/* Job execution and handling for GNU Make. Copyright (C) 1988-2020 Free Software Foundation, Inc. This file is part of GNU Make. GNU Make is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "third_party/make/makeint.inc" /**/ #include "third_party/make/debug.h" #include "third_party/make/filedef.h" #include "third_party/make/job.h" /**/ #include "libc/assert.h" #include "libc/calls/calls.h" #include "libc/calls/pledge.h" #include "libc/calls/pledge.internal.h" #include "libc/calls/struct/bpf.internal.h" #include "libc/calls/struct/filter.internal.h" #include "libc/calls/struct/seccomp.internal.h" #include "libc/calls/struct/sysinfo.h" #include "libc/calls/struct/timeval.h" #include "libc/dce.h" #include "libc/elf/def.h" #include "libc/elf/elf.h" #include "libc/elf/struct/ehdr.h" #include "libc/elf/struct/phdr.h" #include "libc/fmt/conv.h" #include "libc/fmt/fmt.h" #include "libc/fmt/itoa.h" #include "libc/fmt/libgen.h" #include "libc/intrin/bits.h" #include "libc/intrin/promises.internal.h" #include "libc/intrin/safemacros.internal.h" #include "libc/log/backtrace.internal.h" #include "libc/log/log.h" #include "libc/log/rop.internal.h" #include "libc/macros.internal.h" #include "libc/math.h" #include "libc/nexgen32e/kcpuids.h" #include "libc/proc/posix_spawn.h" #include "libc/runtime/runtime.h" #include "libc/sock/sock.h" #include "libc/str/str.h" #include "libc/sysv/consts/audit.h" #include "libc/sysv/consts/map.h" #include "libc/sysv/consts/nrlinux.h" #include "libc/sysv/consts/o.h" #include "libc/sysv/consts/pr.h" #include "libc/sysv/consts/prot.h" #include "libc/sysv/consts/rlimit.h" #include "libc/sysv/consts/sig.h" #include "libc/sysv/errfuns.h" #include "libc/time/time.h" #include "libc/x/x.h" #include "third_party/make/commands.h" #include "third_party/make/dep.h" #include "third_party/make/findprog.h" #include "third_party/make/os.h" #include "third_party/make/variable.h" // clang-format off #define USE_POSIX_SPAWN (!IsLinux() && !IsOpenbsd()) #define HAVE_POSIX_SPAWNATTR_SETSIGMASK #ifdef WINDOWS32 const char *default_shell = "sh.exe"; int no_default_sh_exe = 1; int batch_mode_shell = 1; HANDLE main_thread; #else const char *default_shell = "/bin/sh"; int batch_mode_shell = 0; #endif #define WAIT_NOHANG(status) waitpid (-1, (status), WNOHANG) #define WAIT_T int /* Different systems have different requirements for pid_t. Plus we have to support gettext string translation... Argh. */ static const char * pid2str (pid_t pid) { static char pidstring[100]; sprintf (pidstring, "%lu", (unsigned long) pid); return pidstring; } static void free_child (struct child *); static void start_job_command (struct child *child); static int load_too_high (void); static int job_next_command (struct child *); static int start_waiting_job (struct child *); /* Chain of all live (or recently deceased) children. */ struct child *children = 0; /* Number of children currently running. */ unsigned int job_slots_used = 0; /* Nonzero if the 'good' standard input is in use. */ static int good_stdin_used = 0; /* Chain of children waiting to run until the load average goes down. */ static struct child *waiting_jobs = 0; /* Non-zero if we use a *real* shell (always so on Unix). */ int unixy_shell = 1; /* Number of jobs started in the current second. */ unsigned long job_counter = 0; /* Number of jobserver tokens this instance is currently using. */ unsigned int jobserver_tokens = 0; #ifdef WINDOWS32 /* * The macro which references this function is defined in makeint.h. */ int w32_kill (pid_t pid, int sig) { return ((process_kill ((HANDLE)pid, sig) == TRUE) ? 0 : -1); } /* This function creates a temporary file name with an extension specified * by the unixy arg. * Return an xmalloc'ed string of a newly created temp file and its * file descriptor, or die. */ static char * create_batch_file (char const *base, int unixy, int *fd) { const char *const ext = unixy ? "sh" : "bat"; const char *error_string = NULL; char temp_path[MAXPATHLEN]; /* need to know its length */ unsigned path_size = GetTempPath (sizeof temp_path, temp_path); int path_is_dot = 0; /* The following variable is static so we won't try to reuse a name that was generated a little while ago, because that file might not be on disk yet, since we use FILE_ATTRIBUTE_TEMPORARY below, which tells the OS it doesn't need to flush the cache to disk. If the file is not yet on disk, we might think the name is available, while it really isn't. This happens in parallel builds, where Make doesn't wait for one job to finish before it launches the next one. */ static unsigned uniq = 0; static int second_loop = 0; const size_t sizemax = strlen (base) + strlen (ext) + 10; if (path_size == 0) { path_size = GetCurrentDirectory (sizeof temp_path, temp_path); path_is_dot = 1; } ++uniq; if (uniq >= 0x10000 && !second_loop) { /* If we already had 64K batch files in this process, make a second loop through the numbers, looking for free slots, i.e. files that were deleted in the meantime. */ second_loop = 1; uniq = 1; } while (path_size > 0 && path_size + sizemax < sizeof temp_path && !(uniq >= 0x10000 && second_loop)) { unsigned size = sprintf (temp_path + path_size, "%s%s-%x.%s", temp_path[path_size - 1] == '\\' ? "" : "\\", base, uniq, ext); HANDLE h = CreateFile (temp_path, /* file name */ GENERIC_READ | GENERIC_WRITE, /* desired access */ 0, /* no share mode */ NULL, /* default security attributes */ CREATE_NEW, /* creation disposition */ FILE_ATTRIBUTE_NORMAL | /* flags and attributes */ FILE_ATTRIBUTE_TEMPORARY, /* we'll delete it */ NULL); /* no template file */ if (h == INVALID_HANDLE_VALUE) { const DWORD er = GetLastError (); if (er == ERROR_FILE_EXISTS || er == ERROR_ALREADY_EXISTS) { ++uniq; if (uniq == 0x10000 && !second_loop) { second_loop = 1; uniq = 1; } } /* the temporary path is not guaranteed to exist */ else if (path_is_dot == 0) { path_size = GetCurrentDirectory (sizeof temp_path, temp_path); path_is_dot = 1; } else { error_string = map_windows32_error_to_string (er); break; } } else { const unsigned final_size = path_size + size + 1; char *const path = xmalloc (final_size); memcpy (path, temp_path, final_size); *fd = _open_osfhandle ((intptr_t)h, 0); if (unixy) { char *p; int ch; for (p = path; (ch = *p) != 0; ++p) if (ch == '\\') *p = '/'; } return path; /* good return */ } } *fd = -1; if (error_string == NULL) error_string = _("Cannot create a temporary file\n"); O (fatal, NILF, error_string); /* not reached */ return NULL; } #endif /* WINDOWS32 */ /* determines whether path looks to be a Bourne-like shell. */ int is_bourne_compatible_shell (const char *path) { /* List of known POSIX (or POSIX-ish) shells. */ static const char *unix_shells[] = { "build/bootstrap/cocmd.com", "false", "dash", "sh", "bash", "ksh", "rksh", "zsh", "ash", "dash", NULL }; const char **s; /* find the rightmost '/' or '\\' */ const char *name = strrchr (path, '/'); char *p = strrchr (path, '\\'); if (name && p) /* take the max */ name = (name > p) ? name : p; else if (p) /* name must be 0 */ name = p; else if (!name) /* name and p must be 0 */ name = path; if (*name == '/' || *name == '\\') ++name; /* this should be able to deal with extensions on Windows-like systems */ for (s = unix_shells; *s != NULL; ++s) { #if defined(WINDOWS32) || defined(__MSDOS__) size_t len = strlen (*s); if ((strlen (name) >= len && STOP_SET (name[len], MAP_DOT|MAP_NUL)) && strncasecmp (name, *s, len) == 0) #else if (strcmp (name, *s) == 0) #endif return 1; /* a known unix-style shell */ } /* if not on the list, assume it's not a Bourne-like shell */ return 0; } extern sigset_t fatal_signal_set; static void block_sigs () { sigprocmask (SIG_BLOCK, &fatal_signal_set, (sigset_t *) 0); } static void unblock_sigs () { sigprocmask (SIG_UNBLOCK, &fatal_signal_set, (sigset_t *) 0); } void unblock_all_sigs () { sigset_t empty; sigemptyset (&empty); sigprocmask (SIG_SETMASK, &empty, (sigset_t *) 0); } /* Write an error message describing the exit status given in EXIT_CODE, EXIT_SIG, and COREDUMP, for the target TARGET_NAME. Append "(ignored)" if IGNORED is nonzero. */ static void child_error (struct child *child, int exit_code, int exit_sig, int coredump, int ignored) { const char *pre = "*** "; const char *post = ""; const char *dump = ""; const struct file *f = child->file; const floc *flocp = &f->cmds->fileinfo; const char *nm; size_t l; if (ignored && run_silent) return; if (exit_sig && coredump) dump = _(" (core dumped)"); if (ignored) { pre = ""; post = _(" (ignored)"); } if (! flocp->filenm) nm = _(""); else { char *a = alloca (strlen (flocp->filenm) + 6 + INTSTR_LENGTH + 1); sprintf (a, "%s:%lu", flocp->filenm, flocp->lineno + flocp->offset); nm = a; } l = strlen (pre) + strlen (nm) + strlen (f->name) + strlen (post); OUTPUT_SET (&child->output); show_goal_error (); if (exit_sig == 0) error (NILF, l + INTSTR_LENGTH, _("%s[%s: %s] Error %d%s"), pre, nm, f->name, exit_code, post); else { const char *s = strsignal (exit_sig); error (NILF, l + strlen (s) + strlen (dump), "%s[%s: %s] %s%s%s", pre, nm, f->name, s, dump, post); } OUTPUT_UNSET (); } /* [jart] manage temporary directories per rule */ bool parse_bool (const char *s) { while (isspace (*s)) ++s; if (isdigit (*s)) return !! atoi (s); return _startswithi (s, "true"); } const char * get_target_variable (const char *name, size_t length, struct file *file, const char *dflt) { const struct variable *var; if ((file && ((var = lookup_variable_in_set (name, length, file->variables->set)) || (file->pat_variables && (var = lookup_variable_in_set (name, length, file->pat_variables->set))))) || (var = lookup_variable (name, length))) return variable_expand (var->value); else return dflt; } char * get_tmpdir (struct file *file) { const char *tmpdir; tmpdir = get_target_variable (STRING_SIZE_TUPLE ("TMPDIR"), file, 0); if (!tmpdir) tmpdir = __get_tmpdir(); return strdup (tmpdir); } char * new_tmpdir (const char *tmp, struct file *file) { char *tmpdir; const char *s; int c, e, i, j; char cwd[PATH_MAX]; char path[PATH_MAX]; /* create temporary directory in tmp */ i = 0; /* ensure tmpdir will be absolute */ if (tmp[0] != '/') { if (getcwd(cwd, sizeof(cwd))) { for (j = 0; cwd[j]; ++j) if (i < PATH_MAX) path[i++] = cwd[j]; if (i && path[i - 1] != '/') if (i < PATH_MAX) path[i++] = '/'; } else DB (DB_JOBS, (_("Failed to get current directory\n"))); } /* copy old tmpdir */ for (j = 0; tmp[j]; ++j) if (i < PATH_MAX) path[i++] = tmp[j]; /* append slash */ if (i && path[i - 1] != '/') if (i < PATH_MAX) path[i++] = '/'; /* append target name safely */ for (j = 0; (c = file->name[j]); ++j) { if (isalnum(c)) c = tolower(c); else c = '_'; if (i < PATH_MAX) path[i++] = c; } /* copy random template */ s = ".XXXXXX"; for (j = 0; s[j]; ++j) if (i < PATH_MAX) path[i++] = s[j]; /* add nul terminator */ if (i + 11 < PATH_MAX) path[i] = 0; else { DB (DB_JOBS, (_("Creating TMPDIR in %s for %s is too long\n"), tmp, file->name)); return 0; } /* create temp directory with random data */ e = errno; if (!(tmpdir = mkdtemp (path)) && errno == ENOENT) { /* create parent directories if necessary */ char *dir; errno = e; dir = xstrdup (path); if (!makedirs (dirname (dir), 0700)) tmpdir = mkdtemp (path); free (dir); } /* returned string must be free'd */ if (tmpdir) { tmpdir = xstrdup (tmpdir); DB (DB_JOBS, (_("Created TMPDIR %s\n"), path)); } else DB (DB_JOBS, (_("Creating TMPDIR %s failed %s\n"), path, strerror (errno))); return tmpdir; } bool get_file_timestamp (struct file *file) { int e; struct stat st; EINTRLOOP (e, stat (file->name, &st)); if (e == 0) return FILE_TIMESTAMP_STAT_MODTIME (file->name, st); else return NONEXISTENT_MTIME; } void delete_tmpdir (struct child *c) { if (!c->tmpdir) return; DB (DB_JOBS, (_("Deleting TMPDIR %s\n"), c->tmpdir)); if (!isdirectory (c->tmpdir)) DB (DB_JOBS, (_("Warning TMPDIR %s doesn't exist\n"), c->tmpdir)); errno = 0; if (rmrf (c->tmpdir)) DB (DB_JOBS, (_("Deleting TMPDIR %s failed %s\n"), c->tmpdir, strerror(errno))); free (c->tmpdir); c->tmpdir = 0; } /* Handle a dead child. This handler may or may not ever be installed. If we're using the jobserver feature without pselect(), we need it. First, installing it ensures the read will interrupt on SIGCHLD. Second, we close the dup'd read FD to ensure we don't enter another blocking read without reaping all the dead children. In this case we don't need the dead_children count. If we don't have either waitpid or wait3, then make is unreliable, but we use the dead_children count to reap children as best we can. */ static unsigned int dead_children = 0; RETSIGTYPE child_handler (int sig UNUSED) { ++dead_children; jobserver_signal (); } extern pid_t shell_function_pid; /* Reap all dead children, storing the returned status and the new command state ('cs_finished') in the 'file' member of the 'struct child' for the dead child, and removing the child from the chain. In addition, if BLOCK nonzero, we block in this function until we've reaped at least one complete child, waiting for it to die if necessary. If ERR is nonzero, print an error message first. */ void reap_children (int block, int err) { WAIT_T status; /* Initially, assume we have some. */ int reap_more = 1; /* As long as: We have at least one child outstanding OR a shell function in progress, AND We're blocking for a complete child OR there are more children to reap we'll keep reaping children. */ while ((children != 0 || shell_function_pid != 0) && (block || reap_more)) { unsigned int remote = 0; pid_t pid; int exit_code, exit_sig, coredump; struct child *lastc, *c; int child_failed; int any_remote, any_local; int dontcare; if (err && block) { static int printed = 0; /* We might block for a while, so let the user know why. Only print this message once no matter how many jobs are left. */ fflush (stdout); if (!printed) O (error, NILF, _("*** Waiting for unfinished jobs....")); printed = 1; } /* We have one less dead child to reap. As noted in child_handler() above, this count is completely unimportant for all modern, POSIX-y systems that support wait3() or waitpid(). The rest of this comment below applies only to early, broken pre-POSIX systems. We keep the count only because... it's there... The test and decrement are not atomic; if it is compiled into: register = dead_children - 1; dead_children = register; a SIGCHLD could come between the two instructions. child_handler increments dead_children. The second instruction here would lose that increment. But the only effect of dead_children being wrong is that we might wait longer than necessary to reap a child, and lose some parallelism; and we might print the "Waiting for unfinished jobs" message above when not necessary. */ if (dead_children > 0) --dead_children; any_remote = 0; any_local = shell_function_pid != 0; lastc = 0; for (c = children; c != 0; lastc = c, c = c->next) { any_remote |= c->remote; any_local |= ! c->remote; /* If pid < 0, this child never even started. Handle it. */ if (c->pid < 0) { exit_sig = 0; coredump = 0; /* According to POSIX, 127 is used for command not found. */ exit_code = 127; goto process_child; } DB (DB_JOBS, (_("Live child %p (%s) PID %s %s\n"), c, c->file->name, pid2str (c->pid), c->remote ? _(" (remote)") : "")); } /* First, check for remote children. */ if (any_remote) pid = remote_status (&exit_code, &exit_sig, &coredump, 0); else pid = 0; if (pid > 0) /* We got a remote child. */ remote = 1; else if (pid < 0) { /* A remote status command failed miserably. Punt. */ remote_status_lose: pfatal_with_name ("remote_status"); } else { /* No remote children. Check for local children. */ if (any_local) { if (!block) pid = WAIT_NOHANG (&status); else EINTRLOOP (pid, wait (&status)); } else pid = 0; if (pid < 0) { /* The wait*() failed miserably. Punt. */ pfatal_with_name ("wait"); } else if (pid > 0) { /* We got a child exit; chop the status word up. */ exit_code = WEXITSTATUS (status); exit_sig = WIFSIGNALED (status) ? WTERMSIG (status) : 0; coredump = WCOREDUMP (status); } else { /* No local children are dead. */ reap_more = 0; if (!block || !any_remote) break; /* Now try a blocking wait for a remote child. */ pid = remote_status (&exit_code, &exit_sig, &coredump, 1); if (pid < 0) goto remote_status_lose; else if (pid == 0) /* No remote children either. Finally give up. */ break; /* We got a remote child. */ remote = 1; } } /* Check if this is the child of the 'shell' function. */ if (!remote && pid == shell_function_pid) { shell_completed (exit_code, exit_sig); break; } /* Search for a child matching the deceased one. */ lastc = 0; for (c = children; c != 0; lastc = c, c = c->next) if (c->pid == pid && c->remote == remote) break; if (c == 0) /* An unknown child died. Ignore it; it was inherited from our invoker. */ continue; DB (DB_JOBS, (exit_sig == 0 && exit_code == 0 ? _("Reaping winning child %p PID %s %s\n") : _("Reaping losing child %p PID %s %s\n"), c, pid2str (c->pid), c->remote ? _(" (remote)") : "")); /* If we have started jobs in this second, remove one. */ if (job_counter) --job_counter; process_child: /* Determine the failure status: 0 for success, 1 for updating target in question mode, 2 for anything else. */ if (exit_sig == 0 && exit_code == 0) child_failed = MAKE_SUCCESS; else if (exit_sig == 0 && exit_code == 1 && question_flag && c->recursive) child_failed = MAKE_TROUBLE; else child_failed = MAKE_FAILURE; if (c->sh_batch_file) { int rm_status; DB (DB_JOBS, (_("Cleaning up temp batch file %s\n"), c->sh_batch_file)); errno = 0; rm_status = remove (c->sh_batch_file); if (rm_status) DB (DB_JOBS, (_("Cleaning up temp batch file %s failed (%d)\n"), c->sh_batch_file, errno)); /* all done with memory */ free (c->sh_batch_file); c->sh_batch_file = NULL; } /* If this child had the good stdin, say it is now free. */ if (c->good_stdin) good_stdin_used = 0; dontcare = c->dontcare; if (child_failed && !c->noerror && !ignore_errors_flag) { /* The commands failed. Write an error message, delete non-precious targets, and abort. */ static int delete_on_error = -1; if (!dontcare && child_failed == MAKE_FAILURE) child_error (c, exit_code, exit_sig, coredump, 0); c->file->update_status = child_failed == MAKE_FAILURE ? us_failed : us_question; if (delete_on_error == -1) { struct file *f = lookup_file (".DELETE_ON_ERROR"); delete_on_error = f != 0 && f->is_target; } if (exit_sig != 0 || delete_on_error) { delete_child_targets (c); delete_tmpdir (c); } else if (c->file->touched && c->file->touched != get_file_timestamp (c->file)) /* If file was created just so it could be sandboxed, then delete that file even if .DELETE_ON_ERROR isn't used, but only if the command hasn't modified it. */ unlink (c->file->name); } else { if (child_failed) { /* The commands failed, but we don't care. */ child_error (c, exit_code, exit_sig, coredump, 1); child_failed = 0; } /* If there are more commands to run, try to start them. */ if (job_next_command (c)) { if (handling_fatal_signal) { /* Never start new commands while we are dying. Since there are more commands that wanted to be run, the target was not completely remade. So we treat this as if a command had failed. */ c->file->update_status = us_failed; } else { #ifndef NO_OUTPUT_SYNC /* If we're sync'ing per line, write the previous line's output before starting the next one. */ if (output_sync == OUTPUT_SYNC_LINE) output_dump (&c->output); #endif /* Check again whether to start remotely. Whether or not we want to changes over time. Also, start_remote_job may need state set up by start_remote_job_p. */ c->remote = start_remote_job_p (0); start_job_command (c); /* Fatal signals are left blocked in case we were about to put that child on the chain. But it is already there, so it is safe for a fatal signal to arrive now; it will clean up this child's targets. */ unblock_sigs (); if (c->file->command_state == cs_running) /* We successfully started the new command. Loop to reap more children. */ continue; } if (c->file->update_status != us_success) { /* We failed to start the commands. */ delete_child_targets (c); delete_tmpdir (c); } } else { /* There are no more commands. We got through them all without an unignored error. Now the target has been successfully updated. */ c->file->update_status = us_success; delete_tmpdir (c); } } /* When we get here, all the commands for c->file are finished. */ #ifndef NO_OUTPUT_SYNC /* Synchronize any remaining parallel output. */ output_dump (&c->output); #endif /* At this point c->file->update_status is success or failed. But c->file->command_state is still cs_running if all the commands ran; notice_finished_file looks for cs_running to tell it that it's interesting to check the file's modtime again now. */ if (! handling_fatal_signal) /* Notice if the target of the commands has been changed. This also propagates its values for command_state and update_status to its also_make files. */ notice_finished_file (c->file); /* Block fatal signals while frobnicating the list, so that children and job_slots_used are always consistent. Otherwise a fatal signal arriving after the child is off the chain and before job_slots_used is decremented would believe a child was live and call reap_children again. */ block_sigs (); if (c->pid > 0) { DB (DB_JOBS, (_("Removing child %p PID %s%s from chain.\n"), c, pid2str (c->pid), c->remote ? _(" (remote)") : "")); } /* There is now another slot open. */ if (job_slots_used > 0) job_slots_used -= c->jobslot; /* Remove the child from the chain and free it. */ if (lastc == 0) children = c->next; else lastc->next = c->next; free_child (c); unblock_sigs (); /* If the job failed, and the -k flag was not given, die, unless we are already in the process of dying. */ if (!err && child_failed && !dontcare && !keep_going_flag && /* fatal_error_signal will die with the right signal. */ !handling_fatal_signal) die (child_failed); /* Only block for one child. */ block = 0; } return; } /* Free the storage allocated for CHILD. */ static void free_child (struct child *child) { output_close (&child->output); if (!jobserver_tokens) ONS (fatal, NILF, "INTERNAL: Freeing child %p (%s) but no tokens left!\n", child, child->file->name); /* If we're using the jobserver and this child is not the only outstanding job, put a token back into the pipe for it. */ if (jobserver_enabled () && jobserver_tokens > 1) { jobserver_release (1); DB (DB_JOBS, (_("Released token for child %p (%s).\n"), child, child->file->name)); } --jobserver_tokens; if (handling_fatal_signal) /* Don't bother free'ing if about to die. */ return; if (child->command_lines != 0) { unsigned int i; for (i = 0; i < child->file->cmds->ncommand_lines; ++i) free (child->command_lines[i]); free (child->command_lines); } if (child->environment != 0) { char **ep = child->environment; while (*ep != 0) free (*ep++); free (child->environment); } free (child->tmpdir); free (child->cmd_name); free (child); } /* Start a job to run the commands specified in CHILD. CHILD is updated to reflect the commands and ID of the child process. NOTE: On return fatal signals are blocked! The caller is responsible for calling 'unblock_sigs', once the new child is safely on the chain so it can be cleaned up in the event of a fatal signal. */ static void start_job_command (struct child *child) { int flags; char *p; # define FREE_ARGV(_a) do{ if (_a) { free ((_a)[0]); free (_a); } }while(0) char **argv; /* If we have a completely empty commandset, stop now. */ if (!child->command_ptr) goto next_command; /* Combine the flags parsed for the line itself with the flags specified globally for this target. */ flags = (child->file->command_flags | child->file->cmds->lines_flags[child->command_line - 1]); p = child->command_ptr; child->noerror = ((flags & COMMANDS_NOERROR) != 0); while (*p != '\0') { if (*p == '@') flags |= COMMANDS_SILENT; else if (*p == '+') flags |= COMMANDS_RECURSE; else if (*p == '-') child->noerror = 1; /* Don't skip newlines. */ else if (!ISBLANK (*p)) break; ++p; } child->recursive = ((flags & COMMANDS_RECURSE) != 0); /* Update the file's command flags with any new ones we found. We only keep the COMMANDS_RECURSE setting. Even this isn't 100% correct; we are now marking more commands recursive than should be in the case of multiline define/endef scripts where only one line is marked "+". In order to really fix this, we'll have to keep a lines_flags for every actual line, after expansion. */ child->file->cmds->lines_flags[child->command_line - 1] |= flags & COMMANDS_RECURSE; /* POSIX requires that a recipe prefix after a backslash-newline should be ignored. Remove it now so the output is correct. */ { char prefix = child->file->cmds->recipe_prefix; char *p1, *p2; p1 = p2 = p; while (*p1 != '\0') { *(p2++) = *p1; if (p1[0] == '\n' && p1[1] == prefix) ++p1; ++p1; } *p2 = *p1; } /* Figure out an argument list from this command line. */ { char *end = 0; argv = construct_command_argv (p, &end, child->file, child->file->cmds->lines_flags[child->command_line - 1], &child->sh_batch_file); if (end == NULL) child->command_ptr = NULL; else { *end++ = '\0'; child->command_ptr = end; } } /* If -q was given, say that updating 'failed' if there was any text on the command line, or 'succeeded' otherwise. The exit status of 1 tells the user that -q is saying 'something to do'; the exit status for a random error is 2. */ if (argv != 0 && question_flag && !(flags & COMMANDS_RECURSE)) { FREE_ARGV (argv); child->file->update_status = us_question; notice_finished_file (child->file); return; } if (touch_flag && !(flags & COMMANDS_RECURSE)) { /* Go on to the next command. It might be the recursive one. We construct ARGV only to find the end of the command line. */ FREE_ARGV (argv); argv = 0; } if (argv == 0) { next_command: /* This line has no commands. Go to the next. */ if (job_next_command (child)) start_job_command (child); else { /* No more commands. Make sure we're "running"; we might not be if (e.g.) all commands were skipped due to -n. */ set_command_state (child->file, cs_running); child->file->update_status = us_success; notice_finished_file (child->file); } OUTPUT_UNSET(); return; } /* Are we going to synchronize this command's output? Do so if either we're in SYNC_RECURSE mode or this command is not recursive. We'll also check output_sync separately below in case it changes due to error. */ child->output.syncout = output_sync && (output_sync == OUTPUT_SYNC_RECURSE || !(flags & COMMANDS_RECURSE)); OUTPUT_SET (&child->output); #ifndef NO_OUTPUT_SYNC if (! child->output.syncout) /* We don't want to sync this command: to avoid misordered output ensure any already-synced content is written. */ output_dump (&child->output); #endif /* Print the command if appropriate. */ if (just_print_flag || trace_flag || (!(flags & COMMANDS_SILENT) && !run_silent)) OS (message, 0, "%s", p); /* Tell update_goal_chain that a command has been started on behalf of this target. It is important that this happens here and not in reap_children (where we used to do it), because reap_children might be reaping children from a different target. We want this increment to guaranteedly indicate that a command was started for the dependency chain (i.e., update_file recursion chain) we are processing. */ ++commands_started; /* Optimize an empty command. People use this for timestamp rules, so avoid forking a useless shell. Do this after we increment commands_started so make still treats this special case as if it performed some action (makes a difference as to what messages are printed, etc. */ if ( (argv[0] && is_bourne_compatible_shell (argv[0])) && (argv[1] && argv[1][0] == '-' && ((argv[1][1] == 'c' && argv[1][2] == '\0') || (argv[1][1] == 'e' && argv[1][2] == 'c' && argv[1][3] == '\0'))) && (argv[2] && argv[2][0] == ':' && argv[2][1] == '\0') && argv[3] == NULL) { FREE_ARGV (argv); goto next_command; } /* If -n was given, recurse to get the next line in the sequence. */ if (just_print_flag && !