/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8                                :vi│
╚──────────────────────────────────────────────────────────────────────────────╝
│                                                                              │
│  regcomp.c - TRE POSIX compatible regex compilation functions.               │
│                                                                              │
│  Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>                         │
│  All rights reserved.                                                        │
│                                                                              │
│  Redistribution and use in source and binary forms, with or without          │
│  modification, are permitted provided that the following conditions          │
│  are met:                                                                    │
│                                                                              │
│    1. Redistributions of source code must retain the above copyright         │
│       notice, this list of conditions and the following disclaimer.          │
│                                                                              │
│    2. Redistributions in binary form must reproduce the above copyright      │
│       notice, this list of conditions and the following disclaimer in        │
│       the documentation and/or other materials provided with the             │
│       distribution.                                                          │
│                                                                              │
│  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS          │
│  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT         │
│  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR       │
│  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT       │
│  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,      │
│  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT            │
│  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,       │
│  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY       │
│  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT         │
│  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE       │
│  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.        │
│                                                                              │
│──────────────────────────────────────────────────────────────────────────────│
│                                                                              │
│  Musl Libc                                                                   │
│  Copyright © 2005-2014 Rich Felker, et al.                                   │
│                                                                              │
│  Permission is hereby granted, free of charge, to any person obtaining       │
│  a copy of this software and associated documentation files (the             │
│  "Software"), to deal in the Software without restriction, including         │
│  without limitation the rights to use, copy, modify, merge, publish,         │
│  distribute, sublicense, and/or sell copies of the Software, and to          │
│  permit persons to whom the Software is furnished to do so, subject to       │
│  the following conditions:                                                   │
│                                                                              │
│  The above copyright notice and this permission notice shall be              │
│  included in all copies or substantial portions of the Software.             │
│                                                                              │
│  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,             │
│  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF          │
│  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.      │
│  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY        │
│  CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,        │
│  TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE           │
│  SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                      │
│                                                                              │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/regex/tre.inc"

#define CHARCLASS_NAME_MAX 14
#define RE_DUP_MAX         255

/***********************************************************************
 from tre-compile.h
***********************************************************************/

typedef struct {
  int position;
  int code_min;
  int code_max;
  int *tags;
  int assertions;
  tre_ctype_t class;
  tre_ctype_t *neg_classes;
  int backref;
} tre_pos_and_tags_t;

/***********************************************************************
 from tre-ast.c and tre-ast.h
***********************************************************************/

/* The different AST node types. */
typedef enum { LITERAL, CATENATION, ITERATION, UNION } tre_ast_type_t;

/* Special subtypes of TRE_LITERAL. */
#define EMPTY     -1 /* Empty leaf (denotes empty string). */
#define ASSERTION -2 /* Assertion leaf. */
#define TAG       -3 /* Tag leaf. */
#define BACKREF   -4 /* Back reference leaf. */

#define IS_SPECIAL(x)   ((x)->code_min < 0)
#define IS_EMPTY(x)     ((x)->code_min == EMPTY)
#define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
#define IS_TAG(x)       ((x)->code_min == TAG)
#define IS_BACKREF(x)   ((x)->code_min == BACKREF)

/* A generic AST node.  All AST nodes consist of this node on the top
   level with `obj' pointing to the actual content. */
typedef struct {
  tre_ast_type_t type; /* Type of the node. */
  void *obj;           /* Pointer to actual node. */
  int nullable;
  int submatch_id;
  int num_submatches;
  int num_tags;
  tre_pos_and_tags_t *firstpos;
  tre_pos_and_tags_t *lastpos;
} tre_ast_node_t;

/* A "literal" node.  These are created for assertions, back references,
   tags, matching parameter settings, and all expressions that match one
   character. */
typedef struct {
  long code_min;
  long code_max;
  int position;
  tre_ctype_t class;
  tre_ctype_t *neg_classes;
} tre_literal_t;

/* A "catenation" node.	 These are created when two regexps are concatenated.
   If there are more than one subexpressions in sequence, the `left' part
   holds all but the last, and `right' part holds the last subexpression
   (catenation is left associative). */
typedef struct {
  tre_ast_node_t *left;
  tre_ast_node_t *right;
} tre_catenation_t;

/* An "iteration" node.	 These are created for the "*", "+", "?", and "{m,n}"
   operators. */
typedef struct {
  /* Subexpression to match. */
  tre_ast_node_t *arg;
  /* Minimum number of consecutive matches. */
  int min;
  /* Maximum number of consecutive matches. */
  int max;
  /* If 0, match as many characters as possible, if 1 match as few as
     possible.	Note that this does not always mean the same thing as
     matching as many/few repetitions as possible. */
  unsigned int minimal : 1;
} tre_iteration_t;

/* An "union" node.  These are created for the "|" operator. */
typedef struct {
  tre_ast_node_t *left;
  tre_ast_node_t *right;
} tre_union_t;

static tre_ast_node_t *tre_ast_new_node(tre_mem_t mem, int type, void *obj) {
  tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
  if (!node || !obj) return 0;
  node->obj = obj;
  node->type = type;
  node->nullable = -1;
  node->submatch_id = -1;
  return node;
}

static tre_ast_node_t *tre_ast_new_literal(tre_mem_t mem, int code_min,
                                           int code_max, int position) {
  tre_ast_node_t *node;
  tre_literal_t *lit;

  lit = tre_mem_calloc(mem, sizeof *lit);
  node = tre_ast_new_node(mem, LITERAL, lit);
  if (!node) return 0;
  lit->code_min = code_min;
  lit->code_max = code_max;
  lit->position = position;
  return node;
}

static tre_ast_node_t *tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg,
                                        int min, int max, int minimal) {
  tre_ast_node_t *node;
  tre_iteration_t *iter;

  iter = tre_mem_calloc(mem, sizeof *iter);
  node = tre_ast_new_node(mem, ITERATION, iter);
  if (!node) return 0;
  iter->arg = arg;
  iter->min = min;
  iter->max = max;
  iter->minimal = minimal;
  node->num_submatches = arg->num_submatches;
  return node;
}

static tre_ast_node_t *tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left,
                                         tre_ast_node_t *right) {
  tre_ast_node_t *node;
  tre_union_t *un;

  if (!left) return right;
  un = tre_mem_calloc(mem, sizeof *un);
  node = tre_ast_new_node(mem, UNION, un);
  if (!node || !right) return 0;
  un->left = left;
  un->right = right;
  node->num_submatches = left->num_submatches + right->num_submatches;
  return node;
}

static tre_ast_node_t *tre_ast_new_catenation(tre_mem_t mem,
                                              tre_ast_node_t *left,
                                              tre_ast_node_t *right) {
  tre_ast_node_t *node;
  tre_catenation_t *cat;

  if (!left) return right;
  cat = tre_mem_calloc(mem, sizeof *cat);
  node = tre_ast_new_node(mem, CATENATION, cat);
  if (!node) return 0;
  cat->left = left;
  cat->right = right;
  node->num_submatches = left->num_submatches + right->num_submatches;
  return node;
}

/***********************************************************************
 from tre-stack.c and tre-stack.h
***********************************************************************/

typedef struct tre_stack_rec tre_stack_t;

/* Creates a new stack object.	`size' is initial size in bytes, `max_size'
   is maximum size, and `increment' specifies how much more space will be
   allocated with realloc() if all space gets used up.	Returns the stack
   object or NULL if out of memory. */
static tre_stack_t *tre_stack_new(int size, int max_size, int increment);

/* Frees the stack object. */
static void tre_stack_destroy(tre_stack_t *s);

/* Returns the current number of objects in the stack. */
static int tre_stack_num_objects(tre_stack_t *s);

/* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
   `value' on top of stack `s'.  Returns REG_ESPACE if out of memory.
   This tries to realloc() more space before failing if maximum size
   has not yet been reached.  Returns REG_OK if successful. */
#define declare_pushf(typetag, type) \
  static reg_errcode_t tre_stack_push_##typetag(tre_stack_t *s, type value)

declare_pushf(voidptr, void *);
declare_pushf(int, int);

/* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
   element off of stack `s' and returns it.  The stack must not be
   empty. */
#define declare_popf(typetag, type) \
  static type tre_stack_pop_##typetag(tre_stack_t *s)

declare_popf(voidptr, void *);
declare_popf(int, int);

/* Just to save some typing. */
#define STACK_PUSH(s, typetag, value)            \
  do {                                           \
    status = tre_stack_push_##typetag(s, value); \
  } while (/*CONSTCOND*/ 0)

#define STACK_PUSHX(s, typetag, value)           \
  {                                              \
    status = tre_stack_push_##typetag(s, value); \
    if (status != REG_OK) break;                 \
  }

#define STACK_PUSHR(s, typetag, value)            \
  {                                               \
    reg_errcode_t _status;                        \
    _status = tre_stack_push_##typetag(s, value); \
    if (_status != REG_OK) return _status;        \
  }

union tre_stack_item {
  void *voidptr_value;
  int int_value;
};

struct tre_stack_rec {
  int size;
  int max_size;
  int increment;
  int ptr;
  union tre_stack_item *stack;
};

static tre_stack_t *tre_stack_new(int size, int max_size, int increment) {
  tre_stack_t *s;

  s = malloc(sizeof(*s));
  if (s != NULL) {
    s->stack = malloc(sizeof(*s->stack) * size);
    if (s->stack == NULL) {
      free(s), s = NULL;
      return NULL;
    }
    s->size = size;
    s->max_size = max_size;
    s->increment = increment;
    s->ptr = 0;
  }
  return s;
}

static void tre_stack_destroy(tre_stack_t *s) {
  free(s->stack), s->stack = NULL;
  free(s), s = NULL;
}

static int tre_stack_num_objects(tre_stack_t *s) {
  return s->ptr;
}

static reg_errcode_t tre_stack_push(tre_stack_t *s,
                                    union tre_stack_item value) {
  if (s->ptr < s->size) {
    s->stack[s->ptr] = value;
    s->ptr++;
  } else {
    if (s->size >= s->max_size) {
      return REG_ESPACE;
    } else {
      union tre_stack_item *new_buffer;
      int new_size;
      new_size = s->size + s->increment;
      if (new_size > s->max_size) new_size = s->max_size;
      new_buffer = realloc(s->stack, sizeof(*new_buffer) * new_size);
      if (new_buffer == NULL) {
        return REG_ESPACE;
      }
      assert(new_size > s->size);
      s->size = new_size;
      s->stack = new_buffer;
      tre_stack_push(s, value);
    }
  }
  return REG_OK;
}

