mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-07 06:53:33 +00:00
669 lines
24 KiB
C++
669 lines
24 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Copyright (c) Microsoft Corporation.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Copyright 2018 Ulf Adams
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
|
|
// Boost Software License - Version 1.0 - August 17th, 2003
|
|
|
|
// Permission is hereby granted, free of charge, to any person or organization
|
|
// obtaining a copy of the software and accompanying documentation covered by
|
|
// this license (the "Software") to use, reproduce, display, distribute,
|
|
// execute, and transmit the Software, and to prepare derivative works of the
|
|
// Software, and to permit third-parties to whom the Software is furnished to
|
|
// do so, all subject to the following:
|
|
|
|
// The copyright notices in the Software and this entire statement, including
|
|
// the above license grant, this restriction and the following disclaimer,
|
|
// must be included in all copies of the Software, in whole or in part, and
|
|
// all derivative works of the Software, unless such copies or derivative
|
|
// works are solely in the form of machine-executable object code generated by
|
|
// a source language processor.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
// Avoid formatting to keep the changes with the original code minimal.
|
|
// clang-format off
|
|
|
|
#include <__assert>
|
|
#include <__config>
|
|
#include <charconv>
|
|
#include <cstring>
|
|
|
|
#include "third_party/libcxx/ryu/common.h"
|
|
#include "third_party/libcxx/ryu/d2fixed.h"
|
|
#include "third_party/libcxx/ryu/d2fixed_full_table.h"
|
|
#include "third_party/libcxx/ryu/d2s.h"
|
|
#include "third_party/libcxx/ryu/d2s_intrinsics.h"
|
|
#include "third_party/libcxx/ryu/digit_table.h"
|
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
|
|
|
inline constexpr int __POW10_ADDITIONAL_BITS = 120;
|
|
|
|
#ifdef _LIBCPP_INTRINSIC128
|
|
// Returns the low 64 bits of the high 128 bits of the 256-bit product of a and b.
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __umul256_hi128_lo64(
|
|
const uint64_t __aHi, const uint64_t __aLo, const uint64_t __bHi, const uint64_t __bLo) {
|
|
uint64_t __b00Hi;
|
|
const uint64_t __b00Lo = __ryu_umul128(__aLo, __bLo, &__b00Hi);
|
|
uint64_t __b01Hi;
|
|
const uint64_t __b01Lo = __ryu_umul128(__aLo, __bHi, &__b01Hi);
|
|
uint64_t __b10Hi;
|
|
const uint64_t __b10Lo = __ryu_umul128(__aHi, __bLo, &__b10Hi);
|
|
uint64_t __b11Hi;
|
|
const uint64_t __b11Lo = __ryu_umul128(__aHi, __bHi, &__b11Hi);
|
|
(void) __b00Lo; // unused
|
|
(void) __b11Hi; // unused
|
|
const uint64_t __temp1Lo = __b10Lo + __b00Hi;
|
|
const uint64_t __temp1Hi = __b10Hi + (__temp1Lo < __b10Lo);
|
|
const uint64_t __temp2Lo = __b01Lo + __temp1Lo;
|
|
const uint64_t __temp2Hi = __b01Hi + (__temp2Lo < __b01Lo);
|
|
return __b11Lo + __temp1Hi + __temp2Hi;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __uint128_mod1e9(const uint64_t __vHi, const uint64_t __vLo) {
|
|
// After multiplying, we're going to shift right by 29, then truncate to uint32_t.
