/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/math.h" #include "libc/tinymath/expo.internal.h" asm(".ident\t\"\\n\\n\ Musl libc (MIT License)\\n\ Copyright 2005-2014 Rich Felker, et. al.\""); asm(".include \"libc/disclaimer.inc\""); // clang-format off /** * Returns hyperbolic sine of 𝑥. * * sinh(x) = (exp(x) - 1/exp(x))/2 * = (exp(x)-1 + (exp(x)-1)/exp(x))/2 * = x + x^3/6 + o(x^5) */ float sinhf(float x) { union {float f; uint32_t i;} u = {.f = x}; uint32_t w; float t, h, absx; h = 0.5; if (u.i >> 31) h = -h; /* |x| */ u.i &= 0x7fffffff; absx = u.f; w = u.i; /* |x| < log(FLT_MAX) */ if (w < 0x42b17217) { t = expm1f(absx); if (w < 0x3f800000) { if (w < 0x3f800000 - (12<<23)) return x; return h*(2*t - t*t/(t+1)); } return h*(t + t/(t+1)); } /* |x| > logf(FLT_MAX) or nan */ t = __expo2f(absx, 2*h); return t; }