#if 0 /*─────────────────────────────────────────────────────────────────╗ │ To the extent possible under law, Justine Tunney has waived │ │ all copyright and related or neighboring rights to this file, │ │ as it is written in the following disclaimers: │ │ • http://unlicense.org/ │ │ • http://creativecommons.org/publicdomain/zero/1.0/ │ ╚─────────────────────────────────────────────────────────────────*/ #endif #include "libc/assert.h" #include "libc/atomic.h" #include "libc/calls/calls.h" #include "libc/calls/pledge.h" #include "libc/calls/struct/sigaction.h" #include "libc/calls/struct/timespec.h" #include "libc/calls/struct/timeval.h" #include "libc/dce.h" #include "libc/errno.h" #include "libc/fmt/conv.h" #include "libc/fmt/itoa.h" #include "libc/intrin/kprintf.h" #include "libc/log/log.h" #include "libc/macros.internal.h" #include "libc/mem/gc.internal.h" #include "libc/mem/mem.h" #include "libc/runtime/runtime.h" #include "libc/sock/sock.h" #include "libc/sock/struct/sockaddr.h" #include "libc/str/str.h" #include "libc/sysv/consts/af.h" #include "libc/sysv/consts/auxv.h" #include "libc/sysv/consts/sig.h" #include "libc/sysv/consts/so.h" #include "libc/sysv/consts/sock.h" #include "libc/sysv/consts/sol.h" #include "libc/sysv/consts/tcp.h" #include "libc/thread/thread.h" #include "libc/thread/thread2.h" #include "net/http/http.h" #include "third_party/nsync/cv.h" #include "third_party/nsync/mu.h" #include "third_party/nsync/time.h" /** * @fileoverview greenbean lightweight threaded web server no. 2 * * This web server is the same as greenbean.c except it supports having * more than one thread on Windows. To do that we have to make the code * more complicated by not using SO_REUSEPORT. The approach we take, is * creating a single listener thread which adds accepted sockets into a * queue that worker threads consume. This way, if you like Windows you * can easily have a web server with 10,000+ connections. */ #define PORT 8080 #define KEEPALIVE 30000 #define LOGGING 1 #define STANDARD_RESPONSE_HEADERS \ "Server: greenbean/1.o\r\n" \ "Referrer-Policy: origin\r\n" \ "Cache-Control: private; max-age=0\r\n" int server; int threads; pthread_t listener; atomic_int a_termsig; atomic_int a_workers; atomic_int a_messages; atomic_int a_connections; pthread_cond_t statuscond; pthread_mutex_t statuslock; const char *volatile status = ""; struct Clients { int pos; int count; pthread_mutex_t mu; pthread_cond_t non_full; pthread_cond_t non_empty; struct Client { int sock; uint32_t size; struct sockaddr_in addr; } data[100]; } g_clients; ssize_t Write(int fd, const char *s) { return write(fd, s, strlen(s)); } void SomethingHappened(void) { unassert(!pthread_cond_signal(&statuscond)); } void SomethingImportantHappened(void) { unassert(!pthread_mutex_lock(&statuslock)); unassert(!pthread_cond_signal(&statuscond)); unassert(!pthread_mutex_unlock(&statuslock)); } bool AddClient(struct Clients *q, const struct Client *v, struct timespec *deadline) { bool wake = false; bool added = false; pthread_mutex_lock(&q->mu); while (q->count == ARRAYLEN(q->data)) { if (pthread_cond_timedwait(&q->non_full, &q->mu, deadline)) { break; // must be ETIMEDOUT or ECANCELED } } if (q->count != ARRAYLEN(q->data)) { int i = q->pos + q->count; if (ARRAYLEN(q->data) <= i) i -= ARRAYLEN(q->data); memcpy(q->data + i, v, sizeof(*v)); if (!q->count) wake = true; q->count++; added = true; } pthread_mutex_unlock(&q->mu); if (wake) pthread_cond_signal(&q->non_empty); return added; } int GetClient(struct Clients *q, struct Client *out) { int got = 0, len = 1; pthread_mutex_lock(&q->mu); while (!q->count) { errno_t err; unassert(!pthread_setcancelstate(PTHREAD_CANCEL_MASKED, 0)); err = pthread_cond_wait(&q->non_empty, &q->mu); unassert(!pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0)); if (err) { unassert(err == ECANCELED); break; } } while (got < len && q->count) { memcpy(out + got, q->data + q->pos, sizeof(*out)); if (q->count == ARRAYLEN(q->data)) { pthread_cond_broadcast(&q->non_full); } ++got; q->pos++; q->count--; if (q->pos == ARRAYLEN(q->data)) q->pos = 0; } pthread_mutex_unlock(&q->mu); return got; } void *ListenWorker(void *arg) { int yes = 1; pthread_setname_np(pthread_self(), "Listener"); // load balance incoming connections for port 8080 across all threads // hangup on any browser clients that lag for more than a few seconds struct timeval timeo = {KEEPALIVE / 1000, KEEPALIVE % 1000}; struct sockaddr_in addr = {.sin_family = AF_INET, .sin_port = htons(PORT)}; server = socket(AF_INET, SOCK_STREAM, 0); if (server == -1) { kprintf("\r\e[Ksocket() failed %m\n"); SomethingHappened(); return 0; } // we don't bother checking for errors here since OS support for the // advanced features tends to be a bit spotty and harmless to ignore setsockopt(server, SOL_SOCKET, SO_RCVTIMEO, &timeo, sizeof(timeo)); setsockopt(server, SOL_SOCKET, SO_SNDTIMEO, &timeo, sizeof(timeo)); setsockopt(server, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)); setsockopt(server, SOL_TCP, TCP_FASTOPEN, &yes, sizeof(yes)); setsockopt(server, SOL_TCP, TCP_QUICKACK, &yes, sizeof(yes)); errno = 0; // open our ears to incoming connections; so_reuseport makes it // possible for our many threads to bind to the same interface! // otherwise we'd need to create a complex multi-threaded queue if (bind(server, (struct sockaddr *)&addr, sizeof(addr)) == -1) { kprintf("\r\e[Kbind() returned %m\n"); SomethingHappened(); goto CloseServer; } unassert(!listen(server, 1)); while (!a_termsig) { struct Client client; // musl libc and cosmopolitan libc support a posix thread extension // that makes thread cancelation work much better your i/o routines // will just raise ECANCELED, so you can check for cancelation with // normal logic rather than needing to push and pop cleanup handler // functions onto the stack, or worse dealing with async interrupts unassert(!pthread_setcancelstate(PTHREAD_CANCEL_MASKED, 0)); // wait for client connection client.size = sizeof(client.addr); client.sock = accept(server, (struct sockaddr *)&client.addr, &client.size); // turn cancel off, so we don't need to check write() for ecanceled unassert(!pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0)); if (client.sock == -1) { // accept() errors are generally ephemeral or recoverable if (errno == EAGAIN) continue; // SO_RCVTIMEO interval churns if (errno == ECANCELED) continue; // pthread_cancel() was called kprintf("\r\e[Kaccept() returned %m\n"); SomethingHappened(); usleep(10000); errno = 0; continue; } #if LOGGING // log the incoming http message unsigned clientip = ntohl(client.addr.sin_addr.s_addr); kprintf("\r\e[K%6P accepted connection from %hhu.%hhu.%hhu.%hhu:%hu\n", clientip >> 24, clientip >> 16, clientip >> 8, clientip, ntohs(client.addr.sin_port)); SomethingHappened(); #endif ++a_connections; SomethingHappened(); struct timespec deadline = timespec_add(timespec_real(), timespec_frommillis(100)); if (!AddClient(&g_clients, &client, &deadline)) { Write(client.sock, "HTTP/1.1 503 Accept Queue Full\r\n" "Content-Type: text/plain\r\n" "Connection: close\r\n" "\r\n" "Accept Queue Full\n"); close(client.sock); } } CloseServer: SomethingHappened(); close(server); return 0; } void *Worker(void *id) { pthread_setname_np(pthread_self(), "Worker"); // connection loop while (!a_termsig) { struct Client client; int inmsglen, outmsglen; char inbuf[512], outbuf[512], *p, *q; // find a client to serve if (!GetClient(&g_clients, &client)) { continue; // should be due to ecanceled } // message loop ssize_t got, sent; struct HttpMessage msg; do { // parse the incoming http message InitHttpMessage(&msg, kHttpRequest); // wait for http message (non-fragmented required) // we're not terribly concerned when errors happen here unassert(!pthread_setcancelstate(PTHREAD_CANCEL_MASKED, 0)); if ((got = read(client.sock, inbuf, sizeof(inbuf))) <= 0) break; unassert(!pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0)); // check that client message wasn't fragmented into more reads if ((inmsglen = ParseHttpMessage(&msg, inbuf, got)) <= 0) break; ++a_messages; SomethingHappened(); #if LOGGING // log the incoming http message unsigned clientip = ntohl(client.addr.sin_addr.s_addr); kprintf("\r\e[K%6P get some %hhu.