#define define_pushf(typetag, type) \
  declare_pushf(typetag, type) {    \
    union tre_stack_item item;      \
    item.typetag##_value = value;   \
    return tre_stack_push(s, item); \
  }

define_pushf(int, int) define_pushf(voidptr, void *)
#define define_popf(typetag, type)             \
  declare_popf(typetag, type) {                \
    return s->stack[--s->ptr].typetag##_value; \
  }

    define_popf(int, int) define_popf(voidptr, void *)

    /***********************************************************************
     from tre-parse.c and tre-parse.h
    ***********************************************************************/

    /* Parse context. */
    typedef struct {
  /* Memory allocator. The AST is allocated using this. */
  tre_mem_t mem;
  /* Stack used for keeping track of regexp syntax. */
  tre_stack_t *stack;
  /* The parsed node after a parse function returns. */
  tre_ast_node_t *n;
  /* Position in the regexp pattern after a parse function returns. */
  const char *s;
  /* The first character of the last subexpression parsed. */
  const char *start;
  /* Current submatch ID. */
  int submatch_id;
  /* Current position (number of literal). */
  int position;
  /* The highest back reference or -1 if none seen so far. */
  int max_backref;
  /* Compilation flags. */
  int cflags;
} tre_parse_ctx_t;

/* Some macros for expanding \w, \s, etc. */
static const struct {
  char c;
  const char *expansion;
} tre_macros[] = {
    {'t', "\t"},
    {'n', "\n"},
    {'r', "\r"},
    {'f', "\f"},
    {'a', "\a"},
    {'e', "\033"},
    {'w', "[[:alnum:]_]"},
    {'W', "[^[:alnum:]_]"},
    {'s', "[[:space:]]"},
    {'S', "[^[:space:]]"},
    {'d', "[[:digit:]]"},
    {'D', "[^[:digit:]]"},
    {0, 0},
};

/* Expands a macro delimited by `regex' and `regex_end' to `buf', which
   must have at least `len' items.  Sets buf[0] to zero if the there
   is no match in `tre_macros'. */
static const char *tre_expand_macro(const char *s) {
  int i;
  for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++)
    ;
  return tre_macros[i].expansion;
}

static int tre_compare_lit(const void *a, const void *b) {
  const tre_literal_t *const *la = a;
  const tre_literal_t *const *lb = b;
  /* assumes the range of valid code_min is < INT_MAX */
  return la[0]->code_min - lb[0]->code_min;
}

struct literals {
  tre_mem_t mem;
  tre_literal_t **a;
  int len;
  int cap;
};

static tre_literal_t *tre_new_lit(struct literals *p) {
  tre_literal_t **a;
  if (p->len >= p->cap) {
    if (p->cap >= 1 << 15) return 0;
    p->cap *= 2;
    a = realloc(p->a, p->cap * sizeof *p->a);
    if (!a) return 0;
    p->a = a;
  }
  a = p->a + p->len++;
  *a = tre_mem_calloc(p->mem, sizeof **a);
  return *a;
}

static int add_icase_literals(struct literals *ls, int min, int max) {
  tre_literal_t *lit;
  int b, e, c;
  for (c = min; c <= max;) {
    /* assumes islower(c) and isupper(c) are exclusive
       and toupper(c)!=c if islower(c).
       multiple opposite case characters are not supported */
    if (tre_islower(c)) {
      b = e = tre_toupper(c);
      for (c++, e++; c <= max; c++, e++)
        if (tre_toupper(c) != e) break;
    } else if (tre_isupper(c)) {
      b = e = tre_tolower(c);
      for (c++, e++; c <= max; c++, e++)
        if (tre_tolower(c) != e) break;
    } else {
      c++;
      continue;
    }
    lit = tre_new_lit(ls);
    if (!lit) return -1;
    lit->code_min = b;
    lit->code_max = e - 1;
    lit->position = -1;
  }
  return 0;
}

/* Maximum number of character classes in a negated bracket expression. */
#define MAX_NEG_CLASSES 64

struct neg {
  int negate;
  int len;
  tre_ctype_t a[MAX_NEG_CLASSES];
};

// TODO: parse bracket into a set of non-overlapping [lo,hi] ranges

/*
bracket grammar:
Bracket  =  '[' List ']'  |  '[^' List ']'
List     =  Term  |  List Term
Term     =  Char  |  Range  |  Chclass  |  Eqclass
Range    =  Char '-' Char  |  Char '-' '-'
Char     =  Coll  |  coll_single
Meta     =  ']'  |  '-'
Coll     =  '[.' coll_single '.]'  |  '[.' coll_multi '.]'  |  '[.' Meta '.]'
Eqclass  =  '[=' coll_single '=]'  |  '[=' coll_multi '=]'
Chclass  =  '[:' class ':]'

coll_single is a single char collating element but it can be
 '-' only at the beginning or end of a List and
 ']' only at the beginning of a List and
 '^' anywhere except after the openning '['
*/

static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s,
                                         struct literals *ls, struct neg *neg) {
  const char *start = s;
  tre_ctype_t class;
  int min, max;
  wchar_t wc;
  int len;

  for (;;) {
    class = 0;
    len = mbtowc(&wc, s, -1);
    if (len <= 0) return *s ? REG_BADPAT : REG_EBRACK;
    if (*s == ']' && s != start) {
      ctx->s = s + 1;
      return REG_OK;
    }
    if (*s == '-' && s != start && s[1] != ']' &&
        /* extension: [a-z--@] is accepted as [a-z]|[--@] */
        (s[1] != '-' || s[2] == ']')) {
      return REG_ERANGE;
    }
    if (*s == '[' && (s[1] == '.' || s[1] == '=')) {
      /* collating symbols and equivalence classes are not supported */
      return REG_ECOLLATE;
    }
    if (*s == '[' && s[1] == ':') {
      char tmp[CHARCLASS_NAME_MAX + 1];
      s += 2;
      for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
        if (s[len] == ':') {
          memcpy(tmp, s, len);
          tmp[len] = 0;
          class = tre_ctype(tmp);
          break;
        }
      }
      if (!class || s[len + 1] != ']') return REG_ECTYPE;
      min = 0;
      max = TRE_CHAR_MAX;
      s += len + 2;
    } else {
      min = max = wc;
      s += len;
      if (*s == '-' && s[1] != ']') {
        s++;
        len = mbtowc(&wc, s, -1);
        max = wc;
        /* XXX - Should use collation order instead of
           encoding values in character ranges. */
        if (len <= 0 || min > max) {
          return REG_ERANGE;
        }
        s += len;
      }
    }

    if (class && neg->negate) {
      if (neg->len >= MAX_NEG_CLASSES) return REG_ESPACE;
      neg->a[neg->len++] = class;
    } else {
      tre_literal_t *lit = tre_new_lit(ls);
      if (!lit) return REG_ESPACE;
      lit->code_min = min;
      lit->code_max = max;
      lit->class = class;
      lit->position = -1;

      /* Add opposite-case codepoints if REG_ICASE is present.
         It seems that POSIX requires that bracket negation
         should happen before case-folding, but most practical
         implementations do it the other way around. Changing
         the order would need efficient representation of
         case-fold ranges and bracket range sets even with
         simple patterns so this is ok for now. */
      if (ctx->cflags & REG_ICASE && !class)
        if (add_icase_literals(ls, min, max)) return REG_ESPACE;
    }
  }
}

static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) {
  int i, max, min, negmax, negmin;
  tre_ast_node_t *node = 0, *n;
  tre_ctype_t *nc = 0;
  tre_literal_t *lit;
  struct literals ls;
  struct neg neg;
  reg_errcode_t err;

  ls.mem = ctx->mem;
  ls.len = 0;
  ls.cap = 32;
  ls.a = malloc(ls.cap * sizeof *ls.a);
  if (!ls.a) return REG_ESPACE;
  neg.len = 0;
  neg.negate = *s == '^';
  if (neg.negate) s++;

  err = parse_bracket_terms(ctx, s, &ls, &neg);
  if (err != REG_OK) goto parse_bracket_done;

  if (neg.negate) {
    /*
     * With REG_NEWLINE, POSIX requires that newlines are not matched by
     * any form of a non-matching list.
     */
    if (ctx->cflags & REG_NEWLINE) {
      lit = tre_new_lit(&ls);
      if (!lit) {
        err = REG_ESPACE;
        goto parse_bracket_done;
      }
      lit->code_min = '\n';
      lit->code_max = '\n';
      lit->position = -1;
    }
    /* Sort the array if we need to negate it. */
    qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
    /* extra lit for the last negated range */
    lit = tre_new_lit(&ls);
    if (!lit) {
      err = REG_ESPACE;
      goto parse_bracket_done;
    }
    lit->code_min = TRE_CHAR_MAX + 1;
    lit->code_max = TRE_CHAR_MAX + 1;
    lit->position = -1;
    /* negated classes */
    if (neg.len) {
      nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a);
      if (!nc) {
        err = REG_ESPACE;
        goto parse_bracket_done;
      }
      memcpy(nc, neg.a, neg.len * sizeof *neg.a);
      nc[neg.len] = 0;
    }
  }

