/* clang-format off */ /* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "third_party/mbedtls/test/test.inc" /* * *** THIS FILE WAS MACHINE GENERATED *** * * This file has been machine generated using the script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * Test file : ./test_suite_aes.rest.c * * The following files were used to create this file. * * Main code file : suites/main_test.function * Platform code file : suites/host_test.function * Helper file : suites/helpers.function * Test suite file : suites/test_suite_aes.function * Test suite data : suites/test_suite_aes.rest.data * */ #define TEST_SUITE_ACTIVE #if defined(MBEDTLS_AES_C) #include "third_party/mbedtls/aes.h" void test_aes_encrypt_ecb( data_t * key_str, data_t * src_str, data_t * dst, int setkey_result ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); TEST_ASSERT( mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ) == setkey_result ); if( setkey_result == 0 ) { TEST_ASSERT( mbedtls_aes_crypt_ecb( &ctx, MBEDTLS_AES_ENCRYPT, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 ); } exit: mbedtls_aes_free( &ctx ); } void test_aes_encrypt_ecb_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; test_aes_encrypt_ecb( &data0, &data2, &data4, *( (int *) params[6] ) ); } void test_aes_decrypt_ecb( data_t * key_str, data_t * src_str, data_t * dst, int setkey_result ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); TEST_ASSERT( mbedtls_aes_setkey_dec( &ctx, key_str->x, key_str->len * 8 ) == setkey_result ); if( setkey_result == 0 ) { TEST_ASSERT( mbedtls_aes_crypt_ecb( &ctx, MBEDTLS_AES_DECRYPT, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 ); } exit: mbedtls_aes_free( &ctx ); } void test_aes_decrypt_ecb_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; test_aes_decrypt_ecb( &data0, &data2, &data4, *( (int *) params[6] ) ); } #if defined(MBEDTLS_CIPHER_MODE_CBC) void test_aes_encrypt_cbc( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst, int cbc_result ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cbc( &ctx, MBEDTLS_AES_ENCRYPT, src_str->len, iv_str->x, src_str->x, output ) == cbc_result ); if( cbc_result == 0 ) { TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, src_str->len, dst->len ) == 0 ); } exit: mbedtls_aes_free( &ctx ); } void test_aes_encrypt_cbc_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_encrypt_cbc( &data0, &data2, &data4, &data6, *( (int *) params[8] ) ); } #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_CBC) void test_aes_decrypt_cbc( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst, int cbc_result ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_dec( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cbc( &ctx, MBEDTLS_AES_DECRYPT, src_str->len, iv_str->x, src_str->x, output ) == cbc_result ); if( cbc_result == 0) { TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, src_str->len, dst->len ) == 0 ); } exit: mbedtls_aes_free( &ctx ); } void test_aes_decrypt_cbc_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_decrypt_cbc( &data0, &data2, &data4, &data6, *( (int *) params[8] ) ); } #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_XTS) void test_aes_encrypt_xts( char *hex_key_string, char *hex_data_unit_string, char *hex_src_string, char *hex_dst_string ) { enum { AES_BLOCK_SIZE = 16 }; unsigned char *data_unit = NULL; unsigned char *key = NULL; unsigned char *src = NULL; unsigned char *dst = NULL; unsigned char *output = NULL; mbedtls_aes_xts_context ctx; size_t key_len, src_len, dst_len, data_unit_len; mbedtls_aes_xts_init( &ctx ); data_unit = mbedtls_test_unhexify_alloc( hex_data_unit_string, &data_unit_len ); TEST_ASSERT( data_unit_len == AES_BLOCK_SIZE ); key = mbedtls_test_unhexify_alloc( hex_key_string, &key_len ); TEST_ASSERT( key_len % 2 == 0 ); src = mbedtls_test_unhexify_alloc( hex_src_string, &src_len ); dst = mbedtls_test_unhexify_alloc( hex_dst_string, &dst_len ); TEST_ASSERT( src_len == dst_len ); output = mbedtls_test_zero_alloc( dst_len ); TEST_ASSERT( mbedtls_aes_xts_setkey_enc( &ctx, key, key_len * 8 ) == 0 ); TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_ENCRYPT, src_len, data_unit, src, output ) == 0 ); TEST_ASSERT( memcmp( output, dst, dst_len ) == 0 ); exit: mbedtls_aes_xts_free( &ctx ); mbedtls_free( data_unit ); mbedtls_free( key ); mbedtls_free( src ); mbedtls_free( dst ); mbedtls_free( output ); } void test_aes_encrypt_xts_wrapper( void ** params ) { test_aes_encrypt_xts( (char *) params[0], (char *) params[1], (char *) params[2], (char *) params[3] ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_XTS) void test_aes_decrypt_xts( char *hex_key_string, char *hex_data_unit_string, char *hex_dst_string, char *hex_src_string ) { enum { AES_BLOCK_SIZE = 16 }; unsigned char *data_unit = NULL; unsigned char *key = NULL; unsigned char *src = NULL; unsigned char *dst = NULL; unsigned char *output = NULL; mbedtls_aes_xts_context ctx; size_t key_len, src_len, dst_len, data_unit_len; mbedtls_aes_xts_init( &ctx ); data_unit = mbedtls_test_unhexify_alloc( hex_data_unit_string, &data_unit_len ); TEST_ASSERT( data_unit_len == AES_BLOCK_SIZE ); key = mbedtls_test_unhexify_alloc( hex_key_string, &key_len ); TEST_ASSERT( key_len % 2 == 0 ); src = mbedtls_test_unhexify_alloc( hex_src_string, &src_len ); dst = mbedtls_test_unhexify_alloc( hex_dst_string, &dst_len ); TEST_ASSERT( src_len == dst_len ); output = mbedtls_test_zero_alloc( dst_len ); TEST_ASSERT( mbedtls_aes_xts_setkey_dec( &ctx, key, key_len * 8 ) == 0 ); TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_DECRYPT, src_len, data_unit, src, output ) == 0 ); TEST_ASSERT( memcmp( output, dst, dst_len ) == 0 ); exit: mbedtls_aes_xts_free( &ctx ); mbedtls_free( data_unit ); mbedtls_free( key ); mbedtls_free( src ); mbedtls_free( dst ); mbedtls_free( output ); } void test_aes_decrypt_xts_wrapper( void ** params ) { test_aes_decrypt_xts( (char *) params[0], (char *) params[1], (char *) params[2], (char *) params[3] ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_XTS) void test_aes_crypt_xts_size( int size, int retval ) { mbedtls_aes_xts_context ctx; const unsigned char src[16] = { 0 }; unsigned char output[16]; unsigned char data_unit[16]; size_t length = size; mbedtls_aes_xts_init( &ctx ); memset( data_unit, 0x00, sizeof( data_unit ) ); /* Valid pointers are passed for builds with MBEDTLS_CHECK_PARAMS, as * otherwise we wouldn't get to the size check we're interested in. */ TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_ENCRYPT, length, data_unit, src, output ) == retval ); exit: ; } void test_aes_crypt_xts_size_wrapper( void ** params ) { test_aes_crypt_xts_size( *( (int *) params[0] ), *( (int *) params[1] ) ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_XTS) void test_aes_crypt_xts_keysize( int size, int retval ) { mbedtls_aes_xts_context ctx; const unsigned char key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }; size_t key_len = size; mbedtls_aes_xts_init( &ctx ); TEST_ASSERT( mbedtls_aes_xts_setkey_enc( &ctx, key, key_len * 8 ) == retval ); TEST_ASSERT( mbedtls_aes_xts_setkey_dec( &ctx, key, key_len * 8 ) == retval ); exit: mbedtls_aes_xts_free( &ctx ); } void test_aes_crypt_xts_keysize_wrapper( void ** params ) { test_aes_crypt_xts_keysize( *( (int *) params[0] ), *( (int *) params[1] ) ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_CFB) void test_aes_encrypt_cfb128( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst ) { unsigned char output[100]; mbedtls_aes_context ctx; size_t iv_offset = 0; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cfb128( &ctx, MBEDTLS_AES_ENCRYPT, 16, &iv_offset, iv_str->x, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 ); exit: mbedtls_aes_free( &ctx ); } void test_aes_encrypt_cfb128_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_encrypt_cfb128( &data0, &data2, &data4, &data6 ); } #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_CFB) void test_aes_decrypt_cfb128( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst ) { unsigned char output[100]; mbedtls_aes_context ctx; size_t iv_offset = 0; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cfb128( &ctx, MBEDTLS_AES_DECRYPT, 16, &iv_offset, iv_str->x, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 ); exit: mbedtls_aes_free( &ctx ); } void test_aes_decrypt_cfb128_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_decrypt_cfb128( &data0, &data2, &data4, &data6 ); } #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_CFB) void test_aes_encrypt_cfb8( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cfb8( &ctx, MBEDTLS_AES_ENCRYPT, src_str->len, iv_str->x, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, src_str->len, dst->len ) == 0 ); exit: mbedtls_aes_free( &ctx ); } void test_aes_encrypt_cfb8_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_encrypt_cfb8( &data0, &data2, &data4, &data6 ); } #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_CFB) void test_aes_decrypt_cfb8( data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst ) { unsigned char output[100]; mbedtls_aes_context ctx; memset(output, 0x00, 100); mbedtls_aes_init( &ctx ); mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ); TEST_ASSERT( mbedtls_aes_crypt_cfb8( &ctx, MBEDTLS_AES_DECRYPT, src_str->len, iv_str->x, src_str->x, output ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, src_str->len, dst->len ) == 0 ); exit: mbedtls_aes_free( &ctx ); } void test_aes_decrypt_cfb8_wrapper( void ** params ) { data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )}; data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )}; data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )}; data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )}; test_aes_decrypt_cfb8( &data0, &data2, &data4, &data6 ); } #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_OFB) void test_aes_encrypt_ofb( int fragment_size, data_t *key_str, data_t *iv_str, data_t *src_str, data_t *expected_output ) { unsigned char output[32]; mbedtls_aes_context ctx; size_t iv_offset = 0; int in_buffer_len; unsigned char* src_str_next; memset( output, 0x00, sizeof( output ) ); mbedtls_aes_init( &ctx ); TEST_ASSERT( (size_t)fragment_size < sizeof( output ) ); TEST_ASSERT( mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ) == 0 ); in_buffer_len = src_str->len; src_str_next = src_str->x; while( in_buffer_len > 0 ) { TEST_ASSERT( mbedtls_aes_crypt_ofb( &ctx, fragment_size, &iv_offset, iv_str->x, src_str_next, output ) == 0 ); TEST_ASSERT( memcmp( output, expected_output->x, fragment_size ) == 0 ); in_buffer_len -= fragment_size; expected_output->x += fragment_size; src_str_next += fragment_size; if( in_buffer_len < fragment_size ) fragment_size = in_buffer_len; } exit: mbedtls_aes_free( &ctx ); } void test_aes_encrypt_ofb_wrapper( void ** params ) { data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )}; data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )}; data_t data5 = {(uint8_t *) params[5], *( (uint32_t *) params[6] )}; data_t data7 = {(uint8_t *) params[7], *( (uint32_t *) params[8] )}; test_aes_encrypt_ofb( *( (int *) params[0] ), &data1, &data3, &data5, &data7 ); } #endif /* MBEDTLS_CIPHER_MODE_OFB */ #if defined(MBEDTLS_CHECK_PARAMS) #if !defined(MBEDTLS_PARAM_FAILED_ALT) void test_aes_check_params( ) { mbedtls_aes_context aes_ctx; #if defined(MBEDTLS_CIPHER_MODE_XTS) mbedtls_aes_xts_context xts_ctx; #endif const unsigned char key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }; const unsigned char in[16] = { 0 }; unsigned char out[16]; size_t size; const int valid_mode = MBEDTLS_AES_ENCRYPT; const int invalid_mode = 42; TEST_INVALID_PARAM( mbedtls_aes_init( NULL ) ); #if defined(MBEDTLS_CIPHER_MODE_XTS) TEST_INVALID_PARAM( mbedtls_aes_xts_init( NULL ) ); #endif TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_setkey_enc( NULL, key, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_setkey_enc( &aes_ctx, NULL, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_setkey_dec( NULL, key, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_setkey_dec( &aes_ctx, NULL, 128 ) ); #if defined(MBEDTLS_CIPHER_MODE_XTS) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_xts_setkey_enc( NULL, key, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_xts_setkey_enc( &xts_ctx, NULL, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_xts_setkey_dec( NULL, key, 128 ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_xts_setkey_dec( &xts_ctx, NULL, 128 ) ); #endif TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ecb( NULL, valid_mode, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ecb( &aes_ctx, invalid_mode, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ecb( &aes_ctx, valid_mode, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ecb( &aes_ctx, valid_mode, in, NULL ) ); #if defined(MBEDTLS_CIPHER_MODE_CBC) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cbc( NULL, valid_mode, 16, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cbc( &aes_ctx, invalid_mode, 16, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cbc( &aes_ctx, valid_mode, 16, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cbc( &aes_ctx, valid_mode, 16, out, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cbc( &aes_ctx, valid_mode, 16, out, in, NULL ) ); #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_XTS) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_xts( NULL, valid_mode, 16, in, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_xts( &xts_ctx, invalid_mode, 16, in, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_xts( &xts_ctx, valid_mode, 16, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_xts( &xts_ctx, valid_mode, 16, in, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_xts( &xts_ctx, valid_mode, 16, in, in, NULL ) ); #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_CFB) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( NULL, valid_mode, 16, &size, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( &aes_ctx, invalid_mode, 16, &size, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( &aes_ctx, valid_mode, 16, NULL, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( &aes_ctx, valid_mode, 16, &size, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( &aes_ctx, valid_mode, 16, &size, out, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb128( &aes_ctx, valid_mode, 16, &size, out, in, NULL ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb8( NULL, valid_mode, 16, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb8( &aes_ctx, invalid_mode, 16, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb8( &aes_ctx, valid_mode, 16, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb8( &aes_ctx, valid_mode, 16, out, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_cfb8( &aes_ctx, valid_mode, 16, out, in, NULL ) ); #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_OFB) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ofb( NULL, 16, &size, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ofb( &aes_ctx, 16, NULL, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ofb( &aes_ctx, 16, &size, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ofb( &aes_ctx, 16, &size, out, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ofb( &aes_ctx, 16, &size, out, in, NULL ) ); #endif /* MBEDTLS_CIPHER_MODE_OFB */ #if defined(MBEDTLS_CIPHER_MODE_CTR) TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( NULL, 16, &size, out, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( &aes_ctx, 16, NULL, out, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, NULL, out, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out, NULL, in, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out, out, NULL, out ) ); TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA, mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out, out, in, NULL ) ); #endif /* MBEDTLS_CIPHER_MODE_CTR */ exit: ; } void test_aes_check_params_wrapper( void ** params ) { (void)params; test_aes_check_params( ); } #endif /* !MBEDTLS_PARAM_FAILED_ALT */ #endif /* MBEDTLS_CHECK_PARAMS */ void test_aes_misc_params( ) { #if defined(MBEDTLS_CIPHER_MODE_CBC) || \ defined(MBEDTLS_CIPHER_MODE_XTS) || \ defined(MBEDTLS_CIPHER_MODE_CFB) || \ defined(MBEDTLS_CIPHER_MODE_OFB) mbedtls_aes_context aes_ctx; const unsigned char in[16] = { 0 }; unsigned char out[16]; #endif #if defined(MBEDTLS_CIPHER_MODE_XTS) mbedtls_aes_xts_context xts_ctx; #endif #if defined(MBEDTLS_CIPHER_MODE_CFB) || \ defined(MBEDTLS_CIPHER_MODE_OFB) size_t size; #endif /* These calls accept NULL */ TEST_VALID_PARAM( mbedtls_aes_free( NULL ) ); #if defined(MBEDTLS_CIPHER_MODE_XTS) TEST_VALID_PARAM( mbedtls_aes_xts_free( NULL ) ); #endif #if