(flags & COMMANDS_RECURSE)) { FREE_ARGV (argv); goto next_command; } /* We're sure we're going to invoke a command: set up the output. */ output_start (); /* Flush the output streams so they won't have things written twice. */ fflush (stdout); fflush (stderr); /* Decide whether to give this child the 'good' standard input (one that points to the terminal or whatever), or the 'bad' one that points to the read side of a broken pipe. */ child->good_stdin = !good_stdin_used; if (child->good_stdin) good_stdin_used = 1; child->deleted = 0; /* Set up the environment for the child. */ if (child->environment == 0) child->environment = target_environment (child->file); /* start_waiting_job has set CHILD->remote if we can start a remote job. */ if (child->remote) { int is_remote, used_stdin; pid_t id; if (start_remote_job (argv, child->environment, child->good_stdin ? 0 : get_bad_stdin (), &is_remote, &id, &used_stdin)) /* Don't give up; remote execution may fail for various reasons. If so, simply run the job locally. */ goto run_local; else { if (child->good_stdin && !used_stdin) { child->good_stdin = 0; good_stdin_used = 0; } child->remote = is_remote; child->pid = id; } } else { /* Fork the child process. */ char **parent_environ; run_local: block_sigs (); child->remote = 0; parent_environ = environ; jobserver_pre_child (flags & COMMANDS_RECURSE); child->pid = child_execute_job ((struct childbase *)child, child->good_stdin, argv, true); environ = parent_environ; /* Restore value child may have clobbered. */ jobserver_post_child (flags & COMMANDS_RECURSE); } /* Bump the number of jobs started in this second. */ if (child->pid >= 0) ++job_counter; /* Set the state to running. */ set_command_state (child->file, cs_running); /* Free the storage used by the child's argument list. */ FREE_ARGV (argv); OUTPUT_UNSET(); #undef FREE_ARGV } /* Try to start a child running. Returns nonzero if the child was started (and maybe finished), or zero if the load was too high and the child was put on the 'waiting_jobs' chain. */ static int start_waiting_job (struct child *c) { struct file *f = c->file; /* If we can start a job remotely, we always want to, and don't care about the local load average. We record that the job should be started remotely in C->remote for start_job_command to test. */ c->remote = start_remote_job_p (1); /* If we are running at least one job already and the load average is too high, make this one wait. */ if (!c->remote && ((job_slots_used > 0 && load_too_high ()) #ifdef WINDOWS32 || process_table_full () #endif )) { /* Put this child on the chain of children waiting for the load average to go down. */ set_command_state (f, cs_running); c->next = waiting_jobs; waiting_jobs = c; return 0; } /* Start the first command; reap_children will run later command lines. */ start_job_command (c); switch (f->command_state) { case cs_running: c->next = children; if (c->pid > 0) { DB (DB_JOBS, (_("Putting child %p (%s) PID %s%s on the chain.\n"), c, c->file->name, pid2str (c->pid), c->remote ? _(" (remote)") : "")); /* One more job slot is in use. */ ++job_slots_used; assert (c->jobslot == 0); c->jobslot = 1; } children = c; unblock_sigs (); break; case cs_not_started: /* All the command lines turned out to be empty. */ f->update_status = us_success; /* FALLTHROUGH */ case cs_finished: notice_finished_file (f); free_child (c); break; default: assert (f->command_state == cs_finished); break; } return 1; } /* Create a 'struct child' for FILE and start its commands running. */ void new_job (struct file *file) { struct commands *cmds = file->cmds; struct variable *var; struct child *c; unsigned int i; char **lines; /* Let any previously decided-upon jobs that are waiting for the load to go down start before this new one. */ start_waiting_jobs (); /* Reap any children that might have finished recently. */ reap_children (0, 0); /* Chop the commands up into lines if they aren't already. */ chop_commands (cmds); /* Start the command sequence, record it in a new 'struct child', and add that to the chain. */ c = xcalloc (1, sizeof (struct child)); output_init (&c->output); c->file = file; c->sh_batch_file = NULL; /* [jart] manage temporary directories per rule */ if ((c->tmpdir = get_tmpdir (file)) && (c->tmpdir = new_tmpdir (c->tmpdir, file))) { var = define_variable_for_file ("TMPDIR", 6, c->tmpdir, o_override, 0, file); var->export = v_export; } /* Cache dontcare flag because file->dontcare can be changed once we return. Check dontcare inheritance mechanism for details. */ c->dontcare = file->dontcare; /* Start saving output in case the expansion uses $(info ...) etc. */ OUTPUT_SET (&c->output); /* Expand the command lines and store the results in LINES. */ lines = xmalloc (cmds->ncommand_lines * sizeof (char *)); for (i = 0; i < cmds->ncommand_lines; ++i) { /* Collapse backslash-newline combinations that are inside variable or function references. These are left alone by the parser so that they will appear in the echoing of commands (where they look nice); and collapsed by construct_command_argv when it tokenizes. But letting them survive inside function invocations loses because we don't want the functions to see them as part of the text. */ char *in, *out, *ref; /* IN points to where in the line we are scanning. OUT points to where in the line we are writing. When we collapse a backslash-newline combination, IN gets ahead of OUT. */ in = out = cmds->command_lines[i]; while ((ref = strchr (in, '$')) != 0) { ++ref; /* Move past the $. */ if (out != in) /* Copy the text between the end of the last chunk we processed (where IN points) and the new chunk we are about to process (where REF points). */ memmove (out, in, ref - in); /* Move both pointers past the boring stuff. */ out += ref - in; in = ref; if (*ref == '(' || *ref == '{') { char openparen = *ref; char closeparen = openparen == '(' ? ')' : '}'; char *outref; int count; char *p; *out++ = *in++; /* Copy OPENPAREN. */ outref = out; /* IN now points past the opening paren or brace. Count parens or braces until it is matched. */ count = 0; while (*in != '\0') { if (*in == closeparen && --count < 0) break; else if (*in == '\\' && in[1] == '\n') { /* We have found a backslash-newline inside a variable or function reference. Eat it and any following whitespace. */ int quoted = 0; for (p = in - 1; p > ref && *p == '\\'; --p) quoted = !quoted; if (quoted) /* There were two or more backslashes, so this is not really a continuation line. We don't collapse the quoting backslashes here as is done in collapse_continuations, because the line will be collapsed again after expansion. */ *out++ = *in++; else { /* Skip the backslash, newline, and whitespace. */ in += 2; NEXT_TOKEN (in); /* Discard any preceding whitespace that has already been written to the output. */ while (out > outref && ISBLANK (out[-1])) --out; /* Replace it all with a single space. */ *out++ = ' '; } } else { if (*in == openparen) ++count; *out++ = *in++; } } } } /* There are no more references in this line to worry about. Copy the remaining uninteresting text to the output. */ if (out != in) memmove (out, in, strlen (in) + 1); /* Finally, expand the line. */ cmds->fileinfo.offset = i; lines[i] = allocated_variable_expand_for_file (cmds->command_lines[i], file); } cmds->fileinfo.offset = 0; c->command_lines = lines; /* Fetch the first command line to be run. */ job_next_command (c); /* Wait for a job slot to be freed up. If we allow an infinite number don't bother; also job_slots will == 0 if we're using the jobserver. */ if (job_slots != 0) while (job_slots_used == job_slots) reap_children (1, 0); #ifdef MAKE_JOBSERVER /* If we are controlling multiple jobs make sure we have a token before starting the child. */ /* This can be inefficient. There's a decent chance that this job won't actually have to run any subprocesses: the command script may be empty or otherwise optimized away. It would be nice if we could defer obtaining a token until just before we need it, in start_job_command. To do that we'd need to keep track of whether we'd already obtained a token (since start_job_command is called for each line of the job, not just once). Also more thought needs to go into the entire algorithm; this is where the old parallel job code waits, so... */ else if (jobserver_enabled ()) while (1) { int got_token; DB (DB_JOBS, ("Need a job token; we %shave children\n", children ? "" : "don't ")); /* If we don't already have a job started, use our "free" token. */ if (!jobserver_tokens) break; /* Prepare for jobserver token acquisition. */ jobserver_pre_acquire (); /* Reap anything that's currently waiting. */ reap_children (0, 0); /* Kick off any jobs we have waiting for an opportunity that can run now (i.e., waiting for load). */ start_waiting_jobs (); /* If our "free" slot is available, use it; we don't need a token. */ if (!jobserver_tokens) break; /* There must be at least one child already, or we have no business waiting for a token. */ if (!children) O (fatal, NILF, "INTERNAL: no children as we go to sleep on read\n"); /* Get a token. */ got_token = jobserver_acquire (waiting_jobs != NULL); /* If we got one, we're done here. */ if (got_token == 1) { DB (DB_JOBS, (_("Obtained token for child %p (%s).