|
|
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
|
|
const uint64_t __multiplied = __umul256_hi128_lo64(__vHi, __vLo, 0x89705F4136B4A597u, 0x31680A88F8953031u);
|
|
|
|
// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
|
|
const uint32_t __shifted = static_cast<uint32_t>(__multiplied >> 29);
|
|
|
|
return static_cast<uint32_t>(__vLo) - 1000000000 * __shifted;
|
|
}
|
|
#endif // ^^^ intrinsics available ^^^
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift_mod1e9(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
|
|
uint64_t __high0; // 64
|
|
const uint64_t __low0 = __ryu_umul128(__m, __mul[0], &__high0); // 0
|
|
uint64_t __high1; // 128
|
|
const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
|
|
uint64_t __high2; // 192
|
|
const uint64_t __low2 = __ryu_umul128(__m, __mul[2], &__high2); // 128
|
|
const uint64_t __s0low = __low0; // 0
|
|
(void) __s0low; // unused
|
|
const uint64_t __s0high = __low1 + __high0; // 64
|
|
const uint32_t __c1 = __s0high < __low1;
|
|
const uint64_t __s1low = __low2 + __high1 + __c1; // 128
|
|
const uint32_t __c2 = __s1low < __low2; // __high1 + __c1 can't overflow, so compare against __low2
|
|
const uint64_t __s1high = __high2 + __c2; // 192
|
|
_LIBCPP_ASSERT_INTERNAL(__j >= 128, "");
|
|
_LIBCPP_ASSERT_INTERNAL(__j <= 180, "");
|
|
#ifdef _LIBCPP_INTRINSIC128
|
|
const uint32_t __dist = static_cast<uint32_t>(__j - 128); // __dist: [0, 52]
|
|
const uint64_t __shiftedhigh = __s1high >> __dist;
|
|
const uint64_t __shiftedlow = __ryu_shiftright128(__s1low, __s1high, __dist);
|
|
return __uint128_mod1e9(__shiftedhigh, __shiftedlow);
|
|
#else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
|
|
if (__j < 160) { // __j: [128, 160)
|
|
const uint64_t __r0 = __mod1e9(__s1high);
|
|
const uint64_t __r1 = __mod1e9((__r0 << 32) | (__s1low >> 32));
|
|
const uint64_t __r2 = ((__r1 << 32) | (__s1low & 0xffffffff));
|
|
return __mod1e9(__r2 >> (__j - 128));
|
|
} else { // __j: [160, 192)
|
|
const uint64_t __r0 = __mod1e9(__s1high);
|
|
const uint64_t __r1 = ((__r0 << 32) | (__s1low >> 32));
|
|
return __mod1e9(__r1 >> (__j - 160));
|
|
}
|
|
#endif // ^^^ intrinsics unavailable ^^^
|
|
}
|
|
|
|
void __append_n_digits(const uint32_t __olength, uint32_t __digits, char* const __result) {
|
|
uint32_t __i = 0;
|
|
while (__digits >= 10000) {
|
|
#ifdef __clang__ // TRANSITION, LLVM-38217
|
|
const uint32_t __c = __digits - 10000 * (__digits / 10000);
|
|
#else
|
|
const uint32_t __c = __digits % 10000;
|
|
#endif
|
|
__digits /= 10000;
|
|
const uint32_t __c0 = (__c % 100) << 1;
|
|
const uint32_t __c1 = (__c / 100) << 1;
|
|
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c0, 2);
|
|
std::memcpy(__result + __olength - __i - 4, __DIGIT_TABLE + __c1, 2);
|
|
__i += 4;
|
|
}
|
|
if (__digits >= 100) {
|
|
const uint32_t __c = (__digits % 100) << 1;
|
|
__digits /= 100;
|
|
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c, 2);
|
|
__i += 2;
|
|
}
|
|
if (__digits >= 10) {
|
|
const uint32_t __c = __digits << 1;
|
|
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c, 2);
|
|
} else {
|
|
__result[0] = static_cast<char>('0' + __digits);
|
|
}
|
|
}
|
|
|
|
_LIBCPP_HIDE_FROM_ABI inline void __append_d_digits(const uint32_t __olength, uint32_t __digits, char* const __result) {
|
|
uint32_t __i = 0;
|
|
while (__digits >= 10000) {
|
|
#ifdef __clang__ // TRANSITION, LLVM-38217
