/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ GGML │ │ Copyright (c) 2023 Georgi Gerganov │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/ggml/ggjt.v1.q4_1.h" #include "libc/assert.h" #include "libc/macros.internal.h" #include "libc/str/str.h" #include "third_party/aarch64/arm_neon.internal.h" #include "third_party/ggml/ggjt.v1.internal.h" #include "third_party/ggml/ggjt.v1.q4_1.h" #include "third_party/ggml/ggjt.v1.q8_1.h" #include "third_party/intel/immintrin.internal.h" #include "third_party/libcxx/math.h" // clang-format off // quantization for the ggjt.v1.q4_1 file format static_assert(sizeof(block_v1_q4_1) == 2 * sizeof(float) + V1_QK4_1 / 2, "wrong q4_1 block size/padding"); static_assert(sizeof(block_v1_q8_1) == 3*sizeof(float) + V1_QK8_1, "wrong q8_1 block size/padding"); void quantize_row_v1_q4_1_reference(const float * restrict x, void * restrict vy, int k) { assert(k % V1_QK4_1 == 0); const int nb = k / V1_QK4_1; block_v1_q4_1 * restrict y = vy; uint8_t pp[V1_QK4_1/2]; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; for (int l = 0; l < V1_QK4_1; l++) { const float v = x[i*V1_QK4_1 + l]; if (v < min) min = v; if (v > max) max = v; } const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; y[i].m = min; for (int l = 0; l < V1_QK4_1; l += 2) { const float v0 = (x[i*V1_QK4_1 + l + 0] - min)*id; const float v1 = (x[i*V1_QK4_1 + l + 1] - min)*id; const uint8_t vi0 = roundf(v0); const uint8_t vi1 = roundf(v1); assert(vi0 < 16); assert(vi1 < 16); pp[l/2] = vi0 | (vi1 << 4); } memcpy(y[i].qs, pp, sizeof(pp)); } } void quantize_row_v1_q4_1(const float * restrict x, void * restrict vy, int k) { assert(k % V1_QK4_1 == 0); const int nb = k / V1_QK4_1; block_v1_q4_1 * restrict y = vy; #if defined(__AVX2__) for (int i = 0; i < nb; i++) { // Load elements into 4 AVX vectors __m256 v0 = _mm256_loadu_ps( x ); __m256 v1 = _mm256_loadu_ps( x + 8 ); __m256 v2 = _mm256_loadu_ps( x + 16 ); __m256 v3 = _mm256_loadu_ps( x + 24 ); x += 32; // Compute max for the block __m256 vmax; vmax = _mm256_max_ps( v0, v1 ); vmax = _mm256_max_ps( vmax, v2 ); vmax = _mm256_max_ps( vmax, v3 ); __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); const float maxScalar = _mm_cvtss_f32( max4 ); // Compute min for the block __m256 vmin; vmin = _mm256_min_ps( v0, v1 ); vmin = _mm256_min_ps( vmin, v2 ); vmin = _mm256_min_ps( vmin, v3 ); __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) ); min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); const float minScalar = _mm_cvtss_f32( min4 ); // Quantize these floats const float d = (maxScalar - minScalar) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].m = minScalar; y[i].d = d; // x = (x-min)*id const __m256 mul = _mm256_set1_ps( id ); const __m256 off = _mm256_set1_ps( minScalar ); v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul ); v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul ); v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul ); v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul ); // Round to nearest integer v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); // Convert floats to integers __m256i i0 = _mm256_cvtps_epi32( v0 ); __m256i i1 = _mm256_cvtps_epi32( v1 ); __m256i i2 = _mm256_cvtps_epi32( v2 ); __m256i i3 = _mm256_cvtps_epi32( v3 ); // Convert int32 to int16 i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 // Convert int16 to int8 i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 // We got our precious signed bytes, but the order is now wrong // These AVX2 pack instructions process 16-byte pieces independently // The following instruction is fixing the order const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); i0 = _mm256_permutevar8x32_epi32( i0, perm ); // Compress the vector into 4 bit/value, and store __m128i res = packNibbles( i0 ); _mm_storeu_si128( ( __m128i* )y[i].qs, res ); } #elif __ARM_NEON for (int i = 0; i < nb; i++) { float32x4_t srcv[8]; float32x4_t minv[8]; float32x4_t maxv[8]; for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*V1_QK4_1 + 4*l); for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]); for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]); for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]); for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]); const float min = vminvq_f32(minv[0]); const float max = vmaxvq_f32(maxv[0]); const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; y[i].m = min; const float32x4_t minv0 = vdupq_n_f32(min); for (int l = 0; l < 8; l++) { const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id); const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest const int32x4_t vi = vcvtq_s32_f32(vf); y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); } } #else // scalar quantize_row_v1_q4_1_reference(x, vy, k); #endif } size_t ggml_quantize_v1_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) { assert(k % V1_QK4_1 == 0); const int nb = k / V1_QK4_1; for (int j = 0; j < n; j += k) { block_v1_q4_1 * restrict y = (block_v1_q4_1 *)dst + j/V1_QK4_1; quantize_row_v1_q4_1_reference(src + j, y, k); for (int i = 0; i < nb; i++) { for (int l = 0; l < V1_QK4_1; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0x0F; const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; hist[vi1]++; } } } return (n/V1_QK4_1*sizeof(block_v1_q4_1)); } void dequantize_row_v1_q4_1(const void * restrict vx, float * restrict y, int k) { assert(k % V1_QK4_1 == 0); const int nb = k / V1_QK4_1; const block_v1_q4_1 * restrict x = vx; #if defined(__AVX2__) for (int i = 0; i < nb; i++) { const __m256 d_v = _mm256_broadcast_ss(&x[i].d); const __m256 d_m = _mm256_broadcast_ss(&x[i].m); const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < V1_QK4_1; l += 32) { // Load 32x4-bit integers into 32x8-bit integers __m256i vx8 = bytes_from_nibbles_32(pp+l/2); // Convert to 16-bit int const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0)); const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1)); // Convert to 32-bit int -> float 32 const __m256 vf[4] = { _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))), _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))), _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))), _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1))) }; // Scale, add m and store for (int j = 0; j < 4; j++) { const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m); _mm256_storeu_ps(y + i * V1_QK4_1 + l + j*8, result); } } } #elif defined(__ARM_NEON) for (int i = 0; i < nb; i++) { const float32x4_t vd = vdupq_n_f32(x[i].d); const float32x4_t vm = vdupq_n_f32(x[i].m); const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < V1_QK4_1; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); // Expand 4-bit qs to 8-bit bytes const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); const uint8x8_t v1 = vshr_n_u8(v8, 4); // Interleave and combine const uint8x8_t vx_0 = vzip1_u8(v0, v1); const uint8x8_t vx_1 = vzip2_u8(v0, v1); const uint8x16_t vq = vcombine_u8(vx_0, vx_1); // convert to 2x uint16x8_t const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq)); const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq)); // convert to 4x float32x4_t const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0))); const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0))); const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1))); const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1))); // multiply by d and add m const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd); const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd); const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd); const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); // Store vst1q_f32(y + i*V1_QK4_1 + l + 0, r0); vst1q_f32(y + i*V1_QK4_1 + l + 4, r1); vst1q_f32(y + i*V1_QK4_1 + l + 8, r2); vst1q_f32(y + i*V1_QK4_1 + l + 12, r3); } } #else for (int i = 0; i < nb; i++) { const float d = x[i].d; const float m = x[i].m; const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < V1_QK4_1; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0x0F; const int8_t vi1 = vi >> 4; const float v0 = vi0*d + m; const float v1 = vi1*d + m; y[i*V1_QK4_1 + l + 0] = v0; y[i*V1_QK4_1 + l + 1] = v1; assert(!isnan(y[i*V1_QK4_1 + l + 0])); assert(!isnan(y[i*V1_QK4_1 + l + 1])); } } #endif } void ggml_vec_dot_v1_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / V1_QK8_1; assert(n % V1_QK8_1 == 0); assert(nb % 2 == 0); const block_v1_q4_1 * restrict x = vx; const block_v1_q8_1 * restrict y = vy; // TODO: add AVX / WASM SIMD / etc #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); float summs = 0; for (int i = 0; i < nb; i += 2) { const block_v1_q4_1 * restrict x0 = &x[i + 0]; const block_v1_q4_1 * restrict x1 = &x[i + 1]; const block_v1_q8_1 * restrict y0 = &y[i + 0]; const block_v1_q8_1 * restrict y1 = &y[i + 1]; summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1); const uint8x16_t m4b = vdupq_n_u8(0x0F); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // interleave const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h); const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); #if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); #endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); float summs = 0; // Main loop for (int i = 0; i < nb; ++i) { const float * d0 = &x[i].d; const float * d1 = &y[i].d; summs += x[i].m * (y[i].s0 + y[i].s1); const __m256 d0v = _mm256_broadcast_ss( d0 ); const __m256 d1v = _mm256_broadcast_ss( d1 ); // Compute combined scales const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes const __m256i bx = bytes_from_nibbles_32(x[i].qs); const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs ); const __m256 xy = mul_sum_i8_pairs_float(bx, by); // Accumulate d0*d1*x*y acc = _mm256_fmadd_ps( d0d1, xy, acc ); } *s = hsum_float_8(acc) + summs; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { const float d0 = x[i].d; const float m0 = x[i].m; const float d1 = y[i].d; const uint8_t * restrict p0 = x[i].qs; const int8_t * restrict p1 = y[i].qs; // TODO: this is very slow .. for (int j = 0; j < V1_QK8_1/2; j++) { const uint8_t v0 = p0[j]; const float f0 = d0*(v0 & 0x0F) + m0; const float f1 = d0*(v0 >> 4) + m0; const float f2 = d1*p1[2*j + 0]; const float f3 = d1*p1[2*j + 1]; sumf += f0*f2 + f1*f3; } } *s = sumf; #endif }