &ctx ); p_entropy.p = entropy->x; p_entropy.len = entropy->len; md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); /* Test the simplified buffer-based variant */ memcpy( data, entropy->x, p_entropy.len ); memcpy( data + p_entropy.len, custom->x, custom->len ); TEST_ASSERT( mbedtls_hmac_drbg_seed_buf( &ctx, md_info, data, p_entropy.len + custom->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add1->x, add1->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add2->x, add2->len ) == 0 ); /* Reset context for second run */ mbedtls_hmac_drbg_free( &ctx ); TEST_ASSERT( memcmp( my_output, output->x, output->len ) == 0 ); /* And now the normal entropy-based variant */ TEST_ASSERT( mbedtls_hmac_drbg_seed( &ctx, md_info, mbedtls_test_entropy_func, &p_entropy, custom->x, custom->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add1->x, add1->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add2->x, add2->len ) == 0 ); TEST_ASSERT( memcmp( my_output, output->x, output->len ) == 0 ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_no_reseed_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; data_t data5 = {(uint8_t *) params[5], *( (uint32_t *) params[6] )}; data_t data7 = {(uint8_t *) params[7], *( (uint32_t *) params[8] )}; data_t data9 = {(uint8_t *) params[9], *( (uint32_t *) params[10] )}; test_hmac_drbg_no_reseed( *( (int *) params[0] ), &data1, &data3, &data5, &data7, &data9 ); } void test_hmac_drbg_nopr( int md_alg, data_t * entropy, data_t * custom, data_t * add1, data_t * add2, data_t * add3, data_t * output ) { unsigned char my_output[512]; entropy_ctx p_entropy; const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; mbedtls_hmac_drbg_init( &ctx ); p_entropy.p = entropy->x; p_entropy.len = entropy->len; md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); TEST_ASSERT( mbedtls_hmac_drbg_seed( &ctx, md_info, mbedtls_test_entropy_func, &p_entropy, custom->x, custom->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_reseed( &ctx, add1->x, add1->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add2->x, add2->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add3->x, add3->len ) == 0 ); TEST_ASSERT( memcmp( my_output, output->x, output->len ) == 0 ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_nopr_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; data_t data5 = {(uint8_t *) params[5], *( (uint32_t *) params[6] )}; data_t data7 = {(uint8_t *) params[7], *( (uint32_t *) params[8] )}; data_t data9 = {(uint8_t *) params[9], *( (uint32_t *) params[10] )}; data_t data11 = {(uint8_t *) params[11], *( (uint32_t *) params[12] )}; test_hmac_drbg_nopr( *( (int *) params[0] ), &data1, &data3, &data5, &data7, &data9, &data11 ); } void test_hmac_drbg_pr( int md_alg, data_t * entropy, data_t * custom, data_t * add1, data_t * add2, data_t * output ) { unsigned char my_output[512]; entropy_ctx p_entropy; const mbedtls_md_info_t *md_info; mbedtls_hmac_drbg_context ctx; mbedtls_hmac_drbg_init( &ctx ); p_entropy.p = entropy->x; p_entropy.len = entropy->len; md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); TEST_ASSERT( mbedtls_hmac_drbg_seed( &ctx, md_info, mbedtls_test_entropy_func, &p_entropy, custom->x, custom->len ) == 0 ); mbedtls_hmac_drbg_set_prediction_resistance( &ctx, MBEDTLS_HMAC_DRBG_PR_ON ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add1->x, add1->len ) == 0 ); TEST_ASSERT( mbedtls_hmac_drbg_random_with_add( &ctx, my_output, output->len, add2->x, add2->len ) == 0 ); TEST_ASSERT( memcmp( my_output, output->x, output->len ) == 0 ); exit: mbedtls_hmac_drbg_free( &ctx ); } void test_hmac_drbg_pr_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; data_t data5 = {(uint8_t *) params[5], *( (uint32_t *) params[6] )}; data_t data7 = {(uint8_t *) params[7], *( (uint32_t *) params[8] )}; data_t data9 = {(uint8_t *) params[9], *( (uint32_t *) params[10] )}; test_hmac_drbg_pr( *( (int *) params[0] ), &data1, &data3, &data5, &data7, &data9 ); } #if defined(MBEDTLS_SELF_TEST) void test_hmac_drbg_selftest( ) { TEST_ASSERT( mbedtls_hmac_drbg_self_test( 1 ) == 0 ); exit: ; } void test_hmac_drbg_selftest_wrapper( void ** params ) { (void)params; test_hmac_drbg_selftest( ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_HMAC_DRBG_C */ /*----------------------------------------------------------------------------*/ /* Test dispatch code */ /** * \brief Evaluates an expression/macro into its literal integer value. * For optimizing space for embedded targets each expression/macro * is identified by a unique identifier instead of string literals. * Identifiers and evaluation code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param exp_id Expression identifier. * \param out_value Pointer to int to hold the integer. * * \return 0 if exp_id is found. 