|
|
const uint32_t __c = __digits - 10000 * (__digits / 10000);
|
|
#else
|
|
const uint32_t __c = __digits % 10000;
|
|
#endif
|
|
__digits /= 10000;
|
|
const uint32_t __c0 = (__c % 100) << 1;
|
|
const uint32_t __c1 = (__c / 100) << 1;
|
|
std::memcpy(__result + __olength + 1 - __i - 2, __DIGIT_TABLE + __c0, 2);
|
|
std::memcpy(__result + __olength + 1 - __i - 4, __DIGIT_TABLE + __c1, 2);
|
|
__i += 4;
|
|
}
|
|
if (__digits >= 100) {
|
|
const uint32_t __c = (__digits % 100) << 1;
|
|
__digits /= 100;
|
|
std::memcpy(__result + __olength + 1 - __i - 2, __DIGIT_TABLE + __c, 2);
|
|
__i += 2;
|
|
}
|
|
if (__digits >= 10) {
|
|
const uint32_t __c = __digits << 1;
|
|
__result[2] = __DIGIT_TABLE[__c + 1];
|
|
__result[1] = '.';
|
|
__result[0] = __DIGIT_TABLE[__c];
|
|
} else {
|
|
__result[1] = '.';
|
|
__result[0] = static_cast<char>('0' + __digits);
|
|
}
|
|
}
|
|
|
|
_LIBCPP_HIDE_FROM_ABI inline void __append_c_digits(const uint32_t __count, uint32_t __digits, char* const __result) {
|
|
uint32_t __i = 0;
|
|
for (; __i < __count - 1; __i += 2) {
|
|
const uint32_t __c = (__digits % 100) << 1;
|
|
__digits /= 100;
|
|
std::memcpy(__result + __count - __i - 2, __DIGIT_TABLE + __c, 2);
|
|
}
|
|
if (__i < __count) {
|
|
const char __c = static_cast<char>('0' + (__digits % 10));
|
|
__result[__count - __i - 1] = __c;
|
|
}
|
|
}
|
|
|
|
void __append_nine_digits(uint32_t __digits, char* const __result) {
|
|
if (__digits == 0) {
|
|
std::memset(__result, '0', 9);
|
|
return;
|
|
}
|
|
|
|
for (uint32_t __i = 0; __i < 5; __i += 4) {
|
|
#ifdef __clang__ // TRANSITION, LLVM-38217
|
|
const uint32_t __c = __digits - 10000 * (__digits / 10000);
|
|
#else
|
|
const uint32_t __c = __digits % 10000;
|
|
#endif
|
|
__digits /= 10000;
|
|
const uint32_t __c0 = (__c % 100) << 1;
|
|
const uint32_t __c1 = (__c / 100) << 1;
|
|
std::memcpy(__result + 7 - __i, __DIGIT_TABLE + __c0, 2);
|
|
std::memcpy(__result + 5 - __i, __DIGIT_TABLE + __c1, 2);
|
|
}
|
|
__result[0] = static_cast<char>('0' + __digits);
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __indexForExponent(const uint32_t __e) {
|
|
return (__e + 15) / 16;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow10BitsForIndex(const uint32_t __idx) {
|
|
return 16 * __idx + __POW10_ADDITIONAL_BITS;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __lengthForIndex(const uint32_t __idx) {
|
|
// +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9
|
|
return (__log10Pow2(16 * static_cast<int32_t>(__idx)) + 1 + 16 + 8) / 9;
|
|
}
|
|
|
|
[[nodiscard]] to_chars_result __d2fixed_buffered_n(char* _First, char* const _Last, const double __d,
|
|
const uint32_t __precision) {
|
|
char* const _Original_first = _First;
|
|
|
|
const uint64_t __bits = __double_to_bits(__d);
|
|
|
|
// Case distinction; exit early for the easy cases.
|
|
if (__bits == 0) {
|
|
const int32_t _Total_zero_length = 1 // leading zero
|
|
+ static_cast<int32_t>(__precision != 0) // possible decimal point
|
|
+ static_cast<int32_t>(__precision); // zeroes after decimal point
|
|
|
|
if (_Last - _First < _Total_zero_length) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
|
|
*_First++ = '0';
|
|
if (__precision > 0) {
|
|
*_First++ = '.';
|
|
std::memset(_First, '0', __precision);
|
|
_First += __precision;
|
|
}
|
|
return { _First, errc{} };
|
|
}
|
|
|
|
// Decode __bits into mantissa and exponent.