  /* Build a union of the items in the array, negated if necessary. */
  negmax = negmin = 0;
  for (i = 0; i < ls.len; i++) {
    lit = ls.a[i];
    min = lit->code_min;
    max = lit->code_max;
    if (neg.negate) {
      if (min <= negmin) {
        /* Overlap. */
        negmin = MAX(max + 1, negmin);
        continue;
      }
      negmax = min - 1;
      lit->code_min = negmin;
      lit->code_max = negmax;
      negmin = max + 1;
    }
    lit->position = ctx->position;
    lit->neg_classes = nc;
    n = tre_ast_new_node(ctx->mem, LITERAL, lit);
    node = tre_ast_new_union(ctx->mem, node, n);
    if (!node) {
      err = REG_ESPACE;
      break;
    }
  }

parse_bracket_done:
  free(ls.a), ls.a = NULL;
  ctx->position++;
  ctx->n = node;
  return err;
}

static const char *parse_dup_count(const char *s, int *n) {
  *n = -1;
  if (!isdigit(*s)) return s;
  *n = 0;
  for (;;) {
    *n = 10 * *n + (*s - '0');
    s++;
    if (!isdigit(*s) || *n > RE_DUP_MAX) break;
  }
  return s;
}

static const char *parse_dup(const char *s, int ere, int *pmin, int *pmax) {
  int min, max;

  s = parse_dup_count(s, &min);
  if (*s == ',')
    s = parse_dup_count(s + 1, &max);
  else
    max = min;

  if ((max < min && max >= 0) || max > RE_DUP_MAX || min > RE_DUP_MAX ||
      min < 0 || (!ere && *s++ != '\\') || *s++ != '}')
    return 0;
  *pmin = min;
  *pmax = max;
  return s;
}

static int hexval(unsigned c) {
  if (c - '0' < 10) return c - '0';
  c |= 32;
  if (c - 'a' < 6) return c - 'a' + 10;
  return -1;
}

static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node,
                             int subid) {
  if (node->submatch_id >= 0) {
    tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
    if (!n) return REG_ESPACE;
    n = tre_ast_new_catenation(ctx->mem, n, node);
    if (!n) return REG_ESPACE;
    n->num_submatches = node->num_submatches;
    node = n;
  }
  node->submatch_id = subid;
  node->num_submatches++;
  ctx->n = node;
  return REG_OK;
}

/*
BRE grammar:
Regex  =  Branch  |  '^'  |  '$'  |  '^$'  |  '^' Branch  |  Branch '$'  |  '^'
Branch '$' Branch =  Atom  |  Branch Atom Atom   =  char  |  quoted_char  |  '.'
|  Bracket  |  Atom Dup  |  '\(' Branch '\)'  |  back_ref Dup    =  '*'  |  '\{'
Count '\}'  |  '\{' Count ',\}'  |  '\{' Count ',' Count '\}'

(leading ^ and trailing $ in a sub expr may be an anchor or literal as well)

ERE grammar:
Regex  =  Branch  |  Regex '|' Branch
Branch =  Atom  |  Branch Atom
Atom   =  char  |  quoted_char  |  '.'  |  Bracket  |  Atom Dup  |  '(' Regex
')'  |  '^'  |  '$' Dup    =  '*'  |  '+'  |  '?'  |  '{' Count '}'  |  '{'
Count ',}'  |  '{' Count ',' Count '}'

(a*+?, ^*, $+, \X, {, (|a) are unspecified)
*/

static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) {
  int len, ere = ctx->cflags & REG_EXTENDED;
  const char *p;
  tre_ast_node_t *node;
  wchar_t wc;
  switch (*s) {
    case '[':
      return parse_bracket(ctx, s + 1);
    case '\\':
      p = tre_expand_macro(s + 1);
      if (p) {
        /* assume \X expansion is a single atom */
        reg_errcode_t err = parse_atom(ctx, p);
        ctx->s = s + 2;
        return err;
      }
      /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
      switch (*++s) {
        case 0:
          return REG_EESCAPE;
        case 'b':
          node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
          break;
        case 'B':
          node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
          break;
        case '<':
          node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
          break;
        case '>':
          node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
          break;
        case 'x':
          s++;
          int i, v = 0, c;
          len = 2;
          if (*s == '{') {
            len = 8;
            s++;
          }
          for (i = 0; i < len && v < 0x110000; i++) {
            c = hexval(s[i]);
            if (c < 0) break;
            v = 16 * v + c;
          }
          s += i;
          if (len == 8) {
            if (*s != '}') return REG_EBRACE;
            s++;
          }
          node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++);
          s--;
          break;
        case '{':
        case '+':
        case '?':
          /* extension: treat \+, \? as repetitions in BRE */
          /* reject repetitions after empty expression in BRE */
          if (!ere) return REG_BADRPT;
          /* fallthrough */
        case '|':
          /* extension: treat \| as alternation in BRE */
          if (!ere) {
            node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
            s--;
            goto end;
          }
          /* fallthrough */
        default:
          if (!ere && (unsigned)*s - '1' < 9) {
            /* back reference */
            int val = *s - '0';
            node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++);
            ctx->max_backref = MAX(val, ctx->max_backref);
          } else {
            /* extension: accept unknown escaped char
               as a literal */
            goto parse_literal;
          }
      }
      s++;
      break;
    case '.':
      if (ctx->cflags & REG_NEWLINE) {
        tre_ast_node_t *tmp1, *tmp2;
        tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1, ctx->position++);
        tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX,
                                   ctx->position++);
        if (tmp1 && tmp2)
          node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
        else
          node = 0;
      } else {
        node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
      }
      s++;
      break;
    case '^':
      /* '^' has a special meaning everywhere in EREs, and at beginning of BRE.
       */
      if (!ere && s != ctx->start) goto parse_literal;
      node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
      s++;
      break;
    case '$':
      /* '$' is special everywhere in EREs, and at the end of a BRE
       * subexpression. */
      if (!ere && s[1] && (s[1] != '\\' || (s[2] != ')' && s[2] != '|')))
        goto parse_literal;
      node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
      s++;
      break;
    case '*':
    case '{':
    case '+':
    case '?':
      /* reject repetitions after empty expression in ERE */
      if (ere) return REG_BADRPT;
      /* fallthrough */
    case '|':
      if (!ere) goto parse_literal;
      /* fallthrough */
    case 0:
      node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
      break;
    default:
    parse_literal:
      len = mbtowc(&wc, s, -1);
      if (len < 0) return REG_BADPAT;
      if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
        tre_ast_node_t *tmp1, *tmp2;
        /* multiple opposite case characters are not supported */
        tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc),
                                   ctx->position);
        tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc),
                                   ctx->position);
        if (tmp1 && tmp2)
          node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
        else
          node = 0;
      } else {
        node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
      }
      ctx->position++;
      s += len;
      break;
  }
end:
  if (!node) return REG_ESPACE;
  ctx->n = node;
  ctx->s = s;
  return REG_OK;
}

#define PUSHPTR(err, s, v)                                          \
  do {                                                              \
    if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) return err; \
  } while (0)

#define PUSHINT(err, s, v)                                      \
  do {                                                          \
    if ((err = tre_stack_push_int(s, v)) != REG_OK) return err; \
  } while (0)

static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) {
  tre_ast_node_t *nbranch = 0, *nunion = 0;
  int ere = ctx->cflags & REG_EXTENDED;
  const char *s = ctx->start;
  int subid = 0;
  int depth = 0;
  reg_errcode_t err;
  tre_stack_t *stack = ctx->stack;

  PUSHINT(err, stack, subid++);
  for (;;) {
    if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '(')) {
      PUSHPTR(err, stack, nunion);
      PUSHPTR(err, stack, nbranch);
      PUSHINT(err, stack, subid++);
      s++;
      if (!ere) s++;
      depth++;
      nbranch = nunion = 0;
      ctx->start = s;
      continue;
    }
    if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth)) {
      ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
      if (!ctx->n) return REG_ESPACE;
    } else {
      err = parse_atom(ctx, s);
      if (err != REG_OK) return err;
      s = ctx->s;
    }

  parse_iter:
    for (;;) {
      int min, max;

      if (*s != '\\' && *s != '*') {
        if (!ere) break;
        if (*s != '+' && *s != '?' && *s != '{') break;
      }
      if (*s == '\\' && ere) break;
      /* extension: treat \+, \? as repetitions in BRE */
      if (*s == '\\' && s[1] != '+' && s[1] != '?' && s[1] != '{') break;
      if (*s == '\\') s++;

      /* handle ^* at the start of a BRE. */
      if (!ere && s == ctx->start + 1 && s[-1] == '^') break;

      /* extension: multiple consecutive *+?{,} is unspecified,
         but (a+)+ has to be supported so accepting a++ makes
         sense, note however that the RE_DUP_MAX limit can be
         circumvented: (a{255}){255} uses a lot of memory.. */
      if (*s == '{') {
        s = parse_dup(s + 1, ere, &min, &max);
        if (!s) return REG_BADBR;
      } else {
        min = 0;
        max = -1;
        if (*s == '+') min = 1;
        if (*s == '?') max = 1;
        s++;
      }
      if (max == 0)
        ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
      else
        ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
      if (!ctx->n) return REG_ESPACE;
    }

    nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
    if ((ere && *s == '|') || (ere && *s == ')' && depth) ||
        (!ere && *s == '\\' && s[1] == ')') ||
        /* extension: treat \| as alternation in BRE */
        (!ere && *s == '\\' && s[1] == '|') || !*s) {
      /* extension: empty branch is unspecified (), (|a), (a|)
         here they are not rejected but match on empty string */
      int c = *s;
      nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
      nbranch = 0;

      if (c == '\\' && s[1] == '|') {
        s += 2;
        ctx->start = s;
      } else if (c == '|') {
        s++;
        ctx->start = s;
      } else {
        if (c == '\\') {
          if (!depth) return REG_EPAREN;
          s += 2;
        } else if (c == ')')
          s++;
        depth--;
        err = marksub(ctx, nunion, tre_stack_pop_int(stack));
        if (err != REG_OK) return err;
        if (!c && depth < 0) {
          ctx->submatch_id = subid;
          return REG_OK;
        }
        if (!c || depth < 0) return REG_EPAREN;
        nbranch = tre_stack_pop_voidptr(stack);
        nunion = tre_stack_pop_voidptr(stack);
        goto parse_iter;
      }
    }
  }
}

/***********************************************************************
 from tre-compile.c
***********************************************************************/

/*
  TODO:
   - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
     function calls.
*/

/*
  Algorithms to setup tags so that submatch addressing can be done.
*/

/* Inserts a catenation node to the root of the tree given in `node'.
   As the left child a new tag with number `tag_id' to `node' is added,
   and the right child is the old root. */
static reg_errcode_t tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node,
                                      int tag_id) {
  tre_catenation_t *c;

  c = tre_mem_alloc(mem, sizeof(*c));
  if (c == NULL) return REG_ESPACE;
  c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
  if (c->left == NULL) return REG_ESPACE;
  c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
  if (c->right == NULL) return REG_ESPACE;

  c->right->obj = node->obj;
  c->right->type = node->type;
  c->right->nullable = -1;
  c->right->submatch_id = -1;
  c->right->firstpos = NULL;
  c->right->lastpos = NULL;
  c->right->num_tags = 0;
  c->right->num_submatches = 0;
  node->obj = c;
  node->type = CATENATION;
  return REG_OK;
}

