/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │ │ │ │ Redistribution and use in source and binary forms, with or without │ │ modification, are permitted provided that the following conditions │ │ are met: │ │ │ │ 1. Redistributions of source code must retain the above copyright │ │ notice, this list of conditions and the following disclaimer. │ │ │ │ 2. Redistributions in binary form must reproduce the above copyright │ │ notice, this list of conditions and the following disclaimer in │ │ the documentation and/or other materials provided with the │ │ distribution. │ │ │ │ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │ │ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │ │ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │ │ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │ │ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │ │ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │ │ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │ │ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │ │ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │ │ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │ │ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/python/Modules/_decimal/libmpdec/bits.h" #include "third_party/python/Modules/_decimal/libmpdec/difradix2.h" #include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h" #include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h" #include "third_party/python/Modules/_decimal/libmpdec/sixstep.h" #include "third_party/python/Modules/_decimal/libmpdec/transpose.h" #include "third_party/python/Modules/_decimal/libmpdec/umodarith.h" /* clang-format off */ asm(".ident\t\"\\n\\n\ libmpdec (BSD-2)\\n\ Copyright 2008-2016 Stefan Krah\""); asm(".include \"libc/disclaimer.inc\""); /* Cache Efficient Matrix Fourier Transform for arrays of form 2ⁿ The Six Step Transform ══════════════════════ In libmpdec, the six-step transform is the Matrix Fourier Transform in disguise. It is called six-step transform after a variant that appears in [1]. The algorithm requires that the input array can be viewed as an R×C matrix. Algorithm six-step (forward transform) ────────────────────────────────────── 1a) Transpose the matrix. 1b) Apply a length R FNT to each row. 1c) Transpose the matrix. 2) Multiply each matrix element (addressed by j×C+m) by r**(j×m). 3) Apply a length C FNT to each row. 4) Transpose the matrix. Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix Fourier Transform. For large R, it is faster to transpose twice and do a transform on the rows than to perform a column transpose directly. Algorithm six-step (inverse transform) ────────────────────────────────────── 0) View the matrix as a C×R matrix. 1) Transpose the matrix, producing an R×C matrix. 2) Apply a length C FNT to each row. 3) Multiply each matrix element (addressed by i×C+n) by r**(i×n). 4a) Transpose the matrix. 4b) Apply a length R FNT to each row. 4c) Transpose the matrix. Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier Transform. ── [1] David H. Bailey: FFTs in External or Hierarchical Memory http://crd.lbl.gov/~dhbailey/dhbpapers/ */ /* forward transform with sign = -1 */ int six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { return 0; } /* Length R transform on the rows. */ if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } /* Transpose the matrix. */ if (!transpose_pow2(a, C, R)) { mpd_free(tparams); return 0; } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, -1, modnum); for (i = 1; i < R; i++) { w0 = 1; /* r**(i*0): initial value for k=0 */ w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ wstep = MULMOD(w1, w1); /* r**(2*i) */ for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Length C transform on the rows. */ if (C != R) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } mpd_free(tparams); #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { return 0; } #endif return 1; } /* reverse transform, sign = 1 */ int inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix, producing an R*C matrix. */ if (!transpose_pow2(a, C, R)) { return 0; } #endif /* Length C transform on the rows. */ if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { mpd_free(tparams); return 0; } /* Length R transform on the rows. */ if (R != C) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } mpd_free(tparams); /* Transpose the matrix. */ if (!transpose_pow2(a, C, R)) { return 0; } return 1; }