/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:4;coding:utf-8 -*-│ │ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright The Mbed TLS Contributors │ │ │ │ Licensed under the Apache License, Version 2.0 (the "License"); │ │ you may not use this file except in compliance with the License. │ │ You may obtain a copy of the License at │ │ │ │ http://www.apache.org/licenses/LICENSE-2.0 │ │ │ │ Unless required by applicable law or agreed to in writing, software │ │ distributed under the License is distributed on an "AS IS" BASIS, │ │ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │ │ See the License for the specific language governing permissions and │ │ limitations under the License. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/mbedtls/sha256.h" #include "libc/dce.h" #include "libc/macros.h" #include "libc/nexgen32e/nexgen32e.h" #include "libc/nexgen32e/sha.h" #include "libc/nexgen32e/x86feature.h" #include "libc/str/str.h" #include "third_party/mbedtls/common.h" #include "third_party/mbedtls/endian.h" #include "third_party/mbedtls/error.h" #include "third_party/mbedtls/md.h" __static_yoink("mbedtls_notice"); /** * @fileoverview FIPS-180-2 compliant SHA-256 implementation * * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * @see http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #define SHA256_VALIDATE_RET(cond) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA ) #define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE( cond ) #if !defined(MBEDTLS_SHA256_ALT) /** * \brief This function clones the state of a SHA-256 context. * * \param dst The destination context. This must be initialized. * \param src The context to clone. This must be initialized. */ void mbedtls_sha256_clone( mbedtls_sha256_context *dst, const mbedtls_sha256_context *src ) { SHA256_VALIDATE( dst ); SHA256_VALIDATE( src ); *dst = *src; } int mbedtls_sha256_starts_224( mbedtls_sha256_context *ctx ) { SHA256_VALIDATE_RET( ctx ); ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; ctx->is224 = true; return( 0 ); } int mbedtls_sha256_starts_256( mbedtls_sha256_context *ctx ) { SHA256_VALIDATE_RET( ctx ); ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; ctx->is224 = false; return( 0 ); } /** * \brief This function starts a SHA-224 or SHA-256 checksum * calculation. * * \param ctx The context to use. This must be initialized. * \param is224 This determines which function to use. This must be * either \c 0 for SHA-256, or \c 1 for SHA-224. * * \return \c 0 on success. * \return A negative error code on failure. */ int mbedtls_sha256_starts_ret( mbedtls_sha256_context *ctx, int is224 ) { SHA256_VALIDATE_RET( ctx ); SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 ); if( !is224 ) return mbedtls_sha256_starts_256( ctx ); else return mbedtls_sha256_starts_224( ctx ); } #if !defined(MBEDTLS_SHA256_PROCESS_ALT) #define K kSha256 #define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n)) #define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n)))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) #define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define R(t) \ ( \ local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \ S0(local.W[(t) - 15]) + local.W[(t) - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ do \ { \ local.temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \ local.temp2 = S2(a) + F0((a),(b),(c)); \ (d) += local.temp1; (h) = local.temp1 + local.temp2; \ } while( 0 ) /** * \brief This function processes a single data block within * the ongoing SHA-256 computation. This function is for * internal use only. * * \param ctx The SHA-256 context. This must be initialized. * \param data The buffer holding one block of data. This must * be a readable buffer of length \c 64 Bytes. * * \return \c 0 on success. * \return A negative error code on failure. */ int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx, const