\n"), c, c->file->name)); break; } } #endif ++jobserver_tokens; /* Trace the build. Use message here so that changes to working directories are logged. */ if (trace_flag) { char *newer = allocated_variable_expand_for_file ("$?", c->file); const char *nm; if (! cmds->fileinfo.filenm) nm = _(""); else { char *n = alloca (strlen (cmds->fileinfo.filenm) + 1 + 11 + 1); sprintf (n, "%s:%lu", cmds->fileinfo.filenm, cmds->fileinfo.lineno); nm = n; } if (newer[0] == '\0') OSS (message, 0, _("%s: target '%s' does not exist"), nm, c->file->name); else OSSS (message, 0, _("%s: update target '%s' due to: %s"), nm, c->file->name, newer); free (newer); } /* The job is now primed. Start it running. (This will notice if there is in fact no recipe.) */ start_waiting_job (c); if (job_slots == 1 || not_parallel) /* Since there is only one job slot, make things run linearly. Wait for the child to die, setting the state to 'cs_finished'. */ while (file->command_state == cs_running) reap_children (1, 0); OUTPUT_UNSET (); return; } /* Move CHILD's pointers to the next command for it to execute. Returns nonzero if there is another command. */ static int job_next_command (struct child *child) { while (child->command_ptr == 0 || *child->command_ptr == '\0') { /* There are no more lines in the expansion of this line. */ if (child->command_line == child->file->cmds->ncommand_lines) { /* There are no more lines to be expanded. */ child->command_ptr = 0; child->file->cmds->fileinfo.offset = 0; return 0; } else /* Get the next line to run. */ child->command_ptr = child->command_lines[child->command_line++]; } child->file->cmds->fileinfo.offset = child->command_line - 1; return 1; } /* Determine if the load average on the system is too high to start a new job. On systems which provide /proc/loadavg (e.g., Linux), we use an idea provided by Sven C. Dack : retrieve the current number of processes the kernel is running and, if it's greater than the requested load we don't allow another job to start. We allow a job to start with equal processes since one of those will be for make itself, which will then pause waiting for jobs to clear. Otherwise, we obtain the system load average and compare that. The system load average is only recomputed once every N (N>=1) seconds. However, a very parallel make can easily start tens or even hundreds of jobs in a second, which brings the system to its knees for a while until that first batch of jobs clears out. To avoid this we use a weighted algorithm to try to account for jobs which have been started since the last second, and guess what the load average would be now if it were computed. This algorithm was provided by Thomas Riedl , based on load average being recomputed once per second, which is (apparently) how Solaris operates. Linux recomputes only once every 5 seconds, but Linux is handled by the /proc/loadavg algorithm above. Thomas writes: ! calculate something load-oid and add to the observed sys.load, ! so that latter can catch up: ! - every job started increases jobctr; ! - every dying job decreases a positive jobctr; ! - the jobctr value gets zeroed every change of seconds, ! after its value*weight_b is stored into the 'backlog' value last_sec ! - weight_a times the sum of jobctr and last_sec gets ! added to the observed sys.load. ! ! The two weights have been tried out on 24 and 48 proc. Sun Solaris-9 ! machines, using a several-thousand-jobs-mix of cpp, cc, cxx and smallish ! sub-shelled commands (rm, echo, sed...) for tests. ! lowering the 'direct influence' factor weight_a (e.g. to 0.1) ! resulted in significant excession of the load limit, raising it ! (e.g. to 0.5) took bad to small, fast-executing jobs and didn't ! reach the limit in most test cases. ! ! lowering the 'history influence' weight_b (e.g. to 0.1) resulted in ! exceeding the limit for longer-running stuff (compile jobs in ! the .5 to 1.5 sec. range),raising it (e.g. to 0.5) overrepresented ! small jobs' effects. */ #define LOAD_WEIGHT_A 0.25 #define LOAD_WEIGHT_B 0.25 static int load_too_high (void) { static double last_sec; static time_t last_now; /* This is disabled by default for now, because it will behave badly if the user gives a value > the number of cores; in that situation the load will never be exceeded, this function always returns false, and we'll start all the jobs. Also, it's not quite right to limit jobs to the number of cores not busy since a job takes some time to start etc. Maybe that's OK, I'm not sure exactly how to handle that, but for sure we need to clamp this value at the number of cores before this can be enabled. */ double load, guess; time_t now; if (max_load_average < 0) return 0; /* Find the real system load average. */ make_access (); if (getloadavg (&load, 1) != 1) { static int lossage = -1; /* Complain only once for the same error. */ if (lossage == -1 || errno != lossage) { if (errno == 0) /* An errno value of zero means getloadavg is just unsupported. */ O (error, NILF, _("cannot enforce load limits on this operating system")); else perror_with_name (_("cannot enforce load limit: "), "getloadavg"); } lossage = errno; load = 0; } user_access (); /* If we're in a new second zero the counter and correct the backlog value. Only keep the backlog for one extra second; after that it's 0. */ now = time (NULL); if (last_now < now) { if (last_now == now - 1) last_sec = LOAD_WEIGHT_B * job_counter; else last_sec = 0.0; job_counter = 0; last_now = now; } /* Try to guess what the load would be right now. */ guess = load + (LOAD_WEIGHT_A * (job_counter + last_sec)); DB (DB_JOBS, ("Estimated system load = %f (actual = %f) (max requested = %f)\n", guess, load, max_load_average)); return guess >= max_load_average; } /* Start jobs that are waiting for the load to be lower. */ void start_waiting_jobs (void) { struct child *job; if (waiting_jobs == 0) return; do { /* Check for recently deceased descendants. */ reap_children (0, 0); /* Take a job off the waiting list. */ job = waiting_jobs; waiting_jobs = job->next; /* Try to start that job. We break out of the loop as soon as start_waiting_job puts one back on the waiting list. */ } while (start_waiting_job (job) && waiting_jobs != 0); return; } bool get_perm_prefix (const char *path, char out_perm[5], const char **out_path) { int c, n; for (n = 0;;) switch ((c = *path++)) { case 'r': case 'w': case 'c': case 'x': out_perm[n++] = c; out_perm[n] = 0; break; case ':': if (n) { *out_path = path; return true; } else return false; default: return false; } } /* Adds path to sandbox, returning true if found. */ int Unveil (const char *path, const char *perm) { int e; char *fp[2]; char permprefix[5]; /* if path is like `rwcx:o/tmp` then `rwcx` will override perm */ if (path && get_perm_prefix (path, permprefix, &path)) perm = permprefix; fp[0] = 0; fp[1] = 0; if (path && path[0] == '~' && (fp[1] = tilde_expand ((fp[0] = xstrdup (path))))) path = fp[1]; DB (DB_JOBS, (_("Unveiling %s with permissions %s\n"), path, perm)); e = errno; if (unveil (path, perm) != -1) { free(fp[0]); free(fp[1]); return 0; } /* path not found isn't really much of an error */ if (errno == ENOENT) { free(fp[0]); free(fp[1]); errno = e; return 0; } /* otherwise fail */ OSS (error, NILF, "%s: unveil() failed %s", path, strerror (errno)); free(fp[0]); free(fp[1]); return -1; } int unveil_variable (const struct variable *var) { char *val, *tok, *state, *start; if (!var) return 0; start = val = xstrdup (variable_expand (var->value)); while ((tok = strtok_r (start, " \t\r\n", &state))) { RETURN_ON_ERROR (Unveil (tok, "r")); start = 0; } free(val); return 0; OnError: return -1; } static int get_base_cpu_freq_mhz (void) { return KCPUIDS(16H, EAX) & 0x7fff; } int set_limit (int r, long lo, long hi) { struct rlimit old; struct rlimit lim = {lo, hi}; if (!setrlimit (r, &lim)) return 0; if (getrlimit (r, &old)) return -1; lim.rlim_cur = MIN (lim.rlim_cur, old.rlim_max); lim.rlim_max = MIN (lim.rlim_max, old.rlim_max); return setrlimit (r, &lim); } static int set_cpu_limit (int secs) { int mhz, lim; if (secs <= 0) return 0; if (!