/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │ │ │ │ Redistribution and use in source and binary forms, with or without │ │ modification, are permitted provided that the following conditions │ │ are met: │ │ │ │ 1. Redistributions of source code must retain the above copyright │ │ notice, this list of conditions and the following disclaimer. │ │ │ │ 2. Redistributions in binary form must reproduce the above copyright │ │ notice, this list of conditions and the following disclaimer in │ │ the documentation and/or other materials provided with the │ │ distribution. │ │ │ │ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │ │ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │ │ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │ │ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │ │ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │ │ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │ │ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │ │ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │ │ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │ │ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │ │ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/python/Modules/_decimal/libmpdec/fourstep.h" #include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h" #include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h" #include "third_party/python/Modules/_decimal/libmpdec/sixstep.h" #include "third_party/python/Modules/_decimal/libmpdec/transpose.h" #include "third_party/python/Modules/_decimal/libmpdec/umodarith.h" /* clang-format off */ asm(".ident\t\"\\n\\n\ libmpdec (BSD-2)\\n\ Copyright 2008-2016 Stefan Krah\""); asm(".include \"libc/disclaimer.inc\""); /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the form 3 * 2**n (See literature/matrix-transform.txt). */ #ifndef PPRO static inline void std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], mpd_uint_t umod) { mpd_uint_t r1, r2; mpd_uint_t w; mpd_uint_t s, tmp; /* k = 0 -> w = 1 */ s = *x1; s = addmod(s, *x2, umod); s = addmod(s, *x3, umod); r1 = s; /* k = 1 */ s = *x1; w = w3table[1]; tmp = MULMOD(*x2, w); s = addmod(s, tmp, umod); w = w3table[2]; tmp = MULMOD(*x3, w); s = addmod(s, tmp, umod); r2 = s; /* k = 2 */ s = *x1; w = w3table[2]; tmp = MULMOD(*x2, w); s = addmod(s, tmp, umod); w = w3table[1]; tmp = MULMOD(*x3, w); s = addmod(s, tmp, umod); *x3 = s; *x2 = r2; *x1 = r1; } #else /* PPRO */ static inline void ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], mpd_uint_t umod, double *dmod, uint32_t dinvmod[3]) { mpd_uint_t r1, r2; mpd_uint_t w; mpd_uint_t s, tmp; /* k = 0 -> w = 1 */ s = *x1; s = addmod(s, *x2, umod); s = addmod(s, *x3, umod); r1 = s; /* k = 1 */ s = *x1; w = w3table[1]; tmp = ppro_mulmod(*x2, w, dmod, dinvmod); s = addmod(s, tmp, umod); w = w3table[2]; tmp = ppro_mulmod(*x3, w, dmod, dinvmod); s = addmod(s, tmp, umod); r2 = s; /* k = 2 */ s = *x1; w = w3table[2]; tmp = ppro_mulmod(*x2, w, dmod, dinvmod); s = addmod(s, tmp, umod); w = w3table[1]; tmp = ppro_mulmod(*x3, w, dmod, dinvmod); s = addmod(s, tmp, umod); *x3 = s; *x2 = r2; *x1 = r1; } #endif /* forward transform, sign = -1; transform length = 3 * 2**n */ int four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { mpd_size_t R = 3; /* number of rows */ mpd_size_t C = n / 3; /* number of columns */ mpd_uint_t w3table[3]; mpd_uint_t kernel, w0, w1, wstep; mpd_uint_t *s, *p0, *p1, *p2; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_size_t i, k; assert(n >= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); /* Length R transform on the columns. */ SETMODULUS(modnum); _mpd_init_w3table(w3table, -1, modnum); for (p0=a, p1=p0+C, p2=p0+2*C; p0= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix, producing an R*C matrix. */ transpose_3xpow2(a, C, R); #endif /* Length C transform on the rows. */ for (s = a; s < a+n; s += C) { if (!inv_six_step_fnt(s, C, modnum)) { return 0; } } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Length R transform on the columns. */ _mpd_init_w3table(w3table, 1, modnum); for (p0=a, p1=p0+C, p2=p0+2*C; p0