/* Inserts a catenation node to the root of the tree given in `node'.
   As the right child a new tag with number `tag_id' to `node' is added,
   and the left child is the old root. */
static reg_errcode_t tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node,
                                       int tag_id) {
  tre_catenation_t *c;

  c = tre_mem_alloc(mem, sizeof(*c));
  if (c == NULL) return REG_ESPACE;
  c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
  if (c->right == NULL) return REG_ESPACE;
  c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
  if (c->left == NULL) return REG_ESPACE;

  c->left->obj = node->obj;
  c->left->type = node->type;
  c->left->nullable = -1;
  c->left->submatch_id = -1;
  c->left->firstpos = NULL;
  c->left->lastpos = NULL;
  c->left->num_tags = 0;
  c->left->num_submatches = 0;
  node->obj = c;
  node->type = CATENATION;
  return REG_OK;
}

typedef enum {
  ADDTAGS_RECURSE,
  ADDTAGS_AFTER_ITERATION,
  ADDTAGS_AFTER_UNION_LEFT,
  ADDTAGS_AFTER_UNION_RIGHT,
  ADDTAGS_AFTER_CAT_LEFT,
  ADDTAGS_AFTER_CAT_RIGHT,
  ADDTAGS_SET_SUBMATCH_END
} tre_addtags_symbol_t;

typedef struct {
  int tag;
  int next_tag;
} tre_tag_states_t;

/* Go through `regset' and set submatch data for submatches that are
   using this tag. */
static void tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) {
  int i;

  for (i = 0; regset[i] >= 0; i++) {
    int id = regset[i] / 2;
    int start = !(regset[i] % 2);
    if (start)
      tnfa->submatch_data[id].so_tag = tag;
    else
      tnfa->submatch_data[id].eo_tag = tag;
  }
  regset[0] = -1;
}

/* Adds tags to appropriate locations in the parse tree in `tree', so that
   subexpressions marked for submatch addressing can be traced. */
static reg_errcode_t tre_add_tags(tre_mem_t mem, tre_stack_t *stack,
                                  tre_ast_node_t *tree, tre_tnfa_t *tnfa) {
  reg_errcode_t status = REG_OK;
  tre_addtags_symbol_t symbol;
  tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
  int bottom = tre_stack_num_objects(stack);
  /* True for first pass (counting number of needed tags) */
  int first_pass = (mem == NULL || tnfa == NULL);
  int *regset, *orig_regset;
  int num_tags = 0;     /* Total number of tags. */
  int num_minimals = 0; /* Number of special minimal tags. */
  int tag = 0;          /* The tag that is to be added next. */
  int next_tag = 1;     /* Next tag to use after this one. */
  int *parents;         /* Stack of submatches the current submatch is
                           contained in. */
  int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
  tre_tag_states_t *saved_states;

  tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
  if (!first_pass) {
    tnfa->end_tag = 0;
    tnfa->minimal_tags[0] = -1;
  }

  regset = malloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
  if (regset == NULL) return REG_ESPACE;
  regset[0] = -1;
  orig_regset = regset;

  parents = malloc(sizeof(*parents) * (tnfa->num_submatches + 1));
  if (parents == NULL) {
    free(regset), regset = NULL;
    return REG_ESPACE;
  }
  parents[0] = -1;

  saved_states = malloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
  if (saved_states == NULL) {
    free(regset), regset = NULL;
    free(parents), parents = NULL;
    return REG_ESPACE;
  } else {
    unsigned int i;
    for (i = 0; i <= tnfa->num_submatches; i++) saved_states[i].tag = -1;
  }

  STACK_PUSH(stack, voidptr, node);
  STACK_PUSH(stack, int, ADDTAGS_RECURSE);

  while (tre_stack_num_objects(stack) > bottom) {
    if (status != REG_OK) break;

    symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
    switch (symbol) {
      case ADDTAGS_SET_SUBMATCH_END: {
        int id = tre_stack_pop_int(stack);
        int i;

        /* Add end of this submatch to regset. */
        for (i = 0; regset[i] >= 0; i++)
          ;
        regset[i] = id * 2 + 1;
        regset[i + 1] = -1;

        /* Pop this submatch from the parents stack. */
        for (i = 0; parents[i] >= 0; i++)
          ;
        parents[i - 1] = -1;
        break;
      }

      case ADDTAGS_RECURSE:
        node = tre_stack_pop_voidptr(stack);

        if (node->submatch_id >= 0) {
          int id = node->submatch_id;
          int i;

          /* Add start of this submatch to regset. */
          for (i = 0; regset[i] >= 0; i++)
            ;
          regset[i] = id * 2;
          regset[i + 1] = -1;

          if (!first_pass) {
            for (i = 0; parents[i] >= 0; i++)
              ;
            tnfa->submatch_data[id].parents = NULL;
            if (i > 0) {
              int *p = malloc(sizeof(*p) * (i + 1));
              if (p == NULL) {
                status = REG_ESPACE;
                break;
              }
              assert(tnfa->submatch_data[id].parents == NULL);
              tnfa->submatch_data[id].parents = p;
              for (i = 0; parents[i] >= 0; i++) p[i] = parents[i];
              p[i] = -1;
            }
          }

          /* Add end of this submatch to regset after processing this
             node. */
          STACK_PUSHX(stack, int, node->submatch_id);
          STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
        }

        switch (node->type) {
          case LITERAL: {
            tre_literal_t *lit = node->obj;

            if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
              int i;
              if (regset[0] >= 0) {
                /* Regset is not empty, so add a tag before the
                   literal or backref. */
                if (!first_pass) {
                  status = tre_add_tag_left(mem, node, tag);
                  tnfa->tag_directions[tag] = direction;
                  if (minimal_tag >= 0) {
                    for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
                      ;
                    tnfa->minimal_tags[i] = tag;
                    tnfa->minimal_tags[i + 1] = minimal_tag;
                    tnfa->minimal_tags[i + 2] = -1;
                    minimal_tag = -1;
                    num_minimals++;
                  }
                  tre_purge_regset(regset, tnfa, tag);
                } else {
                  node->num_tags = 1;
                }

                regset[0] = -1;
                tag = next_tag;
                num_tags++;
                next_tag++;
              }
            } else {
              assert(!IS_TAG(lit));
            }
            break;
          }
          case CATENATION: {
            tre_catenation_t *cat = node->obj;
            tre_ast_node_t *left = cat->left;
            tre_ast_node_t *right = cat->right;
            int reserved_tag = -1;

            /* After processing right child. */
            STACK_PUSHX(stack, voidptr, node);
            STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);

            /* Process right child. */
            STACK_PUSHX(stack, voidptr, right);
            STACK_PUSHX(stack, int, ADDTAGS_RECURSE);

            /* After processing left child. */
            STACK_PUSHX(stack, int, next_tag + left->num_tags);
            if (left->num_tags > 0 && right->num_tags > 0) {
              /* Reserve the next tag to the right child. */
              reserved_tag = next_tag;
              next_tag++;
            }
            STACK_PUSHX(stack, int, reserved_tag);
            STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);

            /* Process left child. */
            STACK_PUSHX(stack, voidptr, left);
            STACK_PUSHX(stack, int, ADDTAGS_RECURSE);

          } break;
          case ITERATION: {
            tre_iteration_t *iter = node->obj;

            if (first_pass) {
              STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
            } else {
              STACK_PUSHX(stack, int, tag);
              STACK_PUSHX(stack, int, iter->minimal);
            }
            STACK_PUSHX(stack, voidptr, node);
            STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);

            STACK_PUSHX(stack, voidptr, iter->arg);
            STACK_PUSHX(stack, int, ADDTAGS_RECURSE);

            /* Regset is not empty, so add a tag here. */
            if (regset[0] >= 0 || iter->minimal) {
              if (!first_pass) {
                int i;
                status = tre_add_tag_left(mem, node, tag);
                if (iter->minimal)
                  tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
                else
                  tnfa->tag_directions[tag] = direction;
                if (minimal_tag >= 0) {
                  for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
                    ;
                  tnfa->minimal_tags[i] = tag;
                  tnfa->minimal_tags[i + 1] = minimal_tag;
                  tnfa->minimal_tags[i + 2] = -1;
                  minimal_tag = -1;
                  num_minimals++;
                }
                tre_purge_regset(regset, tnfa, tag);
              }

              regset[0] = -1;
              tag = next_tag;
              num_tags++;
              next_tag++;
            }
            direction = TRE_TAG_MINIMIZE;
          } break;
          case UNION: {
            tre_union_t *uni = node->obj;
            tre_ast_node_t *left = uni->left;
            tre_ast_node_t *right = uni->right;
            int left_tag;
            int right_tag;

            if (regset[0] >= 0) {
              left_tag = next_tag;
              right_tag = next_tag + 1;
            } else {
              left_tag = tag;
              right_tag = next_tag;
            }

            /* After processing right child. */
            STACK_PUSHX(stack, int, right_tag);
            STACK_PUSHX(stack, int, left_tag);
            STACK_PUSHX(stack, voidptr, regset);
            STACK_PUSHX(stack, int, regset[0] >= 0);
            STACK_PUSHX(stack, voidptr, node);
            STACK_PUSHX(stack, voidptr, right);
            STACK_PUSHX(stack, voidptr, left);
            STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);

            /* Process right child. */
            STACK_PUSHX(stack, voidptr, right);
            STACK_PUSHX(stack, int, ADDTAGS_RECURSE);

            /* After processing left child. */
            STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);

            /* Process left child. */
            STACK_PUSHX(stack, voidptr, left);
            STACK_PUSHX(stack, int, ADDTAGS_RECURSE);

