/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Optimized Routines │ │ Copyright (c) 1999-2022, Arm Limited. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/intrin/likely.h" #include "libc/math.h" #include "libc/tinymath/atanf_common.internal.h" #include "libc/tinymath/internal.h" asm(".ident\t\"\\n\\n\ Optimized Routines (MIT License)\\n\ Copyright 2022 ARM Limited\""); asm(".include \"libc/disclaimer.inc\""); // clang-format off #define Pi (0x1.921fb6p+1f) #define PiOver2 (0x1.921fb6p+0f) #define PiOver4 (0x1.921fb6p-1f) #define SignMask (0x80000000) /* We calculate atan2f by P(n/d), where n and d are similar to the input arguments, and P is a polynomial. The polynomial may underflow. POLY_UFLOW_BOUND is the lower bound of the difference in exponents of n and d for which P underflows, and is used to special-case such inputs. */ #define POLY_UFLOW_BOUND 24 static inline int32_t biased_exponent (float f) { uint32_t fi = asuint (f); int32_t ex = (int32_t) ((fi & 0x7f800000) >> 23); if (UNLIKELY (ex == 0)) { /* Subnormal case - we still need to get the exponent right for subnormal numbers as division may take us back inside the normal range. */ return ex - __builtin_clz (fi << 9); } return ex; } /* Fast implementation of scalar atan2f. Largest observed error is 2.88ulps in [99.0, 101.0] x [99.0, 101.0]: atan2f(0x1.9332d8p+6, 0x1.8cb6c4p+6) got 0x1.964646p-1 want 0x1.964640p-1. */ float atan2f (float y, float x) { uint32_t ix = asuint (x); uint32_t iy = asuint (y); uint32_t sign_x = ix & SignMask; uint32_t sign_y = iy & SignMask; uint32_t iax = ix & ~SignMask; uint32_t iay = iy & ~SignMask; /* x or y is NaN. */ if ((iax > 0x7f800000) || (iay > 0x7f800000)) return x + y; /* m = 2 * sign(x) + sign(y). */ uint32_t m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* The following follows glibc ieee754 implementation, except that we do not use +-tiny shifts (non-nearest rounding mode). */ int32_t exp_diff = biased_exponent (x) - biased_exponent (y); /* Special case for (x, y) either on or very close to the x axis. Either y = 0, or y is tiny and x is huge (difference in exponents >= POLY_UFLOW_BOUND). In the second case, we only want to use this special case when x is negative (i.e. quadrants 2 or 3). */ if (UNLIKELY (iay == 0 || (exp_diff >= POLY_UFLOW_BOUND && m >= 2))) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0. */ case 2: return Pi; /* atan(+0,-anything) = pi. */ case 3: return -Pi; /* atan(-0,-anything) =-pi. */ } } /* Special case for (x, y) either on or very close to the y axis. Either x = 0, or x is tiny and y is huge (difference in exponents >= POLY_UFLOW_BOUND). */ if (UNLIKELY (iax == 0 || exp_diff <= -POLY_UFLOW_BOUND)) return sign_y ? -PiOver2 : PiOver2; /* x is INF. */ if (iax == 0x7f800000) { if (iay == 0x7f800000) { switch (m) { case 0: return PiOver4; /* atan(+INF,+INF). */ case 1: return -PiOver4; /* atan(-INF,+INF). */ case 2: return 3.0f * PiOver4; /* atan(+INF,-INF). */ case 3: return -3.0f * PiOver4; /* atan(-INF,-INF). */ } } else { switch (m) { case 0: return 0.0f; /* atan(+...,+INF). */ case 1: return -0.0f; /* atan(-...,+INF). */ case 2: return Pi; /* atan(+...,-INF). */ case 3: return -Pi; /* atan(-...,-INF). */ } } } /* y is INF. */ if (iay == 0x7f800000) return sign_y ? -PiOver2 : PiOver2; uint32_t sign_xy = sign_x ^ sign_y; float ax = asfloat (iax); float ay = asfloat (iay); bool pred_aygtax = (ay > ax); /* Set up z for call to atanf. */ float n = pred_aygtax ? -ax : ay; float d = pred_aygtax ? ay : ax; float z = n / d; float ret; if (UNLIKELY (m < 2 && exp_diff >= POLY_UFLOW_BOUND)) { /* If (x, y) is very close to x axis and x is positive, the polynomial will underflow and evaluate to z. */ ret = z; } else { /* Work out the correct shift. */ float shift = sign_x ? -2.0f : 0.0f; shift = pred_aygtax ? shift + 1.0f : shift; shift *= PiOver2; ret = eval_poly (z, z, shift); } /* Account for the sign of x and y. */ return asfloat (asuint (ret) ^ sign_xy); }