(mhz = get_base_cpu_freq_mhz())) return eopnotsupp(); lim = ceil(3100. / mhz * secs); return set_limit (RLIMIT_CPU, lim, lim + 1); } static struct sysinfo g_sysinfo; __attribute__((__constructor__)) static void get_sysinfo (void) { int e = errno; sysinfo (&g_sysinfo); errno = e; } static bool internet; static char *promises; /* POSIX: Create a child process executing the command in ARGV. Returns the PID or -1. */ pid_t child_execute_job (struct childbase *child, int good_stdin, char **argv, bool is_build_rule) { const int fdin = good_stdin ? FD_STDIN : get_bad_stdin (); struct dep *d; bool strict; bool sandboxed; bool unsandboxed; struct child *c; unsigned long ipromises; char pathbuf[PATH_MAX]; char outpathbuf[PATH_MAX]; int fdout = FD_STDOUT; int fderr = FD_STDERR; const char *s; pid_t pid; int e, r; /* Divert child output if we want to capture it. */ if (child->output.syncout) { if (child->output.out >= 0) fdout = child->output.out; if (child->output.err >= 0) fderr = child->output.err; } if (USE_POSIX_SPAWN) { char *cmd; posix_spawnattr_t attr; posix_spawn_file_actions_t fa; short flags = 0; if ((r = posix_spawnattr_init (&attr)) != 0) goto done; if ((r = posix_spawn_file_actions_init (&fa)) != 0) { posix_spawnattr_destroy (&attr); goto done; } // [jart] use setrlimit on posix_spawn // TODO(jart): support landlock make rlimit variables if (stack_limit.rlim_cur && RLIMIT_STACK < RLIM_NLIMITS) { posix_spawnattr_setrlimit (&attr, RLIMIT_STACK, &stack_limit); flags |= POSIX_SPAWN_SETRLIMIT; } /* Unblock all signals. */ #ifdef HAVE_POSIX_SPAWNATTR_SETSIGMASK { sigset_t mask; sigemptyset (&mask); r = posix_spawnattr_setsigmask (&attr, &mask); if (r != 0) goto cleanup; flags |= POSIX_SPAWN_SETSIGMASK; } #endif /* have posix_spawnattr_setsigmask() */ /* USEVFORK can give significant speedup on systems where it's available. */ #ifdef POSIX_SPAWN_USEVFORK flags |= POSIX_SPAWN_USEVFORK; #endif /* For any redirected FD, dup2() it to the standard FD. They are all marked close-on-exec already. */ if (fdin >= 0 && fdin != FD_STDIN) if ((r = posix_spawn_file_actions_adddup2 (&fa, fdin, FD_STDIN)) != 0) goto cleanup; if (fdout != FD_STDOUT) if ((r = posix_spawn_file_actions_adddup2 (&fa, fdout, FD_STDOUT)) != 0) goto cleanup; if (fderr != FD_STDERR) if ((r = posix_spawn_file_actions_adddup2 (&fa, fderr, FD_STDERR)) != 0) goto cleanup; /* We can't use the POSIX_SPAWN_RESETIDS flag: when make is invoked under restrictive environments like unshare it will fail with EINVAL. */ /* Apply the spawn flags. */ if ((r = posix_spawnattr_setflags (&attr, flags)) != 0) goto cleanup; /* Look up the program on the child's PATH, if needed. */ { const char *p = NULL; char **pp; for (pp = child->environment; *pp != NULL; ++pp) if ((*pp)[0] == 'P' && (*pp)[1] == 'A' && (*pp)[2] == 'T' && (*pp)[3] == 'H' &&(*pp)[4] == '=') { p = (*pp) + 5; break; } /* execvp() will use a default PATH if none is set; emulate that. */ if (p == NULL) { size_t l = confstr (_CS_PATH, NULL, 0); if (l) { char *dp = alloca (l); confstr (_CS_PATH, dp, l); p = dp; } } cmd = (char *)find_in_given_path (argv[0], p, NULL, 0); } if (!cmd) { r = errno; goto cleanup; } /* Start the program. */ while ((r = posix_spawn (&pid, cmd, &fa, &attr, argv, child->environment)) == EINTR) ; /* posix_spawn() doesn't provide sh fallback like exec() does; implement it here. POSIX doesn't specify the path to sh so use the default. */ if (r == ENOEXEC) { char **nargv; char **pp; size_t l = 0; for (pp = argv; *pp != NULL; ++pp) ++l; nargv = xmalloc (sizeof (char *) * (l + 3)); nargv[0] = (char *)default_shell; nargv[1] = cmd; memcpy (&nargv[2], &argv[1], sizeof (char *) * l); while ((r = posix_spawn (&pid, nargv[0], &fa, &attr, nargv, child->environment)) == EINTR) ; free (nargv); } if (r == 0) { /* Spawn succeeded but may fail later: remember the command. */ free (child->cmd_name); if (cmd != argv[0]) child->cmd_name = cmd; else child->cmd_name = xstrdup(cmd); } cleanup: posix_spawn_file_actions_destroy (&fa); posix_spawnattr_destroy (&attr); done: if (r != 0) pid = -1; if (pid < 0) OSS (error, NILF, "%s: %s", argv[0], strerror (r)); return pid; } // USE_POSIX_SPAWN pid = fork(); if (pid != 0) return pid; /* We are the child. */ unblock_all_sigs (); /* Reset limits, if necessary. */ if (stack_limit.rlim_cur) setrlimit (RLIMIT_STACK, &stack_limit); /* Tell build rules apart from $(shell foo). */ if (is_build_rule) { c = (struct child *)child; } else { c = 0; } if (c) { strict = parse_bool (get_target_variable (STRING_SIZE_TUPLE (".STRICT"), c->file, "0")); internet = !strict || parse_bool (get_target_variable (STRING_SIZE_TUPLE (".INTERNET"), c->file, "0")); unsandboxed = !strict || parse_bool (get_target_variable (STRING_SIZE_TUPLE (".UNSANDBOXED"), c->file, "0")); } else { strict = false; internet = true; unsandboxed = true; } sandboxed = !unsandboxed; if (sandboxed) { const char *ps; ps = emptytonull (get_target_variable (STRING_SIZE_TUPLE (".PLEDGE"), c ? c->file : 0, 0)); promises = ps ? xstrdup (ps) : 0; if (ParsePromises (promises, &ipromises, 0)) { OSS (error, NILF, "%s: invalid .PLEDGE string: %s", argv[0], strerror (errno)); _Exit (127); } } else { promises = NULL; ipromises = 0; } DB (DB_JOBS, (_("Executing %s for %s%s%s%s\n"), argv[0], c ? c->file->name : "$(shell)", sandboxed ? " with sandboxing" : " without sandboxing", strict ? " in .STRICT mode" : "", internet ? " with internet access" : "")); #ifdef __x86_64__ /* [jart] Set cpu seconds quota. */ if (RLIMIT_CPU < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".CPU"), c ? c->file : 0, 0))) { int secs; secs = atoi (s); if (!set_cpu_limit (secs)) DB (DB_JOBS, (_("Set cpu limit of %d seconds\n"), secs)); else DB (DB_JOBS, (_("Failed to set CPU limit: %s\n"), strerror (errno))); } #endif /* __x86_64__ */ /* [jart] Set virtual memory quota. */ if (RLIMIT_AS < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".MEMORY"), c ? c->file : 0, 0))) { long bytes; char buf[16]; errno = 0; if (!strchr (s, '%')) bytes = sizetol (s, 1024); else bytes = strtod (s, 0) / 100. * g_sysinfo.totalram; if (bytes > 0) { if (!set_limit (RLIMIT_AS, bytes, bytes)) DB (DB_JOBS, (_("Set virtual memory limit of %sb\n"), (sizefmt (buf, bytes, 1024), buf))); else DB (DB_JOBS, (_("Failed to set virtual memory: %s\n"), strerror (errno))); } else if (errno) { OSS (error, NILF, "%s: .MEMORY invalid: %s", argv[0], strerror (errno)); _Exit (127); } } /* [jart] Set resident memory quota. */ if (RLIMIT_RSS < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".RSS"), c ? c->file : 0, 0))) { long bytes; char buf[16]; errno = 0; if (!strchr (s, '%')) bytes = sizetol (s, 1024); else bytes = strtod (s, 0) / 100. * g_sysinfo.totalram; if (bytes > 0) { if (!set_limit (RLIMIT_RSS, bytes, bytes)) DB (DB_JOBS, (_("Set resident memory limit of %sb\n"), (sizefmt (buf, bytes, 1024), buf))); else DB (DB_JOBS, (_("Failed to set resident memory: %s\n"), strerror (errno))); } else if (errno) { OSS (error, NILF, "%s: .RSS invalid: %s", argv[0], strerror (errno)); _Exit (127); } } /* [jart] Set file size limit. */ if (RLIMIT_FSIZE < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".FSIZE"), c ? c->file : 0, 0))) { long bytes; char buf[16]; errno = 0; if ((bytes = sizetol (s, 1000)) > 0) { if (!set_limit (RLIMIT_FSIZE, bytes, bytes * 1.5)) DB (DB_JOBS, (_("Set file size limit of %sb\n"), (sizefmt (buf, bytes, 1000), buf))); else DB (DB_JOBS, (_("Failed to set file size limit: %s\n"), strerror (errno))); } else if (errno) { OSS (error, NILF, "%s: .FSIZE invalid: %s", argv[0], strerror (errno)); _Exit (127); } } /* [jart] Set core dump limit. */ if (RLIMIT_CORE < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".MAXCORE"), c ? c->file : 0, 0))) { long bytes; char buf[16]; errno = 0; if ((bytes = sizetol (s, 1000)) > 0) { if (!set_limit (RLIMIT_CORE, bytes, bytes)) DB (DB_JOBS, (_("Set core dump limit of %sb\n"), (sizefmt (buf, bytes, 1000), buf))); else DB (DB_JOBS, (_("Failed to set core dump limit: %s\n"), strerror (errno))); } else if (errno) { OSS (error, NILF, "%s: .MAXCORE invalid: %s", argv[0], strerror (errno)); _Exit (127); } } /* [jart] Set process limit. */ if (RLIMIT_NPROC < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".NPROC"), c ? c->file : 0, 0))) { int procs; if ((procs = atoi (s)) > 0) { if (!set_limit (RLIMIT_NPROC, procs + g_sysinfo.procs, procs + g_sysinfo.procs)) DB (DB_JOBS, (_("Set process limit to %d + %d preexisting\n"), procs, g_sysinfo.procs)); else DB (DB_JOBS, (_("Failed to set process limit: %s\n"), strerror (errno))); } } /* [jart] Set file descriptor limit. */ if (RLIMIT_NOFILE < RLIM_NLIMITS && (s = get_target_variable (STRING_SIZE_TUPLE (".NOFILE"), c ? c->file : 0, 0))) { int fds; if ((fds = atoi (s)) > 0) { if (!set_limit (RLIMIT_NOFILE, fds, fds)) DB (DB_JOBS, (_("Set file descriptor limit to %d\n"), fds)); else DB (DB_JOBS, (_("Failed to set process limit: %s\n"), strerror (errno))); } } /* [jart] Resolve command into executable path. */ if (!strict || !sandboxed) { if ((s = commandv (argv[0], pathbuf, sizeof (pathbuf)))) argv[0] = (char *)s; else { OSS (error, NILF, "%s: command not found on $PATH: %s", argv[0], strerror (errno)); _Exit (127); } } /* [jart] Sandbox build rule commands based on prerequisites. */ if (c) { errno = 0; if (sandboxed) { /* * permit launching actually portable executables * * we assume launching make.com already did the expensive * work of extracting the ape loader program, via /bin/sh * and we won't need to do that again, since sys_execve() * will pass ape binaries directly to the ape loader, but * only if the ape loader exists on a well-known path. */ e = errno; DB (DB_JOBS, (_("Unveiling %s with permissions %s\n"), "/usr/bin/ape", "rx")); if (unveil ("/usr/bin/ape", "rx") == -1) { char *s, *t; errno = e; if ((s = getenv ("TMPDIR"))) { t = xjoinpaths (s, ".ape"); RETURN_ON_ERROR (Unveil (t, "rx")); free (t); } if ((s = getenv ("HOME"))) { t = xjoinpaths (s, ".ape"); RETURN_ON_ERROR (Unveil (t, "rx")); free (t); } } /* Unveil executable. */ RETURN_ON_ERROR (Unveil (argv[0], "rx")); /* Unveil temporary directory. */ if (c->tmpdir) RETURN_ON_ERROR (Unveil (c->tmpdir, "rwcx")); /* Unveil .PLEDGE = vminfo. */ if (promises && (~ipromises & (1ul << PROMISE_VMINFO))) { RETURN_ON_ERROR (Unveil ("/proc/stat", "r")); RETURN_ON_ERROR (Unveil ("/proc/meminfo", "r")); RETURN_ON_ERROR (Unveil ("/proc/cpuinfo", "r")); RETURN_ON_ERROR (Unveil ("/proc/diskstats", "r")); RETURN_ON_ERROR (Unveil ("/proc/self/maps", "r")); RETURN_ON_ERROR (Unveil ("/sys/devices/system/cpu", "r")); } /* Unveil .PLEDGE = tty. */ if (promises && (~ipromises & (1ul << PROMISE_TTY))) { RETURN_ON_ERROR (Unveil (ttyname(0), "rw")); RETURN_ON_ERROR (Unveil ("/dev/tty", "rw")); RETURN_ON_ERROR (Unveil ("/dev/console", "rw")); RETURN_ON_ERROR (Unveil ("/etc/terminfo", "r")); RETURN_ON_ERROR (Unveil ("/usr/lib/terminfo", "r")); RETURN_ON_ERROR (Unveil ("/usr/share/terminfo", "r")); } /* Unveil .PLEDGE = dns. */ if (promises && (~ipromises & (1ul << PROMISE_DNS))) { RETURN_ON_ERROR (Unveil ("/etc/hosts", "r")); RETURN_ON_ERROR (Unveil ("/etc/hostname", "r")); RETURN_ON_ERROR (Unveil ("/etc/services", "r")); RETURN_ON_ERROR (Unveil ("/etc/protocols", "r")); RETURN_ON_ERROR (Unveil ("/etc/resolv.conf", "r")); } /* Unveil .PLEDGE = inet. */ if (promises && (~ipromises & (1ul << PROMISE_INET))) RETURN_ON_ERROR (Unveil ("/etc/ssl/certs/ca-certificates.crt", "r")); /* Unveil .PLEDGE = rpath. */ if (promises && (~ipromises & (1ul << PROMISE_RPATH))) RETURN_ON_ERROR (Unveil ("/proc/filesystems", "r")); /* * unveils target output file * * landlock operates per inode so it can't whitelist missing * paths. so we create the output file manually, and prevent * creation so that it can't be deleted by the command which * must truncate when writing its output. */ if (!c->file->phony && strlen(c->file->name) < PATH_MAX) { int fd, err; if (c->file->last_mtime == NONEXISTENT_MTIME) { strcpy (outpathbuf, c->file->name); err = errno; if (makedirs (dirname (outpathbuf), 0777) == -1) errno = err; fd = open (c->file->name, O_RDWR | O_CREAT, 0777); if (fd != -1) close (fd); else if (errno == EEXIST) errno = err; else { OSS (error, NILF, "%s: touch target failed %s", c->file->name, strerror (errno)); _Exit (127); } c->file->touched = get_file_timestamp (c->file); } DB (DB_JOBS, (_("Unveiling %s with permissions %s\n"), c->file->name, "rwx")); if (unveil (c->file->name, "rwx") && errno != ENOSYS) { OSS (error, NILF, "%s: unveil target failed %s", c->file->name, strerror (errno)); _Exit (127); } } /* * unveil target prerequisites * * directories get special treatment: * * - libc/nt * shall unveil everything beneath dir * * - libc/nt/ * no sandboxing due to trailing slash * intended to be timestamp check only */ for (d = c->file->deps; d; d = d->next) { size_t n; n = strlen (d->file->name); if (n && d->file->name[n - 1] == '/') continue; RETURN_ON_ERROR (Unveil (d->file->name, "rx")); if (n > 4 && READ32LE(d->file->name + n - 4) == READ32LE(".com")) { char *s = xstrcat (d->file->name, ".dbg"); RETURN_ON_ERROR (Unveil (s, "rx")); free (s); } } /* unveil explicit .UNVEIL entries */ RETURN_ON_ERROR (unveil_variable (lookup_variable (STRING_SIZE_TUPLE (".UNVEIL")))); RETURN_ON_ERROR (unveil_variable (lookup_variable_in_set (STRING_SIZE_TUPLE (".UNVEIL"), c->file->variables->set))); if (c->file->pat_variables) RETURN_ON_ERROR (unveil_variable (lookup_variable_in_set (STRING_SIZE_TUPLE (".UNVEIL"), c->file->pat_variables->set))); /* commit sandbox */ RETURN_ON_ERROR (Unveil (0, 0)); } } /* For any redirected FD, dup2() it to the standard FD. They are all marked close-on-exec already. */ if (fdin >= 0 && fdin != FD_STDIN) EINTRLOOP (r, dup2 (fdin, FD_STDIN)); if (fdout != FD_STDOUT) EINTRLOOP (r, dup2 (fdout, FD_STDOUT)); if (fderr != FD_STDERR) EINTRLOOP (r, dup2 (fderr, FD_STDERR)); /* Run the command. */ exec_command (argv, child->environment); OnError: _Exit (127); } /* Replace the current process with one running the command in ARGV, with environment ENVP. This function does not return. */ void exec_command (char **argv, char **envp) { /* Be the user, permanently. */ child_access (); /* Restrict system calls. */ if (promises) { __pledge_mode = PLEDGE_PENALTY_RETURN_EPERM; DB (DB_JOBS, (_("Pledging %s\n"), promises)); promises = xstrcat (promises, " prot_exec exec"); if (pledge (promises, promises)) { OSS (error, NILF, "pledge(%s) failed: %s", promises, strerror (errno)); _Exit (127); } } /* Run the program. */ environ = envp; execvp (argv[0], argv); if(errno == ENOENT) OSS (error, NILF, "%s: command doesn't exist: %s", argv[0], strerror (errno)); else if(errno == ENOEXEC) { /* The file was not a program. Try it as a shell script. */ const char *shell; char **new_argv; int argc; int i=1; shell = getenv ("SHELL"); if (shell == 0) shell = default_shell; argc = 1; while (argv[argc] != 0) ++argc; new_argv = alloca ((1 + argc + 1) * sizeof (char *)); new_argv[0] = (char *)shell; new_argv[i] = argv[0]; while (argc > 0) { new_argv[i + argc] = argv[argc]; --argc; } execvp (shell, new_argv); OSS (error, NILF, "%s: execvp shell failed: %s", new_argv[0], strerror (errno)); } OSS (error, NILF, "%s: execv failed: %s", argv[0], strerror (errno)); _Exit (127); } /* Figure out the argument list necessary to run LINE as a command. Try to avoid using a shell. This routine handles only ' quoting, and " quoting when no backslash, $ or ' characters are seen in the quotes. Starting quotes may be escaped with a backslash. If any of the characters in sh_chars is seen, or any of the builtin commands listed in sh_cmds is the first word of a line, the shell is used. If RESTP is not NULL, *RESTP is set to point to the first newline in LINE. If *RESTP is NULL, newlines will be ignored. SHELL is the shell to use, or nil to use the default shell. IFS is the value of $IFS, or nil (meaning the default). FLAGS is the value of lines_flags for this command line. It is used in the WINDOWS32 port to check whether + or $(MAKE) were found in this command line, in which case the effect of just_print_flag is overridden. */ static char ** construct_command_argv_internal (char *line, char **restp, const char *shell, const char *shellflags, const char *ifs, int flags, char **batch_filename UNUSED) { static const char *sh_chars = "#;\"*?[]&|<>(){}$`^~!"; static const char *sh_cmds[] = { ".", ":", "alias", "bg", "break", "case", "cd", "command", "continue", "eval", "exec", "exit", "export", "fc", "fg", "for", "getopts", "hash", "if", "jobs", "login", "logout", "read", "readonly", "return", "set", "shift", "test", "times", "trap", "type", "ulimit", "umask", "unalias", "unset", "wait", "while", 0 }; size_t i; char *p; #ifndef NDEBUG char *end; #endif char *ap; const char *cap; const char *cp; int instring, word_has_equals, seen_nonequals, last_argument_was_empty; char **new_argv = 0; char *argstr = 0; if (restp != NULL) *restp = NULL; /* Make sure not to bother processing an empty line but stop at newline. */ while (ISBLANK (*line)) ++line; if (*line == '\0') return 0; if (shellflags == 0) shellflags = posix_pedantic ? "-ec" : "-c"; /* See if it is safe to parse commands internally. */ if (shell == 0) shell = default_shell; /* [jart] remove code that forces slow path if not using /bin/sh */ /* else if (strcmp (shell, default_shell)) */ /* goto slow; */ if (ifs) for (cap = ifs; *cap != '\0'; ++cap) if (*cap != ' ' && *cap != '\t' && *cap != '\n') { // kprintf("slow because whitespace\n"); goto slow; } if (shellflags) if (shellflags[0] != '-' || ((shellflags[1] != 'c' || shellflags[2] != '\0') && (shellflags[1] != 'e' || shellflags[2] != 'c' || shellflags[3] != '\0'))) { // kprintf("slow because shell flags\n"); goto slow; } i = strlen (line) + 1; /* More than 1 arg per character is impossible. */ new_argv = xmalloc (i * sizeof (char *)); /* All the args can fit in a buffer as big as LINE is. */ ap = new_argv[0] = argstr = xmalloc (i); #ifndef NDEBUG end = ap + i; #endif /* I is how many complete arguments have been found. */ i = 0; instring = word_has_equals = seen_nonequals = last_argument_was_empty = 0; for (p = line; *p != '\0'; ++p) { // assert (ap <= end); if (instring) { /* Inside a string, just copy any char except a closing quote or a backslash-newline combination. */ if (*p == instring) { instring = 0; if (ap == new_argv[0] || *(ap-1) == '\0') last_argument_was_empty = 1; } else if (*p == '\\' && p[1] == '\n') { /* Backslash-newline is handled differently depending on what kind of string we're in: inside single-quoted strings you keep them; in double-quoted strings they disappear. For DOS/Windows/OS2, if we don't have a POSIX shell, we keep the pre-POSIX behavior of removing the backslash-newline. */ if (instring == '"' #if defined (__MSDOS__) || defined (__EMX__) || defined (WINDOWS32) || !unixy_shell #endif ) ++p; else { *(ap++) = *(p++); *(ap++) = *p; } } else if (*p == '\n' && restp != NULL) { /* End of the command line. */ *restp = p; goto end_of_line; } /* Backslash, $, and ` are special inside double quotes. If we see any of those, punt. But on MSDOS, if we use COMMAND.COM, double and single quotes have the same effect. */ else if (instring == '"' && strchr ("\\$`", *p) != 0 && unixy_shell) { // kprintf("slow because backslash\n"); goto slow; } else *ap++ = *p; } else if (strchr (sh_chars, *p) != 0) { /* Not inside a string, but it's a special char. */ // kprintf("slow because %#c found in %#s\n", *p, line); goto slow; } else if (one_shell && *p == '\n') { /* In .ONESHELL mode \n is a separator like ; or && */ // kprintf("slow because oneshell thing\n"); goto slow; } else /* Not a special char. */ switch (*p) { case '=': /* Equals is a special character in leading words before the first word with no equals sign in it. This is not the case with sh -k, but we never get here when using nonstandard shell flags. */ if (! seen_nonequals && unixy_shell) { // kprintf("slow because nonequals\n"); goto slow; } word_has_equals = 1; *ap++ = '='; break; case '\\': /* Backslash-newline