            /* Regset is not empty, so add a tag here. */
            if (regset[0] >= 0) {
              if (!first_pass) {
                int i;
                status = tre_add_tag_left(mem, node, tag);
                tnfa->tag_directions[tag] = direction;
                if (minimal_tag >= 0) {
                  for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
                    ;
                  tnfa->minimal_tags[i] = tag;
                  tnfa->minimal_tags[i + 1] = minimal_tag;
                  tnfa->minimal_tags[i + 2] = -1;
                  minimal_tag = -1;
                  num_minimals++;
                }
                tre_purge_regset(regset, tnfa, tag);
              }

              regset[0] = -1;
              tag = next_tag;
              num_tags++;
              next_tag++;
            }

            if (node->num_submatches > 0) {
              /* The next two tags are reserved for markers. */
              next_tag++;
              tag = next_tag;
              next_tag++;
            }

            break;
          }
        }

        if (node->submatch_id >= 0) {
          int i;
          /* Push this submatch on the parents stack. */
          for (i = 0; parents[i] >= 0; i++)
            ;
          parents[i] = node->submatch_id;
          parents[i + 1] = -1;
        }

        break; /* end case: ADDTAGS_RECURSE */

      case ADDTAGS_AFTER_ITERATION: {
        int minimal = 0;
        int enter_tag;
        node = tre_stack_pop_voidptr(stack);
        if (first_pass) {
          node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags +
                           tre_stack_pop_int(stack);
          minimal_tag = -1;
        } else {
          minimal = tre_stack_pop_int(stack);
          enter_tag = tre_stack_pop_int(stack);
          if (minimal) minimal_tag = enter_tag;
        }

        if (!first_pass) {
          if (minimal)
            direction = TRE_TAG_MINIMIZE;
          else
            direction = TRE_TAG_MAXIMIZE;
        }
        break;
      }

      case ADDTAGS_AFTER_CAT_LEFT: {
        int new_tag = tre_stack_pop_int(stack);
        next_tag = tre_stack_pop_int(stack);
        if (new_tag >= 0) {
          tag = new_tag;
        }
        break;
      }

      case ADDTAGS_AFTER_CAT_RIGHT:
        node = tre_stack_pop_voidptr(stack);
        if (first_pass)
          node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags +
                           ((tre_catenation_t *)node->obj)->right->num_tags;
        break;

      case ADDTAGS_AFTER_UNION_LEFT:
        /* Lift the bottom of the `regset' array so that when processing
           the right operand the items currently in the array are
           invisible.	 The original bottom was saved at ADDTAGS_UNION and
           will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
        while (*regset >= 0) regset++;
        break;

      case ADDTAGS_AFTER_UNION_RIGHT: {
        int added_tags, tag_left, tag_right;
        tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
        tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
        node = tre_stack_pop_voidptr(stack);
        added_tags = tre_stack_pop_int(stack);
        if (first_pass) {
          node->num_tags = ((tre_union_t *)node->obj)->left->num_tags +
                           ((tre_union_t *)node->obj)->right->num_tags +
                           added_tags + ((node->num_submatches > 0) ? 2 : 0);
        }
        regset = tre_stack_pop_voidptr(stack);
        tag_left = tre_stack_pop_int(stack);
        tag_right = tre_stack_pop_int(stack);

        /* Add tags after both children, the left child gets a smaller
           tag than the right child.  This guarantees that we prefer
           the left child over the right child. */
        /* XXX - This is not always necessary (if the children have
           tags which must be seen for every match of that child). */
        /* XXX - Check if this is the only place where tre_add_tag_right
           is used.	 If so, use tre_add_tag_left (putting the tag before
           the child as opposed after the child) and throw away
           tre_add_tag_right. */
        if (node->num_submatches > 0) {
          if (!first_pass) {
            status = tre_add_tag_right(mem, left, tag_left);
            tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
            if (status == REG_OK)
              status = tre_add_tag_right(mem, right, tag_right);
            tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
          }
          num_tags += 2;
        }
        direction = TRE_TAG_MAXIMIZE;
        break;
      }

      default:
        assert(0);
        break;

    } /* end switch(symbol) */
  }   /* end while(tre_stack_num_objects(stack) > bottom) */

  if (!first_pass) tre_purge_regset(regset, tnfa, tag);

  if (!first_pass && minimal_tag >= 0) {
    int i;
    for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
      ;
    tnfa->minimal_tags[i] = tag;
    tnfa->minimal_tags[i + 1] = minimal_tag;
    tnfa->minimal_tags[i + 2] = -1;
    minimal_tag = -1;
    num_minimals++;
  }

  assert(tree->num_tags == num_tags);
  tnfa->end_tag = num_tags;
  tnfa->num_tags = num_tags;
  tnfa->num_minimals = num_minimals;
  free(orig_regset), orig_regset = NULL;
  free(parents), parents = NULL;
  free(saved_states), saved_states = NULL;
  return status;
}

/*
  AST to TNFA compilation routines.
*/

typedef enum { COPY_RECURSE, COPY_SET_RESULT_PTR } tre_copyast_symbol_t;

/* Flags for tre_copy_ast(). */
#define COPY_REMOVE_TAGS        1
#define COPY_MAXIMIZE_FIRST_TAG 2

static reg_errcode_t tre_copy_ast(tre_mem_t mem, tre_stack_t *stack,
                                  tre_ast_node_t *ast, int flags, int *pos_add,
                                  tre_tag_direction_t *tag_directions,
                                  tre_ast_node_t **copy, int *max_pos) {
  reg_errcode_t status = REG_OK;
  int bottom = tre_stack_num_objects(stack);
  int num_copied = 0;
  int first_tag = 1;
  tre_ast_node_t **result = copy;
  tre_copyast_symbol_t symbol;

  STACK_PUSH(stack, voidptr, ast);
  STACK_PUSH(stack, int, COPY_RECURSE);

  while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
    tre_ast_node_t *node;
    if (status != REG_OK) break;

    symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
    switch (symbol) {
      case COPY_SET_RESULT_PTR:
        result = tre_stack_pop_voidptr(stack);
        break;
      case COPY_RECURSE:
        node = tre_stack_pop_voidptr(stack);
        switch (node->type) {
          case LITERAL: {
            tre_literal_t *lit = node->obj;
            int pos = lit->position;
            int min = lit->code_min;
            int max = lit->code_max;
            if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
              /* XXX - e.g. [ab] has only one position but two
                 nodes, so we are creating holes in the state space
                 here.  Not fatal, just wastes memory. */
              pos += *pos_add;
              num_copied++;
            } else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) {
              /* Change this tag to empty. */
              min = EMPTY;
              max = pos = -1;
            } else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) &&
                       first_tag) {
              /* Maximize the first tag. */
              tag_directions[max] = TRE_TAG_MAXIMIZE;
              first_tag = 0;
            }
            *result = tre_ast_new_literal(mem, min, max, pos);
            if (*result == NULL)
              status = REG_ESPACE;
            else {
              tre_literal_t *p = (*result)->obj;
              p->class = lit->class;
              p->neg_classes = lit->neg_classes;
            }

            if (pos > *max_pos) *max_pos = pos;
            break;
          }
          case UNION: {
            tre_union_t *uni = node->obj;
            tre_union_t *tmp;
            *result = tre_ast_new_union(mem, uni->left, uni->right);
            if (*result == NULL) {
              status = REG_ESPACE;
              break;
            }
            tmp = (*result)->obj;
            result = &tmp->left;
            STACK_PUSHX(stack, voidptr, uni->right);
            STACK_PUSHX(stack, int, COPY_RECURSE);
            STACK_PUSHX(stack, voidptr, &tmp->right);
            STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
            STACK_PUSHX(stack, voidptr, uni->left);
            STACK_PUSHX(stack, int, COPY_RECURSE);
            break;
          }
          case CATENATION: {
            tre_catenation_t *cat = node->obj;
            tre_catenation_t *tmp;
            *result = tre_ast_new_catenation(mem, cat->left, cat->right);
            if (*result == NULL) {
              status = REG_ESPACE;
              break;
            }
            tmp = (*result)->obj;
            tmp->left = NULL;
            tmp->right = NULL;
            result = &tmp->left;

            STACK_PUSHX(stack, voidptr, cat->right);
            STACK_PUSHX(stack, int, COPY_RECURSE);
            STACK_PUSHX(stack, voidptr, &tmp->right);
            STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
            STACK_PUSHX(stack, voidptr, cat->left);
            STACK_PUSHX(stack, int, COPY_RECURSE);
            break;
          }
          case ITERATION: {
            tre_iteration_t *iter = node->obj;
            STACK_PUSHX(stack, voidptr, iter->arg);
            STACK_PUSHX(stack, int, COPY_RECURSE);
            *result = tre_ast_new_iter(mem, iter->arg, iter->min, iter->max,
                                       iter->minimal);
            if (*result == NULL) {
              status = REG_ESPACE;
              break;
            }
            iter = (*result)->obj;
            result = &iter->arg;
            break;
          }
          default:
            assert(0);
            break;
        }
        break;
    }
  }
  *pos_add += num_copied;
  return status;
}

typedef enum { EXPAND_RECURSE, EXPAND_AFTER_ITER } tre_expand_ast_symbol_t;

/* Expands each iteration node that has a finite nonzero minimum or maximum
   iteration count to a catenated sequence of copies of the node. */
static reg_errcode_t tre_expand_ast(tre_mem_t mem, tre_stack_t *stack,
                                    tre_ast_node_t *ast, int *position,
                                    tre_tag_direction_t *tag_directions) {
  reg_errcode_t status = REG_OK;
  int bottom = tre_stack_num_objects(stack);
  int pos_add = 0;
  int pos_add_total = 0;
  int max_pos = 0;
  int iter_depth = 0;

  STACK_PUSHR(stack, voidptr, ast);
  STACK_PUSHR(stack, int, EXPAND_RECURSE);
  while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
    tre_ast_node_t *node;
    tre_expand_ast_symbol_t symbol;

    if (status != REG_OK) break;

    symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
    node = tre_stack_pop_voidptr(stack);
    switch (symbol) {
      case EXPAND_RECURSE:
        switch (node->type) {
          case LITERAL: {
            tre_literal_t *lit = node->obj;
            if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
              lit->position += pos_add;
              if (lit->position > max_pos) max_pos = lit->position;
            }
            break;
          }
          case UNION: {
            tre_union_t *uni = node->obj;
            STACK_PUSHX(stack, voidptr, uni->right);
            STACK_PUSHX(stack, int, EXPAND_RECURSE);
            STACK_PUSHX(stack, voidptr, uni->left);
            STACK_PUSHX(stack, int, EXPAND_RECURSE);
            break;
          }
          case CATENATION: {
            tre_catenation_t *cat = node->obj;
            STACK_PUSHX(stack, voidptr, cat->right);
            STACK_PUSHX(stack, int, EXPAND_RECURSE);
            STACK_PUSHX(stack, voidptr, cat->left);
            STACK_PUSHX(stack, int, EXPAND_RECURSE);
            break;
          }
          case ITERATION: {
            tre_iteration_t *iter = node->obj;
            STACK_PUSHX(stack, int, pos_add);
            STACK_PUSHX(stack, voidptr, node);
            STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
            STACK_PUSHX(stack, voidptr, iter->arg);
            STACK_PUSHX(stack, int, EXPAND_RECURSE);
            /* If we are going to expand this node at EXPAND_AFTER_ITER
               then don't increase the `pos' fields of the nodes now, it
               will get done when expanding. */
            if (iter->min > 1 || iter->max > 1) pos_add = 0;
            iter_depth++;
            break;
          }
          default:
            assert(0);
            break;
        }
        break;
      case EXPAND_AFTER_ITER: {
        tre_iteration_t *iter = node->obj;
        int pos_add_last;
        pos_add = tre_stack_pop_int(stack);
        pos_add_last = pos_add;
        if (iter->min > 1 || iter->max > 1) {
          tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
          int j;
          int pos_add_save = pos_add;