|
|
const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
|
|
const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
|
|
|
|
int32_t __e2;
|
|
uint64_t __m2;
|
|
if (__ieeeExponent == 0) {
|
|
__e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
|
|
__m2 = __ieeeMantissa;
|
|
} else {
|
|
__e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
|
|
__m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
|
|
}
|
|
|
|
bool __nonzero = false;
|
|
if (__e2 >= -52) {
|
|
const uint32_t __idx = __e2 < 0 ? 0 : __indexForExponent(static_cast<uint32_t>(__e2));
|
|
const uint32_t __p10bits = __pow10BitsForIndex(__idx);
|
|
const int32_t __len = static_cast<int32_t>(__lengthForIndex(__idx));
|
|
for (int32_t __i = __len - 1; __i >= 0; --__i) {
|
|
const uint32_t __j = __p10bits - __e2;
|
|
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
|
|
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
|
|
const uint32_t __digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT[__POW10_OFFSET[__idx] + __i],
|
|
static_cast<int32_t>(__j + 8));
|
|
if (__nonzero) {
|
|
if (_Last - _First < 9) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_nine_digits(__digits, _First);
|
|
_First += 9;
|
|
} else if (__digits != 0) {
|
|
const uint32_t __olength = __decimalLength9(__digits);
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__olength)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_n_digits(__olength, __digits, _First);
|
|
_First += __olength;
|
|
__nonzero = true;
|
|
}
|
|
}
|
|
}
|
|
if (!__nonzero) {
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = '0';
|
|
}
|
|
if (__precision > 0) {
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = '.';
|
|
}
|
|
if (__e2 < 0) {
|
|
const int32_t __idx = -__e2 / 16;
|
|
const uint32_t __blocks = __precision / 9 + 1;
|
|
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
|
|
int __roundUp = 0;
|
|
uint32_t __i = 0;
|
|
if (__blocks <= __MIN_BLOCK_2[__idx]) {
|
|
__i = __blocks;
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__precision)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
std::memset(_First, '0', __precision);
|
|
_First += __precision;
|
|
} else if (__i < __MIN_BLOCK_2[__idx]) {
|
|
__i = __MIN_BLOCK_2[__idx];
|
|
if (_Last - _First < static_cast<ptrdiff_t>(9 * __i)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
std::memset(_First, '0', 9 * __i);
|
|
_First += 9 * __i;
|
|
}
|
|
for (; __i < __blocks; ++__i) {
|
|
const int32_t __j = __ADDITIONAL_BITS_2 + (-__e2 - 16 * __idx);
|
|
const uint32_t __p = __POW10_OFFSET_2[__idx] + __i - __MIN_BLOCK_2[__idx];
|
|
if (__p >= __POW10_OFFSET_2[__idx + 1]) {
|
|
// If the remaining digits are all 0, then we might as well use memset.
|
|
// No rounding required in this case.
|
|
const uint32_t __fill = __precision - 9 * __i;
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__fill)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
std::memset(_First, '0', __fill);
|
|
_First += __fill;
|
|
break;
|
|
}
|
|
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
|
|
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
|
|
uint32_t __digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT_2[__p], __j + 8);
|
|
if (__i < __blocks - 1) {
|
|
if (_Last - _First < 9) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_nine_digits(__digits, _First);
|
|
_First += 9;
|
|
} else {
|
|
const uint32_t __maximum = __precision - 9 * __i;
|
|
uint32_t __lastDigit = 0;
|
|
for (uint32_t __k = 0; __k < 9 - __maximum; ++__k) {
|
|
__lastDigit = __digits % 10;
|
|
__digits /= 10;
|
|
}
|
|
if (__lastDigit != 5) {
|
|
__roundUp = __lastDigit > 5;
|
|
} else {
|
|
// Is m * 10^(additionalDigits + 1) / 2^(-__e2) integer?
