/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │ │ │ │ Redistribution and use in source and binary forms, with or without │ │ modification, are permitted provided that the following conditions │ │ are met: │ │ │ │ 1. Redistributions of source code must retain the above copyright │ │ notice, this list of conditions and the following disclaimer. │ │ │ │ 2. Redistributions in binary form must reproduce the above copyright │ │ notice, this list of conditions and the following disclaimer in │ │ the documentation and/or other materials provided with the │ │ distribution. │ │ │ │ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │ │ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │ │ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │ │ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │ │ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │ │ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │ │ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │ │ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │ │ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │ │ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │ │ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/python/Modules/_decimal/libmpdec/bits.h" #include "third_party/python/Modules/_decimal/libmpdec/constants.h" #include "third_party/python/Modules/_decimal/libmpdec/convolute.h" #include "third_party/python/Modules/_decimal/libmpdec/fnt.h" #include "third_party/python/Modules/_decimal/libmpdec/fourstep.h" #include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h" #include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h" #include "third_party/python/Modules/_decimal/libmpdec/sixstep.h" #include "third_party/python/Modules/_decimal/libmpdec/umodarith.h" asm(".ident\t\"\\n\\n\ libmpdec (BSD-2)\\n\ Copyright 2008-2016 Stefan Krah\""); asm(".include \"libc/disclaimer.inc\""); /* Bignum: Fast convolution using the Number Theoretic Transform. Used for the multiplication of very large coefficients. */ /* Convolute the data in c1 and c2. Result is in c1. */ int fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum) { int (*fnt)(mpd_uint_t *, mpd_size_t, int); int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int); mpd_uint_t n_inv, umod; mpd_size_t i; SETMODULUS(modnum); n_inv = POWMOD(n, (umod-2)); if (ispower2(n)) { if (n > SIX_STEP_THRESHOLD) { fnt = six_step_fnt; inv_fnt = inv_six_step_fnt; } else { fnt = std_fnt; inv_fnt = std_inv_fnt; } } else { fnt = four_step_fnt; inv_fnt = inv_four_step_fnt; } if (!fnt(c1, n, modnum)) { return 0; } if (!fnt(c2, n, modnum)) { return 0; } for (i = 0; i < n-1; i += 2) { mpd_uint_t x0 = c1[i]; mpd_uint_t y0 = c2[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t y1 = c2[i+1]; MULMOD2(&x0, y0, &x1, y1); c1[i] = x0; c1[i+1] = x1; } if (!inv_fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-3; i += 4) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t x2 = c1[i+2]; mpd_uint_t x3 = c1[i+3]; MULMOD2C(&x0, &x1, n_inv); MULMOD2C(&x2, &x3, n_inv); c1[i] = x0; c1[i+1] = x1; c1[i+2] = x2; c1[i+3] = x3; } return 1; } /* Autoconvolute the data in c1. Result is in c1. */ int fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum) { int (*fnt)(mpd_uint_t *, mpd_size_t, int); int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int); mpd_uint_t n_inv, umod; mpd_size_t i; SETMODULUS(modnum); n_inv = POWMOD(n, (umod-2)); if (ispower2(n)) { if (n > SIX_STEP_THRESHOLD) { fnt = six_step_fnt; inv_fnt = inv_six_step_fnt; } else { fnt = std_fnt; inv_fnt = std_inv_fnt; } } else { fnt = four_step_fnt; inv_fnt = inv_four_step_fnt; } if (!fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-1; i += 2) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; MULMOD2(&x0, x0, &x1, x1); c1[i] = x0; c1[i+1] = x1; } if (!inv_fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-3; i += 4) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t x2 = c1[i+2]; mpd_uint_t x3 = c1[i+3]; MULMOD2C(&x0, &x1, n_inv); MULMOD2C(&x2, &x3, n_inv); c1[i] = x0; c1[i+1] = x1; c1[i+2] = x2; c1[i+3] = x3; } return 1; }