          /* Create a catenated sequence of copies of the node. */
          for (j = 0; j < iter->min; j++) {
            tre_ast_node_t *copy;
            /* Remove tags from all but the last copy. */
            int flags = ((j + 1 < iter->min) ? COPY_REMOVE_TAGS
                                             : COPY_MAXIMIZE_FIRST_TAG);
            pos_add_save = pos_add;
            status = tre_copy_ast(mem, stack, iter->arg, flags, &pos_add,
                                  tag_directions, &copy, &max_pos);
            if (status != REG_OK) return status;
            if (seq1 != NULL)
              seq1 = tre_ast_new_catenation(mem, seq1, copy);
            else
              seq1 = copy;
            if (seq1 == NULL) return REG_ESPACE;
          }

          if (iter->max == -1) {
            /* No upper limit. */
            pos_add_save = pos_add;
            status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
                                  &seq2, &max_pos);
            if (status != REG_OK) return status;
            seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
            if (seq2 == NULL) return REG_ESPACE;
          } else {
            for (j = iter->min; j < iter->max; j++) {
              tre_ast_node_t *tmp, *copy;
              pos_add_save = pos_add;
              status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
                                    &copy, &max_pos);
              if (status != REG_OK) return status;
              if (seq2 != NULL)
                seq2 = tre_ast_new_catenation(mem, copy, seq2);
              else
                seq2 = copy;
              if (seq2 == NULL) return REG_ESPACE;
              tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
              if (tmp == NULL) return REG_ESPACE;
              seq2 = tre_ast_new_union(mem, tmp, seq2);
              if (seq2 == NULL) return REG_ESPACE;
            }
          }

          pos_add = pos_add_save;
          if (seq1 == NULL)
            seq1 = seq2;
          else if (seq2 != NULL)
            seq1 = tre_ast_new_catenation(mem, seq1, seq2);
          if (seq1 == NULL) return REG_ESPACE;
          node->obj = seq1->obj;
          node->type = seq1->type;
        }

        iter_depth--;
        pos_add_total += pos_add - pos_add_last;
        if (iter_depth == 0) pos_add = pos_add_total;

        break;
      }
      default:
        assert(0);
        break;
    }
  }

  *position += pos_add_total;

  /* `max_pos' should never be larger than `*position' if the above
     code works, but just an extra safeguard let's make sure
     `*position' is set large enough so enough memory will be
     allocated for the transition table. */
  if (max_pos > *position) *position = max_pos;

  return status;
}

static tre_pos_and_tags_t *tre_set_empty(tre_mem_t mem) {
  tre_pos_and_tags_t *new_set;

  new_set = tre_mem_calloc(mem, sizeof(*new_set));
  if (new_set == NULL) return NULL;

  new_set[0].position = -1;
  new_set[0].code_min = -1;
  new_set[0].code_max = -1;

  return new_set;
}

static tre_pos_and_tags_t *tre_set_one(tre_mem_t mem, int position,
                                       int code_min, int code_max,
                                       tre_ctype_t class,
                                       tre_ctype_t *neg_classes, int backref) {
  tre_pos_and_tags_t *new_set;

  new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
  if (new_set == NULL) return NULL;

  new_set[0].position = position;
  new_set[0].code_min = code_min;
  new_set[0].code_max = code_max;
  new_set[0].class = class;
  new_set[0].neg_classes = neg_classes;
  new_set[0].backref = backref;
  new_set[1].position = -1;
  new_set[1].code_min = -1;
  new_set[1].code_max = -1;

  return new_set;
}

static tre_pos_and_tags_t *tre_set_union(tre_mem_t mem,
                                         tre_pos_and_tags_t *set1,
                                         tre_pos_and_tags_t *set2, int *tags,
                                         int assertions) {
  int s1, s2, i, j;
  tre_pos_and_tags_t *new_set;
  int *new_tags;
  int num_tags;

  for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++)
    ;
  for (s1 = 0; set1[s1].position >= 0; s1++)
    ;
  for (s2 = 0; set2[s2].position >= 0; s2++)
    ;
  new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
  if (!new_set) return NULL;

  for (s1 = 0; set1[s1].position >= 0; s1++) {
    new_set[s1].position = set1[s1].position;
    new_set[s1].code_min = set1[s1].code_min;
    new_set[s1].code_max = set1[s1].code_max;
    new_set[s1].assertions = set1[s1].assertions | assertions;
    new_set[s1].class = set1[s1].class;
    new_set[s1].neg_classes = set1[s1].neg_classes;
    new_set[s1].backref = set1[s1].backref;
    if (set1[s1].tags == NULL && tags == NULL)
      new_set[s1].tags = NULL;
    else {
      for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++)
        ;
      new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1)));
      if (new_tags == NULL) return NULL;
      for (j = 0; j < i; j++) new_tags[j] = set1[s1].tags[j];
      for (i = 0; i < num_tags; i++) new_tags[j + i] = tags[i];
      new_tags[j + i] = -1;
      new_set[s1].tags = new_tags;
    }
  }

  for (s2 = 0; set2[s2].position >= 0; s2++) {
    new_set[s1 + s2].position = set2[s2].position;
    new_set[s1 + s2].code_min = set2[s2].code_min;
    new_set[s1 + s2].code_max = set2[s2].code_max;
    /* XXX - why not | assertions here as well? */
    new_set[s1 + s2].assertions = set2[s2].assertions;
    new_set[s1 + s2].class = set2[s2].class;
    new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
    new_set[s1 + s2].backref = set2[s2].backref;
    if (set2[s2].tags == NULL)
      new_set[s1 + s2].tags = NULL;
    else {
      for (i = 0; set2[s2].tags[i] >= 0; i++)
        ;
      new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
      if (new_tags == NULL) return NULL;
      for (j = 0; j < i; j++) new_tags[j] = set2[s2].tags[j];
      new_tags[j] = -1;
      new_set[s1 + s2].tags = new_tags;
    }
  }
  new_set[s1 + s2].position = -1;
  return new_set;
}

/* Finds the empty path through `node' which is the one that should be
   taken according to POSIX.2 rules, and adds the tags on that path to
   `tags'.   `tags' may be NULL.  If `num_tags_seen' is not NULL, it is
   set to the number of tags seen on the path. */
static reg_errcode_t tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node,
                                     int *tags, int *assertions,
                                     int *num_tags_seen) {
  tre_literal_t *lit;
  tre_union_t *uni;
  tre_catenation_t *cat;
  tre_iteration_t *iter;
  int i;
  int bottom = tre_stack_num_objects(stack);
  reg_errcode_t status = REG_OK;
  if (num_tags_seen) *num_tags_seen = 0;

  status = tre_stack_push_voidptr(stack, node);

  /* Walk through the tree recursively. */
  while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
    node = tre_stack_pop_voidptr(stack);

    switch (node->type) {
      case LITERAL:
        lit = (tre_literal_t *)node->obj;
        switch (lit->code_min) {
          case TAG:
            if (lit->code_max >= 0) {
              if (tags != NULL) {
                /* Add the tag to `tags'. */
                for (i = 0; tags[i] >= 0; i++)
                  if (tags[i] == lit->code_max) break;
                if (tags[i] < 0) {
                  tags[i] = lit->code_max;
                  tags[i + 1] = -1;
                }
              }
              if (num_tags_seen) (*num_tags_seen)++;
            }
            break;
          case ASSERTION:
            assert(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST);
            if (assertions != NULL) *assertions |= lit->code_max;
            break;
          case EMPTY:
            break;
          default:
            assert(0);
            break;
        }
        break;

      case UNION:
        /* Subexpressions starting earlier take priority over ones
           starting later, so we prefer the left subexpression over the
           right subexpression. */
        uni = (tre_union_t *)node->obj;
        if (uni->left->nullable)
          STACK_PUSHX(stack, voidptr, uni->left)
        else if (uni->right->nullable)
          STACK_PUSHX(stack, voidptr, uni->right)
        else
          assert(0);
        break;

      case CATENATION:
        /* The path must go through both children. */
        cat = (tre_catenation_t *)node->obj;
        assert(cat->left->nullable);
        assert(cat->right->nullable);
        STACK_PUSHX(stack, voidptr, cat->left);
        STACK_PUSHX(stack, voidptr, cat->right);
        break;

      case ITERATION:
        /* A match with an empty string is preferred over no match at
           all, so we go through the argument if possible. */
        iter = (tre_iteration_t *)node->obj;
        if (iter->arg->nullable) STACK_PUSHX(stack, voidptr, iter->arg);
        break;

      default:
        assert(0);
        break;
    }
  }

  return status;
}

typedef enum {
  NFL_RECURSE,
  NFL_POST_UNION,
  NFL_POST_CATENATION,
  NFL_POST_ITERATION
} tre_nfl_stack_symbol_t;

/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
   the nodes of the AST `tree'. */
static reg_errcode_t tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack,
                                     tre_ast_node_t *tree) {
  int bottom = tre_stack_num_objects(stack);