1 otherwise. */ int get_expression( int32_t exp_id, int32_t * out_value ) { int ret = KEY_VALUE_MAPPING_FOUND; (void) exp_id; (void) out_value; switch( exp_id ) { #if defined(MBEDTLS_HMAC_DRBG_C) case 0: { *out_value = MBEDTLS_MD_SHA1; } break; case 1: { *out_value = MBEDTLS_MD_SHA224; } break; case 2: { *out_value = MBEDTLS_MD_SHA256; } break; case 3: { *out_value = MBEDTLS_MD_SHA384; } break; case 4: { *out_value = MBEDTLS_MD_SHA512; } break; #endif default: { ret = KEY_VALUE_MAPPING_NOT_FOUND; } break; } return( ret ); } /** * \brief Checks if the dependency i.e. the compile flag is set. * For optimizing space for embedded targets each dependency * is identified by a unique identifier instead of string literals. * Identifiers and check code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param dep_id Dependency identifier. * * \return DEPENDENCY_SUPPORTED if set else DEPENDENCY_NOT_SUPPORTED */ int dep_check( int dep_id ) { int ret = DEPENDENCY_NOT_SUPPORTED; (void) dep_id; switch( dep_id ) { #if defined(MBEDTLS_HMAC_DRBG_C) case 0: { #if defined(MBEDTLS_SHA1_C) ret = DEPENDENCY_SUPPORTED; #else ret = DEPENDENCY_NOT_SUPPORTED; #endif } break; case 1: { #if defined(MBEDTLS_SHA256_C) ret = DEPENDENCY_SUPPORTED; #else ret = DEPENDENCY_NOT_SUPPORTED; #endif } break; case 2: { #if defined(MBEDTLS_SHA512_C) ret = DEPENDENCY_SUPPORTED; #else ret = DEPENDENCY_NOT_SUPPORTED; #endif } break; case 3: { #if !defined(MBEDTLS_SHA512_NO_SHA384) ret = DEPENDENCY_SUPPORTED; #else ret = DEPENDENCY_NOT_SUPPORTED; #endif } break; #endif default: break; } return( ret ); } /** * \brief Function pointer type for test function wrappers. * * A test function wrapper decodes the parameters and passes them to the * underlying test function. Both the wrapper and the underlying function * return void. Test wrappers assume that they are passed a suitable * parameter array and do not perform any error detection. * * \param param_array The array of parameters. Each element is a `void *` * which the wrapper casts to the correct type and * dereferences. Each wrapper function hard-codes the * number and types of the parameters. */ typedef void (*TestWrapper_t)( void **param_array ); /** * \brief Table of test function wrappers. Used by dispatch_test(). * This table is populated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * */ TestWrapper_t test_funcs[] = { /* Function Id: 0 */ #if defined(MBEDTLS_HMAC_DRBG_C) test_hmac_drbg_entropy_usage_wrapper, #else NULL, #endif /* Function Id: 1 */ #if defined(MBEDTLS_HMAC_DRBG_C) && defined(MBEDTLS_FS_IO) test_hmac_drbg_seed_file_wrapper, #else NULL, #endif /* Function Id: 2 */ #if defined(MBEDTLS_HMAC_DRBG_C) test_hmac_drbg_buf_wrapper, #else NULL, #endif /* Function Id: 3 */ #if defined(MBEDTLS_HMAC_DRBG_C) test_hmac_drbg_no_reseed_wrapper, #else NULL, #endif /* Function Id: 4 */ #if defined(MBEDTLS_HMAC_DRBG_C) test_hmac_drbg_nopr_wrapper, #else NULL, #endif /* Function Id: 5 */ #if defined(MBEDTLS_HMAC_DRBG_C) test_hmac_drbg_pr_wrapper, #else NULL, #endif /* Function Id: 6 */ #if defined(MBEDTLS_HMAC_DRBG_C) && defined(MBEDTLS_SELF_TEST) test_hmac_drbg_selftest_wrapper, #else NULL, #endif }; /** * \brief Execute the test function. * * This is a wrapper function around the test function execution * to allow the setjmp() call used to catch any calls to the * parameter failure callback, to be used. Calls to setjmp() * can invalidate the state of any local auto variables. * * \param fp Function pointer to the test function. * \param params Parameters to pass to the #TestWrapper_t wrapper function. * */ void execute_function_ptr(TestWrapper_t fp, void **params) { #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) mbedtls_test_enable_insecure_external_rng( ); #endif #if defined(MBEDTLS_CHECK_PARAMS) mbedtls_test_param_failed_location_record_t location_record; if ( setjmp( mbedtls_test_param_failed_get_state_buf( ) ) == 0 ) { fp( params ); } else { /* Unexpected parameter validation error */ mbedtls_test_param_failed_get_location_record( &location_record ); mbedtls_test_fail( location_record.failure_condition, location_record.line, location_record.file ); } mbedtls_test_param_failed_reset_state( ); #else fp( params ); #endif #if defined(MBEDTLS_TEST_MUTEX_USAGE) mbedtls_test_mutex_usage_check( ); #endif /* MBEDTLS_TEST_MUTEX_USAGE */ } /** * \brief Dispatches test functions based on function index. * * \param func_idx Test function index. * \param params The array of parameters to pass to the test function. * It will be decoded by the #TestWrapper_t wrapper function. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int dispatch_test( size_t func_idx, void ** params ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof( test_funcs ) / sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp ) execute_function_ptr(fp, params); else ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } /** * \brief Checks if test function is supported in this build-time * configuration. * * \param func_idx Test function index. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int check_test( size_t func_idx ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof(test_funcs)/sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp == NULL ) ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } int main( int argc, const char *argv[] ) { int ret; mbedtls_test_platform_setup(); ret = execute_tests( argc, argv, "/zip/third_party/mbedtls/test/test_suite_hmac_drbg.nopr.datax" ); mbedtls_test_platform_teardown(); return( ret ); }