/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Optimized Routines │ │ Copyright (c) 1999-2022, Arm Limited. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/math.h" #include "libc/tinymath/hornerf.internal.h" #include "libc/tinymath/internal.h" #include "third_party/libcxx/math.h" asm(".ident\t\"\\n\\n\ Optimized Routines (MIT License)\\n\ Copyright 2022 ARM Limited\""); asm(".include \"libc/disclaimer.inc\""); // clang-format off #define Shift (0x1.8p23f) #define InvLn2 (0x1.715476p+0f) #define Ln2hi (0x1.62e4p-1f) #define Ln2lo (0x1.7f7d1cp-20f) #define AbsMask (0x7fffffff) #define InfLimit \ (0x1.644716p6) /* Smallest value of x for which expm1(x) overflows. */ #define NegLimit \ (-0x1.9bbabcp+6) /* Largest value of x for which expm1(x) rounds to 1. */ #define C(i) __expm1f_poly[i] /* Generated using fpminimax, see tools/expm1f.sollya for details. */ const float __expm1f_poly[] = {0x1.fffffep-2, 0x1.5554aep-3, 0x1.555736p-5, 0x1.12287cp-7, 0x1.6b55a2p-10}; /* Approximation for exp(x) - 1 using polynomial on a reduced interval. The maximum error is 1.51 ULP: expm1f(0x1.8baa96p-2) got 0x1.e2fb9p-2 want 0x1.e2fb94p-2. */ float expm1f (float x) { uint32_t ix = asuint (x); uint32_t ax = ix & AbsMask; /* Tiny: |x| < 0x1p-23. expm1(x) is closely approximated by x. Inf: x == +Inf => expm1(x) = x. */ if (ax <= 0x34000000 || (ix == 0x7f800000)) return x; /* +/-NaN. */ if (ax > 0x7f800000) return __math_invalidf (x); if (x >= InfLimit) return __math_oflowf (0); if (x <= NegLimit || ix == 0xff800000) return -1; /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ float j = fmaf (InvLn2, x, Shift) - Shift; int32_t i = j; float f = fmaf (j, -Ln2hi, x); f = fmaf (j, -Ln2lo, f); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ float p = fmaf (f * f, HORNER_4 (f, C), f); /* Assemble the result, using a slight rearrangement to achieve acceptable accuracy. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^(i - 1). */ float t = ldexpf (0.5f, i); /* expm1(x) ~= 2 * (p * t + (t - 1/2)). */ return 2 * fmaf (p, t, t - 0.5f); }