has special case handling, ref POSIX. We're in the fastpath, so emulate what the shell would do. */ if (p[1] == '\n') { /* Throw out the backslash and newline. */ ++p; /* At the beginning of the argument, skip any whitespace other than newline before the start of the next word. */ if (ap == new_argv[i]) while (ISBLANK (p[1])) ++p; } else if (p[1] != '\0') { /* Copy and skip the following char. */ *ap++ = *++p; } break; case '\'': case '"': instring = *p; break; case '\n': if (restp != NULL) { /* End of the command line. */ *restp = p; goto end_of_line; } else /* Newlines are not special. */ *ap++ = '\n'; break; case ' ': case '\t': /* We have the end of an argument. Terminate the text of the argument. */ *ap++ = '\0'; new_argv[++i] = ap; last_argument_was_empty = 0; /* Update SEEN_NONEQUALS, which tells us if every word heretofore has contained an '='. */ seen_nonequals |= ! word_has_equals; if (word_has_equals && ! seen_nonequals) { /* An '=' in a word before the first word without one is magical. */ // kprintf("slow because word equals\n"); goto slow; } word_has_equals = 0; /* Prepare for the next word. */ /* If this argument is the command name, see if it is a built-in shell command. If so, have the shell handle it. */ if (i == 1) { int j; for (j = 0; sh_cmds[j] != 0; ++j) { if (streq (sh_cmds[j], new_argv[0])) { // kprintf("slow because builtin shell commands\n"); goto slow; } } } /* Skip whitespace chars, but not newlines. */ while (ISBLANK (p[1])) ++p; break; default: *ap++ = *p; break; } } end_of_line: if (instring) { /* Let the shell deal with an unterminated quote. */ // kprintf("slow because unterminated quote\n"); goto slow; } /* Terminate the last argument and the argument list. */ *ap = '\0'; if (new_argv[i][0] != '\0' || last_argument_was_empty) ++i; new_argv[i] = 0; if (i == 1) { int j; for (j = 0; sh_cmds[j] != 0; ++j) if (streq (sh_cmds[j], new_argv[0])) { // kprintf("slow because sh_cmds\n"); goto slow; } } if (new_argv[0] == 0) { /* Line was empty. */ free (argstr); free (new_argv); return 0; } return new_argv; slow:; /* We must use the shell. */ if (new_argv != 0) { /* Free the old argument list we were working on. */ free (argstr); free (new_argv); } { /* SHELL may be a multi-word command. Construct a command line "$(SHELL) $(.SHELLFLAGS) LINE", with all special chars in LINE escaped. Then recurse, expanding this command line to get the final argument list. */ char *new_line; size_t shell_len = strlen (shell); size_t line_len = strlen (line); size_t sflags_len = shellflags ? strlen (shellflags) : 0; /* In .ONESHELL mode we are allowed to throw the entire current recipe string at a single shell and trust that the user has configured the shell and shell flags, and formatted the string, appropriately. */ if (one_shell) { /* If the shell is Bourne compatible, we must remove and ignore interior special chars [@+-] because they're meaningless to the shell itself. If, however, we're in .ONESHELL mode and have changed SHELL to something non-standard, we should leave those alone because they could be part of the script. In this case we must also leave in place any leading [@+-] for the same reason. */ /* Remove and ignore interior prefix chars [@+-] because they're meaningless given a single shell. */ if (is_bourne_compatible_shell (shell)) { const char *f = line; char *t = line; /* Copy the recipe, removing and ignoring interior prefix chars [@+-]: they're meaningless in .ONESHELL mode. */ while (f[0] != '\0') { int esc = 0; /* This is the start of a new recipe line. Skip whitespace and prefix characters but not newlines. */ while (ISBLANK (*f) || *f == '-' || *f == '@' || *f == '+') ++f; /* Copy until we get to the next logical recipe line. */ while (*f != '\0') { *(t++) = *(f++); if (f[-1] == '\\') esc = !esc; else { /* On unescaped newline, we're done with this line. */ if (f[-1] == '\n' && ! esc) break; /* Something else: reset the escape sequence. */ esc = 0; } } } *t = '\0'; } /* Create an argv list for the shell command line. */ { int n = 0; new_argv = xmalloc ((4 + sflags_len/2) * sizeof (char *)); new_argv[n++] = xstrdup (shell); /* Chop up the shellflags (if any) and assign them. */ if (! shellflags) new_argv[n++] = xstrdup (""); else { const char *s = shellflags; char *t; size_t len; while ((t = find_next_token (&s, &len)) != 0) new_argv[n++] = xstrndup (t, len); } /* Set the command to invoke. */ new_argv[n++] = line; new_argv[n++] = NULL; } return new_argv; } new_line = xmalloc ((shell_len*2) + 1 + sflags_len + 1 + (line_len*2) + 1); ap = new_line; /* Copy SHELL, escaping any characters special to the shell. If we don't escape them, construct_command_argv_internal will recursively call itself ad nauseam, or until stack overflow, whichever happens first. */ for (cp = shell; *cp != '\0'; ++cp) { if (strchr (sh_chars, *cp) != 0) *(ap++) = '\\'; *(ap++) = *cp; } *(ap++) = ' '; if (shellflags) memcpy (ap, shellflags, sflags_len); ap += sflags_len; *(ap++) = ' '; #ifdef WINDOWS32 command_ptr = ap; #endif for (p = line; *p != '\0'; ++p) { if (restp != NULL && *p == '\n') { *restp = p; break; } else if (*p == '\\' && p[1] == '\n') { /* POSIX says we keep the backslash-newline. If we don't have a POSIX shell on DOS/Windows/OS2, mimic the pre-POSIX behavior and remove the backslash/newline. */ #if defined (__MSDOS__) || defined (__EMX__) || defined (WINDOWS32) # define PRESERVE_BSNL unixy_shell #else # define PRESERVE_BSNL 1 #endif if (PRESERVE_BSNL) { *(ap++) = '\\'; /* Only non-batch execution needs another backslash, because it will be passed through a recursive invocation of this function. */ if (!batch_mode_shell) *(ap++) = '\\'; *(ap++) = '\n'; } ++p; continue; } /* DOS shells don't know about backslash-escaping. */ if (unixy_shell && !batch_mode_shell && (*p == '\\' || *p == '\'' || *p == '"' || ISSPACE (*p) || strchr (sh_chars, *p) != 0)) *ap++ = '\\'; *ap++ = *p; } if (ap == new_line + shell_len + sflags_len + 2) { /* Line was empty. */ free (new_line); return 0; } *ap = '\0'; #ifdef WINDOWS32 /* Some shells do not work well when invoked as 'sh -c xxx' to run a command line (e.g. Cygnus GNUWIN32 sh.exe on WIN32 systems). In these cases, run commands via a script file. */ if (just_print_flag && !(flags & COMMANDS_RECURSE)) { /* Need to allocate new_argv, although it's unused, because start_job_command will want to free it and its 0'th element. */ new_argv = xmalloc (2 * sizeof (char *)); new_argv[0] = xstrdup (""); new_argv[1] = NULL; } else if ((no_default_sh_exe || batch_mode_shell) && batch_filename) { int temp_fd; FILE* batch = NULL; int id = GetCurrentProcessId (); PATH_VAR (fbuf); /* create a file name */ sprintf (fbuf, "make%d", id); *batch_filename = create_batch_file (fbuf, unixy_shell, &temp_fd); DB (DB_JOBS, (_("Creating temporary batch file %s\n"), *batch_filename)); /* Create a FILE object for the batch file, and write to it the commands to be executed. Put the batch file in TEXT mode. */ _setmode (temp_fd, _O_TEXT); batch = _fdopen (temp_fd, "wt"); if (!unixy_shell) fputs ("@echo off\n", batch); fputs (command_ptr, batch); fputc ('\n', batch); fclose (batch); DB (DB_JOBS, (_("Batch file contents:%s\n\t%s\n"), !unixy_shell ? "\n\t@echo off" : "", command_ptr)); /* create argv */ new_argv = xmalloc (3 * sizeof (char *)); if (unixy_shell) { new_argv[0] = xstrdup (shell); new_argv[1] = *batch_filename; /* only argv[0] gets freed later */ } else { new_argv[0] = xstrdup (*batch_filename); new_argv[1] = NULL; } new_argv[2] = NULL; } else #endif /* WINDOWS32 */ if (unixy_shell) new_argv = construct_command_argv_internal (new_line, 0, 0, 0, 0, flags, 0); else fatal (NILF, CSTRLEN (__FILE__) + INTSTR_LENGTH, _("%s (line %d) Bad shell context (!unixy && !batch_mode_shell)\n"), __FILE__, __LINE__); free (new_line); } return new_argv; } /* Figure out the argument list necessary to run LINE as a command. Try to avoid using a shell. This routine handles only ' quoting, and " quoting when no backslash, $ or ' characters are seen in the quotes. Starting quotes may be escaped with a backslash. If any of the characters in sh_chars is seen, or any of the builtin commands listed in sh_cmds is the first word of a line, the shell is used. If RESTP is not NULL, *RESTP is set to point to the first newline in LINE. If *RESTP is NULL, newlines will be ignored. FILE is the target whose commands these are. It is used for variable expansion for $(SHELL) and $(IFS). */ char ** construct_command_argv (char *line, char **restp, struct file *file, int cmd_flags, char **batch_filename) { char *shell, *ifs, *shellflags; char **argv; { /* Turn off --warn-undefined-variables while we expand SHELL and IFS. */ int save = warn_undefined_variables_flag; warn_undefined_variables_flag = 0; shell = allocated_variable_expand_for_file ("$(SHELL)", file); #ifdef WINDOWS32 /* * Convert to forward slashes so that construct_command_argv_internal() * is not confused. */ if (shell) { char *p = w32ify (shell, 0); strcpy (shell, p); } #endif shellflags = allocated_variable_expand_for_file ("$(.SHELLFLAGS)", file); ifs = allocated_variable_expand_for_file ("$(IFS)", file); warn_undefined_variables_flag = save; } argv = construct_command_argv_internal (line, restp, shell, shellflags, ifs, cmd_flags, batch_filename); free (shell); free (shellflags); free (ifs); return argv; }