defined(MBEDTLS_CIPHER_MODE_CBC) TEST_ASSERT( mbedtls_aes_crypt_cbc( &aes_ctx, MBEDTLS_AES_ENCRYPT, 15, out, in, out ) == MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH ); TEST_ASSERT( mbedtls_aes_crypt_cbc( &aes_ctx, MBEDTLS_AES_ENCRYPT, 17, out, in, out ) == MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH ); #endif #if defined(MBEDTLS_CIPHER_MODE_XTS) TEST_ASSERT( mbedtls_aes_crypt_xts( &xts_ctx, MBEDTLS_AES_ENCRYPT, 15, in, in, out ) == MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH ); TEST_ASSERT( mbedtls_aes_crypt_xts( &xts_ctx, MBEDTLS_AES_ENCRYPT, (1 << 24) + 1, in, in, out ) == MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH ); #endif #if defined(MBEDTLS_CIPHER_MODE_CFB) size = 16; TEST_ASSERT( mbedtls_aes_crypt_cfb128( &aes_ctx, MBEDTLS_AES_ENCRYPT, 16, &size, out, in, out ) == MBEDTLS_ERR_AES_BAD_INPUT_DATA ); #endif #if defined(MBEDTLS_CIPHER_MODE_OFB) size = 16; TEST_ASSERT( mbedtls_aes_crypt_ofb( &aes_ctx, 16, &size, out, in, out ) == MBEDTLS_ERR_AES_BAD_INPUT_DATA ); #endif exit: ; } void test_aes_misc_params_wrapper( void ** params ) { (void)params; test_aes_misc_params( ); } #if defined(MBEDTLS_SELF_TEST) void test_aes_selftest( ) { TEST_ASSERT( mbedtls_aes_self_test( 1 ) == 0 ); exit: ; } void test_aes_selftest_wrapper( void ** params ) { (void)params; test_aes_selftest( ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_AES_C */ /*----------------------------------------------------------------------------*/ /* Test dispatch code */ /** * \brief Evaluates an expression/macro into its literal integer value. * For optimizing space for embedded targets each expression/macro * is identified by a unique identifier instead of string literals. * Identifiers and evaluation code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param exp_id Expression identifier. * \param out_value Pointer to int to hold the integer. * * \return 0 if exp_id is found. 1 otherwise. */ int get_expression( int32_t exp_id, int32_t * out_value ) { int ret = KEY_VALUE_MAPPING_FOUND; (void) exp_id; (void) out_value; switch( exp_id ) { #if defined(MBEDTLS_AES_C) case 0: { *out_value = MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } break; case 1: { *out_value = MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; } break; #endif default: { ret = KEY_VALUE_MAPPING_NOT_FOUND; } break; } return( ret ); } /** * \brief Checks if the dependency i.e. the compile flag is set. * For optimizing space for embedded targets each dependency * is identified by a unique identifier instead of string literals. * Identifiers and check code is generated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * * \param dep_id Dependency identifier. * * \return DEPENDENCY_SUPPORTED if set else DEPENDENCY_NOT_SUPPORTED */ int dep_check( int dep_id ) { int ret = DEPENDENCY_NOT_SUPPORTED; (void) dep_id; switch( dep_id ) { #if defined(MBEDTLS_AES_C) case 0: { #if defined(MBEDTLS_SELF_TEST) ret = DEPENDENCY_SUPPORTED; #else ret = DEPENDENCY_NOT_SUPPORTED; #endif } break; #endif default: break; } return( ret ); } /** * \brief Function pointer type for test function wrappers. * * A test function wrapper decodes the parameters and passes them to the * underlying test function. Both the wrapper and the underlying function * return void. Test wrappers assume that they are passed a suitable * parameter array and do not perform any error detection. * * \param param_array The array of parameters. Each element is a `void *` * which the wrapper casts to the correct type and * dereferences. Each wrapper function hard-codes the * number and types of the parameters. */ typedef void (*TestWrapper_t)( void **param_array ); /** * \brief Table of test function wrappers. Used by dispatch_test(). * This table is populated by script: * generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh * */ TestWrapper_t test_funcs[] = { /* Function Id: 0 */ #if defined(MBEDTLS_AES_C) test_aes_encrypt_ecb_wrapper, #else NULL, #endif /* Function Id: 1 */ #if defined(MBEDTLS_AES_C) test_aes_decrypt_ecb_wrapper, #else NULL, #endif /* Function Id: 2 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CBC) test_aes_encrypt_cbc_wrapper, #else NULL, #endif /* Function