%hhu.%hhu.%hhu:%hu %#.*s\n", clientip >> 24, clientip >> 16, clientip >> 8, clientip, ntohs(client.addr.sin_port), msg.uri.b - msg.uri.a, inbuf + msg.uri.a); SomethingHappened(); #endif // display hello world html page for http://127.0.0.1:8080/ struct tm tm; int64_t unixts; struct timespec ts; if (msg.method == kHttpGet && (msg.uri.b - msg.uri.a == 1 && inbuf[msg.uri.a + 0] == '/')) { q = "\r\n" "hello world\r\n" "

hello world

\r\n" "

this is a fun webpage\r\n" "

hosted by greenbean\r\n"; p = stpcpy(outbuf, "HTTP/1.1 200 OK\r\n" STANDARD_RESPONSE_HEADERS "Content-Type: text/html; charset=utf-8\r\n" "Date: "); clock_gettime(0, &ts), unixts = ts.tv_sec; p = FormatHttpDateTime(p, gmtime_r(&unixts, &tm)); p = stpcpy(p, "\r\nContent-Length: "); p = FormatInt32(p, strlen(q)); p = stpcpy(p, "\r\n\r\n"); p = stpcpy(p, q); outmsglen = p - outbuf; sent = write(client.sock, outbuf, outmsglen); } else { // display 404 not found error page for every thing else q = "\r\n" "404 not found\r\n" "

404 not found

\r\n"; p = stpcpy(outbuf, "HTTP/1.1 404 Not Found\r\n" STANDARD_RESPONSE_HEADERS "Content-Type: text/html; charset=utf-8\r\n" "Date: "); clock_gettime(0, &ts), unixts = ts.tv_sec; p = FormatHttpDateTime(p, gmtime_r(&unixts, &tm)); p = stpcpy(p, "\r\nContent-Length: "); p = FormatInt32(p, strlen(q)); p = stpcpy(p, "\r\n\r\n"); p = stpcpy(p, q); outmsglen = p - outbuf; sent = write(client.sock, outbuf, p - outbuf); } // if the client isn't pipelining and write() wrote the full // amount, then since we sent the content length and checked // that the client didn't attach a payload, we are so synced // thus we can safely process more messages } while (got == inmsglen && // sent == outmsglen && // !msg.headers[kHttpContentLength].a && !msg.headers[kHttpTransferEncoding].a && (msg.method == kHttpGet || msg.method == kHttpHead)); DestroyHttpMessage(&msg); kprintf("\r\e[K%6P client disconnected\n"); SomethingHappened(); close(client.sock); --a_connections; SomethingHappened(); } --a_workers; SomethingImportantHappened(); return 0; } void PrintStatus(void) { kprintf("\r\e[K\e[32mgreenbean\e[0m " "workers=%d " "connections=%d " "messages=%d%s ", a_workers, a_connections, a_messages, status); } void OnTerm(int sig) { a_termsig = sig; status = " shutting down..."; SomethingHappened(); } int main(int argc, char *argv[]) { int i; // print cpu registers and backtrace on crash // note that pledge'll makes backtraces worse // you can press ctrl+\ to trigger backtraces // ShowCrashReports(); // listen for ctrl-c, terminal close, and kill struct sigaction sa = {.sa_handler = OnTerm}; unassert(!sigaction(SIGINT, &sa, 0)); unassert(!sigaction(SIGHUP, &sa, 0)); unassert(!sigaction(SIGTERM, &sa, 0)); // print all the ips that 0.0.0.0 would bind // Cosmo's GetHostIps() API is much easier than ioctl(SIOCGIFCONF) uint32_t *hostips; for (hostips = gc(GetHostIps()), i = 0; hostips[i]; ++i) { kprintf("listening on http://%hhu.%hhu.%hhu.%hhu:%hu\n", hostips[i] >> 24, hostips[i] >> 16, hostips[i] >> 8, hostips[i], PORT); } // you can pass the number of threads you want as the first command arg threads = argc > 1 ? atoi(argv[1]) : __get_cpu_count(); if (!