|
|
const int32_t __requiredTwos = -__e2 - static_cast<int32_t>(__precision) - 1;
|
|
const bool __trailingZeros = __requiredTwos <= 0
|
|
|| (__requiredTwos < 60 && __multipleOfPowerOf2(__m2, static_cast<uint32_t>(__requiredTwos)));
|
|
__roundUp = __trailingZeros ? 2 : 1;
|
|
}
|
|
if (__maximum > 0) {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__maximum)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_c_digits(__maximum, __digits, _First);
|
|
_First += __maximum;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (__roundUp != 0) {
|
|
char* _Round = _First;
|
|
char* _Dot = _Last;
|
|
while (true) {
|
|
if (_Round == _Original_first) {
|
|
_Round[0] = '1';
|
|
if (_Dot != _Last) {
|
|
_Dot[0] = '0';
|
|
_Dot[1] = '.';
|
|
}
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = '0';
|
|
break;
|
|
}
|
|
--_Round;
|
|
const char __c = _Round[0];
|
|
if (__c == '.') {
|
|
_Dot = _Round;
|
|
} else if (__c == '9') {
|
|
_Round[0] = '0';
|
|
__roundUp = 1;
|
|
} else {
|
|
if (__roundUp == 1 || __c % 2 != 0) {
|
|
_Round[0] = __c + 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__precision)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
std::memset(_First, '0', __precision);
|
|
_First += __precision;
|
|
}
|
|
return { _First, errc{} };
|
|
}
|
|
|
|
[[nodiscard]] to_chars_result __d2exp_buffered_n(char* _First, char* const _Last, const double __d,
|
|
uint32_t __precision) {
|
|
char* const _Original_first = _First;
|
|
|
|
const uint64_t __bits = __double_to_bits(__d);
|
|
|
|
// Case distinction; exit early for the easy cases.
|
|
if (__bits == 0) {
|
|
const int32_t _Total_zero_length = 1 // leading zero
|
|
+ static_cast<int32_t>(__precision != 0) // possible decimal point
|
|
+ static_cast<int32_t>(__precision) // zeroes after decimal point
|
|
+ 4; // "e+00"
|
|
if (_Last - _First < _Total_zero_length) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = '0';
|
|
if (__precision > 0) {
|
|
*_First++ = '.';
|
|
std::memset(_First, '0', __precision);
|
|
_First += __precision;
|
|
}
|
|
std::memcpy(_First, "e+00", 4);
|
|
_First += 4;
|
|
return { _First, errc{} };
|
|
}
|
|
|
|
// Decode __bits into mantissa and exponent.
|
|
const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
|
|
const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
|
|
|
|
int32_t __e2;
|
|
uint64_t __m2;
|
|
if (__ieeeExponent == 0) {
|
|
__e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
|
|
__m2 = __ieeeMantissa;
|
|
} else {
|
|
__e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
|
|
__m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
|
|
}
|
|
|
|
const bool __printDecimalPoint = __precision > 0;
|
|
++__precision;
|
|
uint32_t __digits = 0;
|
|
uint32_t __printedDigits = 0;
|
|
uint32_t __availableDigits = 0;
|
|
int32_t __exp = 0;
|
|
if (__e2 >= -52) {
|
|
const uint32_t __idx = __e2 < 0 ? 0 : __indexForExponent(static_cast<uint32_t>(__e2));
|
|
const uint32_t __p10bits = __pow10BitsForIndex(__idx);
|
|
const int32_t __len = static_cast<int32_t>(__lengthForIndex(__idx));
|
|
for (int32_t __i = __len - 1; __i >= 0; --__i) {
|
|
const uint32_t __j = __p10bits - __e2;
|
|
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
|
|
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
|
|
__digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT[__POW10_OFFSET[__idx] + __i],
|
|
static_cast<int32_t>(__j + 8));
|
|
if (__printedDigits != 0) {
|
|
if (__printedDigits + 9 > __precision) {
|
|
__availableDigits = 9;
|
|
break;
|
|
}
|
|
if (_Last - _First < 9) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_nine_digits(__digits, _First);
|
|
_First += 9;
|
|
__printedDigits += 9;
|
|
} else if (__digits != 0) {
|
|
__availableDigits = __decimalLength9(__digits);
|
|
__exp = __i * 9 + static_cast<int32_t>(__availableDigits) - 1;
|
|
if (__availableDigits > __precision) {
|
|
break;
|
|
}
|