  STACK_PUSHR(stack, voidptr, tree);
  STACK_PUSHR(stack, int, NFL_RECURSE);

  while (tre_stack_num_objects(stack) > bottom) {
    tre_nfl_stack_symbol_t symbol;
    tre_ast_node_t *node;

    symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
    node = tre_stack_pop_voidptr(stack);
    switch (symbol) {
      case NFL_RECURSE:
        switch (node->type) {
          case LITERAL: {
            tre_literal_t *lit = (tre_literal_t *)node->obj;
            if (IS_BACKREF(lit)) {
              /* Back references: nullable = false, firstpos = {i},
                 lastpos = {i}. */
              node->nullable = 0;
              node->firstpos =
                  tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
              if (!node->firstpos) return REG_ESPACE;
              node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX,
                                          0, NULL, (int)lit->code_max);
              if (!node->lastpos) return REG_ESPACE;
            } else if (lit->code_min < 0) {
              /* Tags, empty strings, params, and zero width assertions:
                 nullable = true, firstpos = {}, and lastpos = {}. */
              node->nullable = 1;
              node->firstpos = tre_set_empty(mem);
              if (!node->firstpos) return REG_ESPACE;
              node->lastpos = tre_set_empty(mem);
              if (!node->lastpos) return REG_ESPACE;
            } else {
              /* Literal at position i: nullable = false, firstpos = {i},
                 lastpos = {i}. */
              node->nullable = 0;
              node->firstpos =
                  tre_set_one(mem, lit->position, (int)lit->code_min,
                              (int)lit->code_max, 0, NULL, -1);
              if (!node->firstpos) return REG_ESPACE;
              node->lastpos = tre_set_one(
                  mem, lit->position, (int)lit->code_min, (int)lit->code_max,
                  lit->class, lit->neg_classes, -1);
              if (!node->lastpos) return REG_ESPACE;
            }
            break;
          }

          case UNION:
            /* Compute the attributes for the two subtrees, and after that
               for this node. */
            STACK_PUSHR(stack, voidptr, node);
            STACK_PUSHR(stack, int, NFL_POST_UNION);
            STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
            STACK_PUSHR(stack, int, NFL_RECURSE);
            STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
            STACK_PUSHR(stack, int, NFL_RECURSE);
            break;

          case CATENATION:
            /* Compute the attributes for the two subtrees, and after that
               for this node. */
            STACK_PUSHR(stack, voidptr, node);
            STACK_PUSHR(stack, int, NFL_POST_CATENATION);
            STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
            STACK_PUSHR(stack, int, NFL_RECURSE);
            STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
            STACK_PUSHR(stack, int, NFL_RECURSE);
            break;

          case ITERATION:
            /* Compute the attributes for the subtree, and after that for
               this node. */
            STACK_PUSHR(stack, voidptr, node);
            STACK_PUSHR(stack, int, NFL_POST_ITERATION);
            STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
            STACK_PUSHR(stack, int, NFL_RECURSE);
            break;
        }
        break; /* end case: NFL_RECURSE */

      case NFL_POST_UNION: {
        tre_union_t *uni = (tre_union_t *)node->obj;
        node->nullable = uni->left->nullable || uni->right->nullable;
        node->firstpos = tre_set_union(mem, uni->left->firstpos,
                                       uni->right->firstpos, NULL, 0);
        if (!node->firstpos) return REG_ESPACE;
        node->lastpos = tre_set_union(mem, uni->left->lastpos,
                                      uni->right->lastpos, NULL, 0);
        if (!node->lastpos) return REG_ESPACE;
        break;
      }

      case NFL_POST_ITERATION: {
        tre_iteration_t *iter = (tre_iteration_t *)node->obj;

        if (iter->min == 0 || iter->arg->nullable)
          node->nullable = 1;
        else
          node->nullable = 0;
        node->firstpos = iter->arg->firstpos;
        node->lastpos = iter->arg->lastpos;
        break;
      }

      case NFL_POST_CATENATION: {
        int num_tags, *tags, assertions;
        reg_errcode_t status;
        tre_catenation_t *cat = node->obj;
        node->nullable = cat->left->nullable && cat->right->nullable;

        /* Compute firstpos. */
        if (cat->left->nullable) {
          /* The left side matches the empty string.  Make a first pass
             with tre_match_empty() to get the number of tags and
             parameters. */
          status = tre_match_empty(stack, cat->left, NULL, NULL, &num_tags);
          if (status != REG_OK) return status;
          /* Allocate arrays for the tags and parameters. */
          tags = malloc(sizeof(*tags) * (num_tags + 1));
          if (!tags) return REG_ESPACE;
          tags[0] = -1;
          assertions = 0;
          /* Second pass with tre_mach_empty() to get the list of
             tags and parameters. */
          status = tre_match_empty(stack, cat->left, tags, &assertions, NULL);
          if (status != REG_OK) {
            free(tags), tags = NULL;
            return status;
          }
          node->firstpos = tre_set_union(mem, cat->right->firstpos,
                                         cat->left->firstpos, tags, assertions);
          free(tags), tags = NULL;
          if (!node->firstpos) return REG_ESPACE;
        } else {
          node->firstpos = cat->left->firstpos;
        }

        /* Compute lastpos. */
        if (cat->right->nullable) {
          /* The right side matches the empty string.  Make a first pass
             with tre_match_empty() to get the number of tags and
             parameters. */
          status = tre_match_empty(stack, cat->right, NULL, NULL, &num_tags);
          if (status != REG_OK) return status;
          /* Allocate arrays for the tags and parameters. */
          tags = malloc(sizeof(int) * (num_tags + 1));
          if (!tags) return REG_ESPACE;
          tags[0] = -1;
          assertions = 0;
          /* Second pass with tre_mach_empty() to get the list of
             tags and parameters. */
          status = tre_match_empty(stack, cat->right, tags, &assertions, NULL);
          if (status != REG_OK) {
            free(tags), tags = NULL;
            return status;
          }
          node->lastpos = tre_set_union(mem, cat->left->lastpos,
                                        cat->right->lastpos, tags, assertions);
          free(tags), tags = NULL;
          if (!node->lastpos) return REG_ESPACE;
        } else {
          node->lastpos = cat->right->lastpos;
        }
        break;
      }

      default:
        assert(0);
        break;
    }
  }

  return REG_OK;
}

/* Adds a transition from each position in `p1' to each position in `p2'. */
static reg_errcode_t tre_make_trans(tre_pos_and_tags_t *p1,
                                    tre_pos_and_tags_t *p2,
                                    tre_tnfa_transition_t *transitions,
                                    int *counts, int *offs) {
  tre_pos_and_tags_t *orig_p2 = p2;
  tre_tnfa_transition_t *trans;
  int i, j, k, l, dup, prev_p2_pos;

  if (transitions != NULL)
    while (p1->position >= 0) {
      p2 = orig_p2;
      prev_p2_pos = -1;
      while (p2->position >= 0) {
        /* Optimization: if this position was already handled, skip it. */
        if (p2->position == prev_p2_pos) {
          p2++;
          continue;
        }
        prev_p2_pos = p2->position;
        /* Set `trans' to point to the next unused transition from
           position `p1->position'. */
        trans = transitions + offs[p1->position];
        while (trans->state != NULL) {
#if 0
		/* If we find a previous transition from `p1->position' to
		   `p2->position', it is overwritten.  This can happen only
		   if there are nested loops in the regexp, like in "((a)*)*".
		   In POSIX.2 repetition using the outer loop is always
		   preferred over using the inner loop.	 Therefore the
		   transition for the inner loop is useless and can be thrown
		   away. */
		/* XXX - The same position is used for all nodes in a bracket
		   expression, so this optimization cannot be used (it will
		   break bracket expressions) unless I figure out a way to
		   detect it here. */
		if (trans->state_id == p2->position)
		  {
		    break;
		  }
#endif
          trans++;
        }

        if (trans->state == NULL) (trans + 1)->state = NULL;
        /* Use the character ranges, assertions, etc. from `p1' for
           the transition from `p1' to `p2'. */
        trans->code_min = p1->code_min;
        trans->code_max = p1->code_max;
        trans->state = transitions + offs[p2->position];
        trans->state_id = p2->position;
        trans->assertions =
            p1->assertions | p2->assertions |
            (p1->class ? ASSERT_CHAR_CLASS : 0) |
            (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
        if (p1->backref >= 0) {
          assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
          assert(p2->backref < 0);
          trans->u.backref = p1->backref;
          trans->assertions |= ASSERT_BACKREF;
        } else
          trans->u.class = p1->class;
        if (p1->neg_classes != NULL) {
          for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
            ;
          trans->neg_classes = malloc(sizeof(*trans->neg_classes) * (i + 1));
          if (trans->neg_classes == NULL) return REG_ESPACE;
          for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
            trans->neg_classes[i] = p1->neg_classes[i];
          trans->neg_classes[i] = (tre_ctype_t)0;
        } else
          trans->neg_classes = NULL;

        /* Find out how many tags this transition has. */
        i = 0;
        if (p1->tags != NULL)
          while (p1->tags[i] >= 0) i++;
        j = 0;
        if (p2->tags != NULL)
          while (p2->tags[j] >= 0) j++;

        /* If we are overwriting a transition, free the old tag array. */
        if (trans->tags != NULL) free(trans->tags), trans->tags = NULL;
        trans->tags = NULL;

        /* If there were any tags, allocate an array and fill it. */
        if (i + j > 0) {
          trans->tags = malloc(sizeof(*trans->tags) * (i + j + 1));
          if (!trans->tags) return REG_ESPACE;
          i = 0;
          if (p1->tags != NULL)
            while (p1->tags[i] >= 0) {
              trans->tags[i] = p1->tags[i];
              i++;
            }
          l = i;
          j = 0;
          if (p2->tags != NULL)
            while (p2->tags[j] >= 0) {
              /* Don't add duplicates. */
              dup = 0;
              for (k = 0; k < i; k++)
                if (trans->tags[k] == p2->tags[j]) {
                  dup = 1;
                  break;
                }
              if (!dup) trans->tags[l++] = p2->tags[j];
              j++;
            }
          trans->tags[l] = -1;
        }

        p2++;
      }
      p1++;
    }
  else
    /* Compute a maximum limit for the number of transitions leaving
       from each state. */
    while (p1->position >= 0) {
      p2 = orig_p2;
      while (p2->position >= 0) {
        counts[p1->position]++;
        p2++;
      }
      p1++;
    }
  return REG_OK;
}

/* Converts the syntax tree to a TNFA.	All the transitions in the TNFA are
   labelled with one character range (there are no transitions on empty
   strings).  The TNFA takes O(n^2) space in the worst case, `n' is size of
   the regexp. */
static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t *node,
                                     tre_tnfa_transition_t *transitions,
                                     int *counts, int *offs) {
  tre_union_t *uni;
  tre_catenation_t *cat;
  tre_iteration_t *iter;
  reg_errcode_t errcode = REG_OK;

