/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2020 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/math.h" asm(".ident\t\"\\n\\n\ Musl libc (MIT License)\\n\ Copyright 2005-2014 Rich Felker, et. al.\""); asm(".include \"libc/disclaimer.inc\""); // clang-format off /* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* acos(x) * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ static const double pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ static double R(double z) { double_t p, q; p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))); return p/q; } /** * Returns arc cosine of 𝑥. * * @return value in range [0,M_PI] * @return NAN if 𝑥 ∈ {NAN,+INFINITY,-INFINITY} * @return NAN if 𝑥 ∉ [-1,1] */ double acos(double x) { double z,w,s,c,df; uint32_t hx,lx,ix; union { double f; uint64_t i; } u = {x}; hx = u.i >> 32; ix = hx & 0x7fffffff; /* |x| >= 1 or nan */ if (ix >= 0x3ff00000) { lx = u.i; if (((ix-0x3ff00000) | lx) == 0) { /* acos(1)=0, acos(-1)=pi */ if (hx >> 31) return 2*pio2_hi + 0x1p-120f; return 0; } return 0/(x-x); } /* |x| < 0.5 */ if (ix < 0x3fe00000) { if (ix <= 0x3c600000) /* |x| < 2**-57 */ return pio2_hi + 0x1p-120f; return pio2_hi - (x - (pio2_lo-x*R(x*x))); } /* x < -0.5 */ if (hx >> 31) { z = (1.0+x)*0.5; s = sqrt(z); w = R(z)*s-pio2_lo; return 2*(pio2_hi - (s+w)); } /* x > 0.5 */ z = (1.0-x)*0.5; s = sqrt(z); u.f = s; u.i &= 0xffffffff00000000; df = u.f; c = (z-df*df)/(s+df); w = R(z)*s+c; return 2*(df+w); } #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 __weak_reference(acos, acosl); #endif