// clang-format off # Convert Hugging Face fine-tuned gpt-neox-like models to ggml format import io import os import sys import struct import json import code import torch import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 3: print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]") print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'") print(" dir-output: directory where the output file will be written") print(" use-f32: if present, use float32 instead of float16") sys.exit(1) model_name = sys.argv[1] dir_out = sys.argv[2] model_cache_dir = dir_out + "-cache" # make sure the output directory exists os.makedirs(dir_out, exist_ok=True) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 3: ftype = 0 tokenizer = AutoTokenizer.from_pretrained(model_name) print("Loading model: ", model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if ftype == 1 else torch.float32, cache_dir=model_cache_dir) model.eval() for p in model.parameters(): p.requires_grad = False hparams = model.config.to_dict() print("Model loaded: ", model_name) fn_bin = f"/ggml-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin" fn_out = dir_out + fn_bin fout = open(fn_out, "wb") ggml_file_magic = 0x67676d66 # 0x67676d6c is unversioned ggml_file_version = 0x00000001 # v1 hparams["multiple_of"] = 1 fout.write(struct.pack("i", ggml_file_magic)) # magic: ggmf in hex fout.write(struct.pack("i", ggml_file_version)) fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["max_position_embeddings"])) fout.write(struct.pack("i", hparams["hidden_size"])) fout.write(struct.pack("i", hparams["num_attention_heads"])) fout.write(struct.pack("i", hparams["num_hidden_layers"])) fout.write(struct.pack("i", int((hparams["hidden_size"] / hparams["num_attention_heads"] ) * hparams["rotary_pct"]))) # rotary_dim fout.write(struct.pack("i", int(hparams["use_parallel_residual"]))) fout.write(struct.pack("i", ftype)) # Is this correct?? dot_token = tokenizer.encode(".")[0] for i in range(hparams["vocab_size"]): text = tokenizer.decode([i]).encode('utf-8') fout.write(struct.pack("i", len(text))) fout.write(text) list_vars = model.state_dict() print(hparams) for name in list_vars.keys(): if name.startswith('gpt_neox.layers.'): if 'attention.masked_bias' in name or \ 'attention.rotary_emb.inv_freq' in name or \ 'attention.bias' in name: continue # No gradients for these list_vars[name].requires_grad = False src = name nn = name print(src, ' -> ', name) data = list_vars[src].squeeze().numpy() data = data.astype(np.float32) n_dims = len(data.shape) print(name, n_dims, data.shape) # default type is fp32 ftype_cur = 0 if ftype == 1 and n_dims > 1: print(" Converting to float16", data.shape, data[:3, :3].tolist()) data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32", data.shape, data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist()) data = data.astype(np.float32) # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) print(str) fout.write(str) # data data.tofile(fout) fout.close() print("Done. Output file: " + fn_out) print("")