/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Copyright (c) 1992-2024 The FreeBSD Project │ │ Copyright (c) 1993 Sun Microsystems, Inc. │ │ All rights reserved. │ │ │ │ Redistribution and use in source and binary forms, with or without │ │ modification, are permitted provided that the following conditions │ │ are met: │ │ 1. Redistributions of source code must retain the above copyright │ │ notice, this list of conditions and the following disclaimer. │ │ 2. Redistributions in binary form must reproduce the above copyright │ │ notice, this list of conditions and the following disclaimer in the │ │ documentation and/or other materials provided with the distribution. │ │ │ │ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND │ │ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │ │ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE │ │ ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE │ │ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL │ │ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS │ │ OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) │ │ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT │ │ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY │ │ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF │ │ SUCH DAMAGE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/tinymath/freebsd.internal.h" __static_yoink("freebsd_libm_notice"); __static_yoink("fdlibm_notice"); /* s_log1pf.c -- float version of s_log1p.c. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ two25 = 3.355443200e+07, /* 0x4c000000 */ Lp1 = 6.6666668653e-01, /* 3F2AAAAB */ Lp2 = 4.0000000596e-01, /* 3ECCCCCD */ Lp3 = 2.8571429849e-01, /* 3E924925 */ Lp4 = 2.2222198546e-01, /* 3E638E29 */ Lp5 = 1.8183572590e-01, /* 3E3A3325 */ Lp6 = 1.5313838422e-01, /* 3E1CD04F */ Lp7 = 1.4798198640e-01; /* 3E178897 */ static const float zero = 0.0; static volatile float vzero = 0.0; /** * Returns log(1 + x). */ float log1pf(float x) { float hfsq,f,c,s,z,R,u; int32_t k,hx,hu,ax; GET_FLOAT_WORD(hx,x); ax = hx&0x7fffffff; k = 1; if (hx < 0x3ed413d0) { /* 1+x < sqrt(2)+ */ if(ax>=0x3f800000) { /* x <= -1.0 */ if(x==(float)-1.0) return -two25/vzero; /* log1p(-1)=+inf */ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ } if(ax<0x38000000) { /* |x| < 2**-15 */ if(two25+x>zero /* raise inexact */ &&ax<0x33800000) /* |x| < 2**-24 */ return x; else return x - x*x*(float)0.5; } if(hx>0||hx<=((int32_t)0xbe95f619)) { k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ } if (hx >= 0x7f800000) return x+x; if(k!=0) { if(hx<0x5a000000) { STRICT_ASSIGN(float,u,(float)1.0+x); GET_FLOAT_WORD(hu,u); k = (hu>>23)-127; /* correction term */ c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0); c /= u; } else { u = x; GET_FLOAT_WORD(hu,u); k = (hu>>23)-127; c = 0; } hu &= 0x007fffff; /* * The approximation to sqrt(2) used in thresholds is not * critical. However, the ones used above must give less * strict bounds than the one here so that the k==0 case is * never reached from here, since here we have committed to * using the correction term but don't use it if k==0. */ if(hu<0x3504f4) { /* u < sqrt(2) */ SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */ } else { k += 1; SET_FLOAT_WORD(u,hu|0x3f000000); /* normalize u/2 */ hu = (0x00800000-hu)>>2; } f = u-(float)1.0; } hfsq=(float)0.5*f*f; if(hu==0) { /* |f| < 2**-20 */ if(f==zero) { if(k==0) { return zero; } else { c += k*ln2_lo; return k*ln2_hi+c; } } R = hfsq*((float)1.0-(float)0.66666666666666666*f); if(k==0) return f-R; else return k*ln2_hi-((R-(k*ln2_lo+c))-f); } s = f/((float)2.0+f); z = s*s; R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); if(k==0) return f-(hfsq-s*(hfsq+R)); else return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); }