unsigned char data[64] ) { struct { uint32_t temp1, temp2, W[64]; uint32_t A[8]; } local; unsigned int i; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( (const unsigned char *)data != NULL ); if( X86_HAVE( SHA ) && X86_HAVE( SSE2 ) && X86_HAVE( SSSE3 ) ) { sha256_transform_ni( ctx->state, data, 1 ); return( 0 ); } if( X86_HAVE( BMI2 ) && X86_HAVE( AVX ) && X86_HAVE( AVX2 ) ) { sha256_transform_rorx( ctx->state, data, 1 ); return( 0 ); } for( i = 0; i < 8; i++ ) local.A[i] = ctx->state[i]; #if defined(MBEDTLS_SHA256_SMALLER) for( i = 0; i < 64; i++ ) { if( i < 16 ) GET_UINT32_BE( local.W[i], data, 4 * i ); else R( i ); P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i], K[i] ); local.temp1 = local.A[7]; local.A[7] = local.A[6]; local.A[6] = local.A[5]; local.A[5] = local.A[4]; local.A[4] = local.A[3]; local.A[3] = local.A[2]; local.A[2] = local.A[1]; local.A[1] = local.A[0]; local.A[0] = local.temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for( i = 0; i < 16; i++ ) GET_UINT32_BE( local.W[i], data, 4 * i ); for( i = 0; i < 16; i += 8 ) { P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0] ); P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1] ); P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2] ); P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3] ); P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4] ); P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5] ); P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6] ); P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7] ); } for( i = 16; i < 64; i += 8 ) { P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], R(i+0), K[i+0] ); P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], R(i+1), K[i+1] ); P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], R(i+2), K[i+2] ); P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], R(i+3), K[i+3] ); P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], R(i+4), K[i+4] ); P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], R(i+5), K[i+5] ); P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], R(i+6), K[i+6] ); P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], R(i+7), K[i+7] ); } #endif /* MBEDTLS_SHA256_SMALLER */ for( i = 0; i < 8; i++ ) ctx->state[i] += local.A[i]; /* Zeroise buffers and variables to clear sensitive data from memory. */ mbedtls_platform_zeroize( &local, sizeof( local ) ); return( 0 ); } #endif /* !MBEDTLS_SHA256_PROCESS_ALT */ /** * \brief This function feeds an input buffer into an ongoing * SHA-256 checksum calculation. * * \param ctx The SHA-256 context. This must be initialized * and have a hash operation started. * \param input The buffer holding the data. This must be a readable * buffer of length \p ilen Bytes. * \param ilen The length of the input data in Bytes. * * \return \c 0 on success. * \return A negative error code on failure. */ int mbedtls_sha256_update_ret( mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen ) { int ret = MBEDTLS_ERR_THIS_CORRUPTION; size_t fill; uint32_t left; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( ilen == 0 || input != NULL ); if( ilen == 0 ) return( 0 ); left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < (uint32_t) ilen ) ctx->total[1]++; if( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); input += fill; ilen -= fill; left = 0; } if( ilen >= 64 ) { if( X86_HAVE( SHA ) && X86_HAVE( SSE2 ) && X86_HAVE( SSSE3 ) ) { sha256_transform_ni( ctx->state, input, ilen / 64 ); input += ROUNDDOWN( ilen, 64 ); ilen -= ROUNDDOWN( ilen, 64 ); } else if( X86_HAVE( BMI ) && X86_HAVE( BMI2 ) && X86_HAVE( AVX2 ) ) { sha256_transform_rorx( ctx->state, input, ilen / 64 ); input += ROUNDDOWN( ilen, 64 ); ilen -= ROUNDDOWN( ilen, 64 ); } else { do { if(( ret = mbedtls_internal_sha256_process( ctx, input ) )) return( ret ); input += 64; ilen -= 64; } while( ilen >= 64 ); } } if( ilen > 0 ) memcpy( (void *) (ctx->buffer + left), input, ilen ); return( 0 ); } /** * \brief This function finishes the SHA-256 operation, and writes * the result to the output buffer. * * \param ctx The SHA-256 context. This must be initialized * and have a hash operation started. * \param output The SHA-224 or SHA-256 checksum result. * This must be a writable buffer of length \c 32 Bytes. * * \return \c 0 on success. * \return A negative error code on failure. */ int mbedtls_sha256_finish_ret( mbedtls_sha256_context *ctx, unsigned char output[32] ) { int ret = MBEDTLS_ERR_THIS_CORRUPTION; uint32_t used; uint32_t high, low; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( (unsigned char *)output != NULL ); /* * Add padding: 0x80 then 0x00 until 8 bytes remain for the length */ used = ctx->total[0] & 0x3F; ctx->buffer[used++] = 0x80; if( used <= 56 ) { /* Enough room for padding + length in current block */ mbedtls_platform_zeroize( ctx->buffer + used, 56 - used ); } else { /* We'll need an extra block */ mbedtls_platform_zeroize( ctx->buffer + used, 64 - used ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); mbedtls_platform_zeroize( ctx->buffer, 56 ); } /* * Add message length */ high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32_BE( high, ctx->buffer, 56 ); PUT_UINT32_BE( low, ctx->buffer, 60 ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); /* * Output final state */ PUT_UINT32_BE( ctx->state[0], output, 0 ); PUT_UINT32_BE( ctx->state[1], output, 4 ); PUT_UINT32_BE( ctx->state[2], output, 8 ); PUT_UINT32_BE( ctx->state[3], output, 12 ); PUT_UINT32_BE( ctx->state[4], output, 16 ); PUT_UINT32_BE( ctx->state[5], output, 20 ); PUT_UINT32_BE( ctx->state[6], output, 24 ); if( ctx->is224 == 0 ) PUT_UINT32_BE( ctx->state[7], output, 28 ); return( 0 ); } #endif /* !MBEDTLS_SHA256_ALT */ /** * \brief This function calculates the SHA-224 or SHA-256 * checksum of a buffer. * * The function allocates the context, performs the * calculation, and frees the context. * * The SHA-256 result is calculated as * output = SHA-256(input buffer). * * \param input The buffer holding the data. This must be a readable * buffer of length \p ilen Bytes. * \param ilen The length of the input data in Bytes. * \param output The SHA-224 or SHA-256 checksum result. This must * be a writable buffer of length \c 32 Bytes. * \param is224 Determines which function to use. This must be * either \c 0 for SHA-256, or \c 1 for SHA-224. */ int mbedtls_sha256_ret( const void *input, size_t ilen, unsigned char output[32], int is224 ) { int ret = MBEDTLS_ERR_THIS_CORRUPTION; mbedtls_sha256_context ctx; SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 ); SHA256_VALIDATE_RET( ilen == 0 || input != NULL ); SHA256_VALIDATE_RET( (unsigned char *)output != NULL ); mbedtls_sha256_init( &ctx ); if( ( ret = mbedtls_sha256_starts_ret( &ctx, is224 ) ) != 0 ) goto exit; if( ( ret = mbedtls_sha256_update_ret( &ctx, input, ilen ) ) != 0 ) goto exit; if( ( ret = mbedtls_sha256_finish_ret( &ctx, output ) ) != 0 ) goto exit; exit: mbedtls_sha256_free( &ctx ); return( ret ); } dontinstrument int mbedtls_sha256_ret_224( const void *input, size_t ilen, unsigned char *output ) { return mbedtls_sha256_ret( input, ilen, output, true ); } dontinstrument int mbedtls_sha256_ret_256( const void *input, size_t ilen, unsigned char *output ) { return mbedtls_sha256_ret( input, ilen, output, false ); } const mbedtls_md_info_t mbedtls_sha224_info = { "SHA224", MBEDTLS_MD_SHA224, 28, 64, (void *)mbedtls_sha256_starts_224, (void *)mbedtls_sha256_update_ret, (void *)mbedtls_internal_sha256_process, (void *)mbedtls_sha256_finish_ret, mbedtls_sha256_ret_224, }; const mbedtls_md_info_t mbedtls_sha256_info = { "SHA256", MBEDTLS_MD_SHA256, 32, 64, (void *)mbedtls_sha256_starts_256, (void *)mbedtls_sha256_update_ret, (void *)mbedtls_internal_sha256_process, (void *)mbedtls_sha256_finish_ret, mbedtls_sha256_ret_256, };