/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │ vi: set noet ft=c ts=8 tw=8 fenc=utf-8 :vi │ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/intrin/likely.h" #include "libc/math.h" #include "libc/tinymath/exp2f_data.internal.h" #include "libc/tinymath/internal.h" asm(".ident\t\"\\n\\n\ Double-precision math functions (MIT License)\\n\ Copyright 2018 ARM Limited\""); asm(".include \"libc/disclaimer.inc\""); // clang-format off /* * Single-precision e^x function. * * Copyright (c) 2017-2018, Arm Limited. * SPDX-License-Identifier: MIT */ /* EXP2F_TABLE_BITS = 5 EXP2F_POLY_ORDER = 3 ULP error: 0.502 (nearest rounding.) Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) Wrong count: 170635 (all nearest rounding wrong results with fma.) Non-nearest ULP error: 1 (rounded ULP error) */ #define N (1 << EXP2F_TABLE_BITS) #define InvLn2N __exp2f_data.invln2_scaled #define T __exp2f_data.tab #define C __exp2f_data.poly_scaled static inline uint32_t top12(float x) { return asuint(x) >> 20; } /** * Returns 𝑒^x. */ float expf(float x) { uint32_t abstop; uint64_t ki, t; double_t kd, xd, z, r, r2, y, s; xd = (double_t)x; abstop = top12(x) & 0x7ff; if (UNLIKELY(abstop >= top12(88.0f))) { /* |x| >= 88 or x is nan. */ if (asuint(x) == asuint(-INFINITY)) return 0.0f; if (abstop >= top12(INFINITY)) return x + x; if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */ return __math_oflowf(0); if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */ return __math_uflowf(0); } /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */ z = InvLn2N * xd; /* Round and convert z to int, the result is in [-150*N, 128*N] and ideally ties-to-even rule is used, otherwise the magnitude of r can be bigger which gives larger approximation error. */ #if TOINT_INTRINSICS kd = roundtoint(z); ki = converttoint(z); #else # define SHIFT __exp2f_data.shift kd = eval_as_double(z + SHIFT); ki = asuint64(kd); kd -= SHIFT; #endif r = z - kd; /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ t = T[ki % N]; t += ki << (52 - EXP2F_TABLE_BITS); s = asdouble(t); z = C[0] * r + C[1]; r2 = r * r; y = C[2] * r + 1; y = z * r2 + y; y = y * s; return eval_as_float(y); }