(1 <= threads && threads <= 100000)) { kprintf("\r\e[Kerror: invalid number of threads: %d\n", threads); exit(1); } // secure the server // // pledge() and unveil() let us whitelist which system calls and files // the server will be allowed to use. this way if it gets hacked, they // won't be able to do much damage, like compromising the whole server // // pledge violations on openbsd are logged nicely to the system logger // but on linux we need to use a cosmopolitan extension to get details // although doing that slightly weakens the security pledge() provides // // if your operating system doesn't support these security features or // is too old, then pledge() and unveil() don't consider this an error // so it works. if security is critical there's a special call to test // which is npassert(!pledge(0, 0)), and npassert(unveil("", 0) != -1) __pledge_mode = PLEDGE_PENALTY_RETURN_EPERM; // c. greenbean --strace unveil("/dev/null", "rw"); unveil(0, 0); pledge("stdio inet", 0); // initialize our synchronization data structures, which were written // by mike burrows in a library called *nsync we've tailored for libc unassert(!pthread_cond_init(&statuscond, 0)); unassert(!pthread_mutex_init(&statuslock, 0)); unassert(!pthread_mutex_init(&g_clients.mu, 0)); unassert(!pthread_cond_init(&g_clients.non_full, 0)); unassert(!pthread_cond_init(&g_clients.non_empty, 0)); // spawn over 9000 worker threads // // you don't need weird i/o models, or event driven yoyo pattern code // to build a massively scalable server. the secret is to use threads // with tiny stacks. then you can write plain simple imperative code! // // we block signals in our worker threads so we won't need messy code // to spin on eintr. operating systems also deliver signals to random // threads, and we'd have ctrl-c, etc. be handled by the main thread. // // alternatively you can just use signal() instead of sigaction(); it // uses SA_RESTART because all the syscalls the worker currently uses // are documented as @restartable which means no EINTR toil is needed sigset_t block; sigemptyset(&block); sigaddset(&block, SIGINT); sigaddset(&block, SIGHUP); sigaddset(&block, SIGQUIT); pthread_attr_t attr; int pagesz = getauxval(AT_PAGESZ); unassert(!pthread_attr_init(&attr)); unassert(!pthread_attr_setstacksize(&attr, 65536)); unassert(!pthread_attr_setguardsize(&attr, pagesz)); unassert(!pthread_attr_setsigmask_np(&attr, &block)); unassert(!pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0)); unassert(!pthread_create(&listener, &attr, ListenWorker, 0)); pthread_t *th = gc(calloc(threads, sizeof(pthread_t))); for (i = 0; i < threads; ++i) { int rc; ++a_workers; if ((rc = pthread_create(th + i, &attr, Worker, (void *)(intptr_t)i))) { --a_workers; kprintf("\r\e[Kpthread_create failed: %s\n", strerror(rc)); if (rc == EAGAIN) { kprintf("sudo prlimit --pid=$$ --nofile=%d\n", threads * 3); kprintf("sudo prlimit --pid=$$ --nproc=%d\n", threads * 2); } if (!i) exit(1); threads = i; break; } if (!(i % 50)) { PrintStatus(); } } unassert(!pthread_attr_destroy(&attr)); // wait for workers to terminate unassert(!pthread_mutex_lock(&statuslock)); while (!a_termsig) { PrintStatus(); unassert(!pthread_cond_wait(&statuscond, &statuslock)); usleep(10 * 1000); } unassert(!pthread_mutex_unlock(&statuslock)); // cancel all the worker threads so they shut down asap // and it'll wait on active clients to gracefully close // you've never seen a production server close so fast! close(server); pthread_cancel(listener); for (i = 0; i < threads; ++i) { pthread_cancel(th[i]); } // print status in terminal as the shutdown progresses unassert(!pthread_mutex_lock(&statuslock)); while (a_workers) { unassert(!pthread_cond_wait(&statuscond, &statuslock)); PrintStatus(); } unassert(!pthread_mutex_unlock(&statuslock)); // wait for final termination and free thread memory unassert(!pthread_join(listener, 0)); for (i = 0; i < threads; ++i) { unassert(!pthread_join(th[i], 0)); } // clean up terminal line kprintf("\r\e[Kthank you for choosing \e[32mgreenbean\e[0m\n"); // clean up more resources unassert(!pthread_cond_destroy(&statuscond)); unassert(!pthread_mutex_destroy(&statuslock)); unassert(!pthread_mutex_destroy(&g_clients.mu)); unassert(!pthread_cond_destroy(&g_clients.non_full)); unassert(!pthread_cond_destroy(&g_clients.non_empty)); // quality assurance if (IsModeDbg()) { CheckForMemoryLeaks(); } // propagate termination signal signal(a_termsig, SIG_DFL); raise(a_termsig); }