/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ GGML │ │ Copyright (c) 2023 Georgi Gerganov │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/ggml/ggjt.v1.q4_2.h" #include "libc/assert.h" #include "libc/macros.internal.h" #include "libc/str/str.h" #include "third_party/aarch64/arm_neon.internal.h" #include "third_party/ggml/fp16.internal.h" #include "third_party/ggml/ggjt.v1.internal.h" #include "third_party/ggml/ggjt.v1.q8_0.h" #include "third_party/intel/immintrin.internal.h" #include "third_party/libcxx/math.h" // clang-format off static_assert(sizeof(block_v1_q4_2) == sizeof(ggml_fp16_t) + V1_QK4_2 / 2, "wrong q4_2 block size/padding"); // reference implementation for deterministic creation of model files void quantize_row_v1_q4_2_reference(const float * restrict x, block_v1_q4_2 * restrict y, int k) { assert(k % V1_QK4_2 == 0); const int nb = k / V1_QK4_2; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max float max = 0.0f; for (int l = 0; l < V1_QK4_2; l++) { const float v = x[i*V1_QK4_2 + l]; if (amax < fabsf(v)) { amax = fabsf(v); max = v; } } const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); for (int l = 0; l < V1_QK4_2; l += 2) { const float v0 = x[i*V1_QK4_2 + l + 0]*id; const float v1 = x[i*V1_QK4_2 + l + 1]*id; const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f)); const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f)); assert(vi0 < 16); assert(vi1 < 16); y[i].qs[l/2] = vi0 | (vi1 << 4); } } } void quantize_row_v1_q4_2(const float * restrict x, void * restrict vy, int k) { assert(k % V1_QK4_2 == 0); block_v1_q4_2 * restrict y = vy; quantize_row_v1_q4_2_reference(x, y, k); } size_t ggml_quantize_v1_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) { assert(k % V1_QK4_2 == 0); const int nb = k / V1_QK4_2; for (int j = 0; j < n; j += k) { block_v1_q4_2 * restrict y = (block_v1_q4_2 *)dst + j/V1_QK4_2; quantize_row_v1_q4_2_reference(src + j, y, k); for (int i = 0; i < nb; i++) { for (int l = 0; l < V1_QK4_2; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0x0F; const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; hist[vi1]++; } } } return (n/V1_QK4_2*sizeof(block_v1_q4_2)); } void dequantize_row_v1_q4_2(const void * restrict vx, float * restrict y, int k) { assert(k % V1_QK4_2 == 0); const int nb = k / V1_QK4_2; const block_v1_q4_2 * restrict x = vx; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < V1_QK4_2; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0x0F; const int8_t vi1 = vi >> 4; const float v0 = (vi0 - 8)*d; const float v1 = (vi1 - 8)*d; y[i*V1_QK4_2 + l + 0] = v0; y[i*V1_QK4_2 + l + 1] = v1; assert(!isnan(y[i*V1_QK4_2 + l + 0])); assert(!isnan(y[i*V1_QK4_2 + l + 1])); } } } void ggml_vec_dot_v1_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / V1_QK8_0; assert(n % V1_QK8_0 == 0); assert(nb % 2 == 0); assert(V1_QK8_0 == 2*V1_QK4_2); const block_v1_q4_2 * restrict x = vx; const block_v1_q8_0 * restrict y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); for (int i = 0; i < nb; i += 2) { const block_v1_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0]; const block_v1_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1]; const block_v1_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0]; const block_v1_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1]; const block_v1_q8_0 * restrict y0 = &y[i + 0]; const block_v1_q8_0 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs)); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // sub 8 const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); // interleave const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); #if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)), vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d); sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)), vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)), vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d); sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)), vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d); #endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; i++) { /* Compute combined scale for the block */ const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d)); const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d)); const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d)); __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs); __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs); __m256i bx = _mm256_set_m128i(bx1, bx0); // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. const __m256i off = _mm256_set1_epi8(8); bx = _mm256_sub_epi8(bx, off); __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(bx, by); /* Multiply q with scale and accumulate */ acc = _mm256_fmadd_ps(d, q, acc); } *s = hsum_float_8(acc); #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { const uint8_t * restrict x0 = x[2*i + 0].qs; const uint8_t * restrict x1 = x[2*i + 1].qs; const int8_t * restrict y0 = y[i].qs; const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); int sumi_0 = 0; int sumi_1 = 0; for (int j = 0; j < V1_QK8_0/4; j++) { const uint8_t v0 = x0[j]; const uint8_t v1 = x1[j]; const int i0_0 = (int8_t) (v0 & 0x0F) - 8; const int i1_0 = (int8_t) (v0 >> 4) - 8; const int i0_1 = (int8_t) (v1 & 0x0F) - 8; const int i1_1 = (int8_t) (v1 >> 4) - 8; const int i2_0 = y0[2*j + 0]; const int i3_0 = y0[2*j + 1]; const int i2_1 = y0[2*(j + V1_QK8_0/4) + 0]; const int i3_1 = y0[2*(j + V1_QK8_0/4) + 1]; sumi_0 += i0_0*i2_0 + i1_0*i3_0; sumi_1 += i0_1*i2_1 + i1_1*i3_1; } sumf += (d0 * y[i].d) * sumi_0; sumf += (d1 * y[i].d) * sumi_1; } *s = sumf; #endif }