  /* XXX - recurse using a stack!. */
  switch (node->type) {
    case LITERAL:
      break;
    case UNION:
      uni = (tre_union_t *)node->obj;
      errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
      if (errcode != REG_OK) return errcode;
      errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
      break;

    case CATENATION:
      cat = (tre_catenation_t *)node->obj;
      /* Add a transition from each position in cat->left->lastpos
         to each position in cat->right->firstpos. */
      errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
                               transitions, counts, offs);
      if (errcode != REG_OK) return errcode;
      errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
      if (errcode != REG_OK) return errcode;
      errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
      break;

    case ITERATION:
      iter = (tre_iteration_t *)node->obj;
      assert(iter->max == -1 || iter->max == 1);

      if (iter->max == -1) {
        assert(iter->min == 0 || iter->min == 1);
        /* Add a transition from each last position in the iterated
           expression to each first position. */
        errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
                                 transitions, counts, offs);
        if (errcode != REG_OK) return errcode;
      }
      errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
      break;
  }
  return errcode;
}

#define ERROR_EXIT(err)                   \
  do {                                    \
    errcode = err;                        \
    if (/*CONSTCOND*/ 1) goto error_exit; \
  } while (/*CONSTCOND*/ 0)

/**
 * Compiles regular expression, e.g.
 *
 *     regex_t rx;
 *     EXPECT_EQ(REG_OK, regcomp(&rx, "^[A-Za-z]{2}$", REG_EXTENDED));
 *     EXPECT_EQ(REG_OK, regexec(&rx, "→A", 0, NULL, 0));
 *     regfree(&rx);
 *
 * @param preg points to state, and needs regfree() afterwards
 * @param regex is utf-8 regular expression string
 * @param cflags can have REG_EXTENDED, REG_ICASE, REG_NEWLINE, REG_NOSUB
 * @return REG_OK, REG_NOMATCH, REG_BADPAT, etc.
 * @see regexec(), regfree(), regerror()
 */
int regcomp(regex_t *preg, const char *regex, int cflags) {
  tre_stack_t *stack;
  tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
  tre_pos_and_tags_t *p;
  int *counts = NULL, *offs = NULL;
  int i, add = 0;
  tre_tnfa_transition_t *transitions, *initial;
  tre_tnfa_t *tnfa = NULL;
  tre_submatch_data_t *submatch_data;
  tre_tag_direction_t *tag_directions = NULL;
  reg_errcode_t errcode;
  tre_mem_t mem;

  /* Parse context. */
  tre_parse_ctx_t parse_ctx;

  /* Allocate a stack used throughout the compilation process for various
     purposes. */
  stack = tre_stack_new(512, 1024000, 128);
  if (!stack) return REG_ESPACE;
  /* Allocate a fast memory allocator. */
  mem = tre_mem_new();
  if (!mem) {
    tre_stack_destroy(stack);
    return REG_ESPACE;
  }

  /* Parse the regexp. */
  memset(&parse_ctx, 0, sizeof(parse_ctx));
  parse_ctx.mem = mem;
  parse_ctx.stack = stack;
  parse_ctx.start = regex;
  parse_ctx.cflags = cflags;
  parse_ctx.max_backref = -1;
  errcode = tre_parse(&parse_ctx);
  if (errcode != REG_OK) ERROR_EXIT(errcode);
  preg->re_nsub = parse_ctx.submatch_id - 1;
  tree = parse_ctx.n;

#ifdef TRE_DEBUG
  tre_ast_print(tree);
#endif /* TRE_DEBUG */

  /* Referring to nonexistent subexpressions is illegal. */
  if (parse_ctx.max_backref > (int)preg->re_nsub) ERROR_EXIT(REG_ESUBREG);

  /* Allocate the TNFA struct. */
  tnfa = calloc(1, sizeof(tre_tnfa_t));
  if (tnfa == NULL) ERROR_EXIT(REG_ESPACE);
  tnfa->have_backrefs = parse_ctx.max_backref >= 0;
  tnfa->have_approx = 0;
  tnfa->num_submatches = parse_ctx.submatch_id;

  /* Set up tags for submatch addressing.  If REG_NOSUB is set and the
     regexp does not have back references, this can be skipped. */
  if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) {
    /* Figure out how many tags we will need. */
    errcode = tre_add_tags(NULL, stack, tree, tnfa);
    if (errcode != REG_OK) ERROR_EXIT(errcode);

    if (tnfa->num_tags > 0) {
      tag_directions = malloc(sizeof(*tag_directions) * (tnfa->num_tags + 1));
      if (tag_directions == NULL) ERROR_EXIT(REG_ESPACE);
      tnfa->tag_directions = tag_directions;
      memset(tag_directions, -1,
             sizeof(*tag_directions) * (tnfa->num_tags + 1));
    }
    tnfa->minimal_tags =
        calloc((unsigned)tnfa->num_tags * 2 + 1, sizeof(*tnfa->minimal_tags));
    if (tnfa->minimal_tags == NULL) ERROR_EXIT(REG_ESPACE);

    submatch_data =
        calloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
    if (submatch_data == NULL) ERROR_EXIT(REG_ESPACE);
    tnfa->submatch_data = submatch_data;

    errcode = tre_add_tags(mem, stack, tree, tnfa);
    if (errcode != REG_OK) ERROR_EXIT(errcode);
  }

  /* Expand iteration nodes. */
  errcode =
      tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions);
  if (errcode != REG_OK) ERROR_EXIT(errcode);

  /* Add a dummy node for the final state.
     XXX - For certain patterns this dummy node can be optimized away,
           for example "a*" or "ab*".	Figure out a simple way to detect
           this possibility. */
  tmp_ast_l = tree;
  tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
  if (tmp_ast_r == NULL) ERROR_EXIT(REG_ESPACE);

  tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
  if (tree == NULL) ERROR_EXIT(REG_ESPACE);

  errcode = tre_compute_nfl(mem, stack, tree);
  if (errcode != REG_OK) ERROR_EXIT(errcode);

  counts = malloc(sizeof(int) * parse_ctx.position);
  if (counts == NULL) ERROR_EXIT(REG_ESPACE);

  offs = malloc(sizeof(int) * parse_ctx.position);
  if (offs == NULL) ERROR_EXIT(REG_ESPACE);

  for (i = 0; i < parse_ctx.position; i++) counts[i] = 0;
  tre_ast_to_tnfa(tree, NULL, counts, NULL);

  add = 0;
  for (i = 0; i < parse_ctx.position; i++) {
    offs[i] = add;
    add += counts[i] + 1;
    counts[i] = 0;
  }
  transitions = calloc((unsigned)add + 1, sizeof(*transitions));
  if (transitions == NULL) ERROR_EXIT(REG_ESPACE);
  tnfa->transitions = transitions;
  tnfa->num_transitions = add;

  errcode = tre_ast_to_tnfa(tree, transitions, counts, offs);
  if (errcode != REG_OK) ERROR_EXIT(errcode);

  tnfa->firstpos_chars = NULL;

  p = tree->firstpos;
  i = 0;
  while (p->position >= 0) {
    i++;
    p++;
  }

  initial = calloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
  if (initial == NULL) ERROR_EXIT(REG_ESPACE);
  tnfa->initial = initial;

  i = 0;
  for (p = tree->firstpos; p->position >= 0; p++) {
    initial[i].state = transitions + offs[p->position];
    initial[i].state_id = p->position;
    initial[i].tags = NULL;
    /* Copy the arrays p->tags, and p->params, they are allocated
       from a tre_mem object. */
    if (p->tags) {
      int j;
      for (j = 0; p->tags[j] >= 0; j++)
        ;
      initial[i].tags = malloc(sizeof(*p->tags) * (j + 1));
      if (!initial[i].tags) ERROR_EXIT(REG_ESPACE);
      memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
    }
    initial[i].assertions = p->assertions;
    i++;
  }
  initial[i].state = NULL;

  tnfa->num_transitions = add;
  tnfa->final = transitions + offs[tree->lastpos[0].position];
  tnfa->num_states = parse_ctx.position;
  tnfa->cflags = cflags;

  tre_mem_destroy(mem);
  tre_stack_destroy(stack);
  free(counts), counts = NULL;
  free(offs), offs = NULL;

  preg->TRE_REGEX_T_FIELD = (void *)tnfa;
  return REG_OK;

error_exit:
  /* Free everything that was allocated and return the error code. */
  tre_mem_destroy(mem);
  if (stack != NULL) tre_stack_destroy(stack);
  if (counts != NULL) free(counts), counts = NULL;
  if (offs != NULL) free(offs), offs = NULL;
  preg->TRE_REGEX_T_FIELD = (void *)tnfa;
  regfree(preg);
  return errcode;
}

/**
 * Frees any memory allocated by regcomp().
 */
void regfree(regex_t *preg) {
  tre_tnfa_t *tnfa;
  unsigned int i;
  tre_tnfa_transition_t *trans;
  tnfa = (void *)preg->TRE_REGEX_T_FIELD;
  if (!tnfa) return;
  for (i = 0; i < tnfa->num_transitions; i++)
    if (tnfa->transitions[i].state) {
      if (tnfa->transitions[i].tags)
        free(tnfa->transitions[i].tags), tnfa->transitions[i].tags = NULL;
      if (tnfa->transitions[i].neg_classes)
        free(tnfa->transitions[i].neg_classes),
            tnfa->transitions[i].neg_classes = NULL;
    }
  if (tnfa->transitions) free(tnfa->transitions), tnfa->transitions = NULL;
  if (tnfa->initial) {
    for (trans = tnfa->initial; trans->state; trans++) {
      if (trans->tags) free(trans->tags), trans->tags = NULL;
    }
    free(tnfa->initial), tnfa->initial = NULL;
  }
  if (tnfa->submatch_data) {
    for (i = 0; i < tnfa->num_submatches; i++)
      if (tnfa->submatch_data[i].parents)
        free(tnfa->submatch_data[i].parents),
            tnfa->submatch_data[i].parents = NULL;
    free(tnfa->submatch_data), tnfa->submatch_data = NULL;
  }
  if (tnfa->tag_directions)
    free(tnfa->tag_directions), tnfa->tag_directions = NULL;
  if (tnfa->firstpos_chars)
    free(tnfa->firstpos_chars), tnfa->firstpos_chars = NULL;
  if (tnfa->minimal_tags) free(tnfa->minimal_tags), tnfa->minimal_tags = NULL;
  free(tnfa), tnfa = NULL;
}