/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/math.h" asm(".ident\t\"\\n\\n\ Musl libc (MIT License)\\n\ Copyright 2005-2014 Rich Felker, et. al.\""); asm(".include \"libc/disclaimer.inc\""); /* clang-format off */ /** * Returns inverse hyperbolic cosine of 𝑥. * @define acosh(x) = log(x + sqrt(x*x-1)) */ double acosh(double x) { union {double f; uint64_t i;} u = {.f = x}; unsigned e = u.i >> 52 & 0x7ff; /* x < 1 domain error is handled in the called functions */ if (e < 0x3ff + 1) /* |x| < 2, up to 2ulp error in [1,1.125] */ return log1p(x-1 + sqrt((x-1)*(x-1)+2*(x-1))); if (e < 0x3ff + 26) /* |x| < 0x1p26 */ return log(2*x - 1/(x+sqrt(x*x-1))); /* |x| >= 0x1p26 or nan */ return log(x) + 0.693147180559945309417232121458176568; }