Id: 3 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CBC) test_aes_decrypt_cbc_wrapper, #else NULL, #endif /* Function Id: 4 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS) test_aes_encrypt_xts_wrapper, #else NULL, #endif /* Function Id: 5 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS) test_aes_decrypt_xts_wrapper, #else NULL, #endif /* Function Id: 6 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS) test_aes_crypt_xts_size_wrapper, #else NULL, #endif /* Function Id: 7 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS) test_aes_crypt_xts_keysize_wrapper, #else NULL, #endif /* Function Id: 8 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB) test_aes_encrypt_cfb128_wrapper, #else NULL, #endif /* Function Id: 9 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB) test_aes_decrypt_cfb128_wrapper, #else NULL, #endif /* Function Id: 10 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB) test_aes_encrypt_cfb8_wrapper, #else NULL, #endif /* Function Id: 11 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB) test_aes_decrypt_cfb8_wrapper, #else NULL, #endif /* Function Id: 12 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_OFB) test_aes_encrypt_ofb_wrapper, #else NULL, #endif /* Function Id: 13 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CHECK_PARAMS) && !defined(MBEDTLS_PARAM_FAILED_ALT) test_aes_check_params_wrapper, #else NULL, #endif /* Function Id: 14 */ #if defined(MBEDTLS_AES_C) test_aes_misc_params_wrapper, #else NULL, #endif /* Function Id: 15 */ #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_SELF_TEST) test_aes_selftest_wrapper, #else NULL, #endif }; /** * \brief Execute the test function. * * This is a wrapper function around the test function execution * to allow the setjmp() call used to catch any calls to the * parameter failure callback, to be used. Calls to setjmp() * can invalidate the state of any local auto variables. * * \param fp Function pointer to the test function. * \param params Parameters to pass to the #TestWrapper_t wrapper function. * */ void execute_function_ptr(TestWrapper_t fp, void **params) { #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) mbedtls_test_enable_insecure_external_rng( ); #endif #if defined(MBEDTLS_CHECK_PARAMS) mbedtls_test_param_failed_location_record_t location_record; if ( setjmp( mbedtls_test_param_failed_get_state_buf( ) ) == 0 ) { fp( params ); } else { /* Unexpected parameter validation error */ mbedtls_test_param_failed_get_location_record( &location_record ); mbedtls_test_fail( location_record.failure_condition, location_record.line, location_record.file ); } mbedtls_test_param_failed_reset_state( ); #else fp( params ); #endif #if defined(MBEDTLS_TEST_MUTEX_USAGE) mbedtls_test_mutex_usage_check( ); #endif /* MBEDTLS_TEST_MUTEX_USAGE */ } /** * \brief Dispatches test functions based on function index. * * \param func_idx Test function index. * \param params The array of parameters to pass to the test function. * It will be decoded by the #TestWrapper_t wrapper function. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int dispatch_test( size_t func_idx, void ** params ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof( test_funcs ) / sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp ) execute_function_ptr(fp, params); else ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } /** * \brief Checks if test function is supported in this build-time * configuration. * * \param func_idx Test function index. * * \return DISPATCH_TEST_SUCCESS if found * DISPATCH_TEST_FN_NOT_FOUND if not found * DISPATCH_UNSUPPORTED_SUITE if not compile time enabled. */ int check_test( size_t func_idx ) { int ret = DISPATCH_TEST_SUCCESS; TestWrapper_t fp = NULL; if ( func_idx < (int)( sizeof(test_funcs)/sizeof( TestWrapper_t ) ) ) { fp = test_funcs[func_idx]; if ( fp == NULL ) ret = DISPATCH_UNSUPPORTED_SUITE; } else { ret = DISPATCH_TEST_FN_NOT_FOUND; } return( ret ); } int main( int argc, const char *argv[] ) { int ret; mbedtls_test_platform_setup(); ret = execute_tests( argc, argv, "/zip/third_party/mbedtls/test/test_suite_aes.rest.datax" ); mbedtls_test_platform_teardown(); return( ret ); }