|
if (__printDecimalPoint) {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__availableDigits + 1)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_d_digits(__availableDigits, __digits, _First);
|
|
_First += __availableDigits + 1; // +1 for decimal point
|
|
} else {
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = static_cast<char>('0' + __digits);
|
|
}
|
|
__printedDigits = __availableDigits;
|
|
__availableDigits = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (__e2 < 0 && __availableDigits == 0) {
|
|
const int32_t __idx = -__e2 / 16;
|
|
for (int32_t __i = __MIN_BLOCK_2[__idx]; __i < 200; ++__i) {
|
|
const int32_t __j = __ADDITIONAL_BITS_2 + (-__e2 - 16 * __idx);
|
|
const uint32_t __p = __POW10_OFFSET_2[__idx] + static_cast<uint32_t>(__i) - __MIN_BLOCK_2[__idx];
|
|
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
|
|
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
|
|
__digits = (__p >= __POW10_OFFSET_2[__idx + 1]) ? 0 : __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT_2[__p], __j + 8);
|
|
if (__printedDigits != 0) {
|
|
if (__printedDigits + 9 > __precision) {
|
|
__availableDigits = 9;
|
|
break;
|
|
}
|
|
if (_Last - _First < 9) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_nine_digits(__digits, _First);
|
|
_First += 9;
|
|
__printedDigits += 9;
|
|
} else if (__digits != 0) {
|
|
__availableDigits = __decimalLength9(__digits);
|
|
__exp = -(__i + 1) * 9 + static_cast<int32_t>(__availableDigits) - 1;
|
|
if (__availableDigits > __precision) {
|
|
break;
|
|
}
|
|
if (__printDecimalPoint) {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__availableDigits + 1)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_d_digits(__availableDigits, __digits, _First);
|
|
_First += __availableDigits + 1; // +1 for decimal point
|
|
} else {
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = static_cast<char>('0' + __digits);
|
|
}
|
|
__printedDigits = __availableDigits;
|
|
__availableDigits = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint32_t __maximum = __precision - __printedDigits;
|
|
if (__availableDigits == 0) {
|
|
__digits = 0;
|
|
}
|
|
uint32_t __lastDigit = 0;
|
|
if (__availableDigits > __maximum) {
|
|
for (uint32_t __k = 0; __k < __availableDigits - __maximum; ++__k) {
|
|
__lastDigit = __digits % 10;
|
|
__digits /= 10;
|
|
}
|
|
}
|
|
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
|
|
int __roundUp = 0;
|
|
if (__lastDigit != 5) {
|
|
__roundUp = __lastDigit > 5;
|
|
} else {
|
|
// Is m * 2^__e2 * 10^(__precision + 1 - __exp) integer?
|
|
// __precision was already increased by 1, so we don't need to write + 1 here.
|
|
const int32_t __rexp = static_cast<int32_t>(__precision) - __exp;
|
|
const int32_t __requiredTwos = -__e2 - __rexp;
|
|
bool __trailingZeros = __requiredTwos <= 0
|
|
|| (__requiredTwos < 60 && __multipleOfPowerOf2(__m2, static_cast<uint32_t>(__requiredTwos)));
|
|
if (__rexp < 0) {
|
|
const int32_t __requiredFives = -__rexp;
|
|
__trailingZeros = __trailingZeros && __multipleOfPowerOf5(__m2, static_cast<uint32_t>(__requiredFives));
|
|
}
|
|
__roundUp = __trailingZeros ? 2 : 1;
|
|
}
|
|
if (__printedDigits != 0) {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__maximum)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
if (__digits == 0) {
|
|
std::memset(_First, '0', __maximum);
|
|
} else {
|
|
__append_c_digits(__maximum, __digits, _First);
|
|
}
|
|
_First += __maximum;
|
|
} else {
|
|
if (__printDecimalPoint) {
|
|
if (_Last - _First < static_cast<ptrdiff_t>(__maximum + 1)) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
__append_d_digits(__maximum, __digits, _First);
|
|
_First += __maximum + 1; // +1 for decimal point
|
|
} else {
|
|
if (_First == _Last) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
*_First++ = static_cast<char>('0' + __digits);
|
|
}
|
|
}
|
|
if (__roundUp != 0) {
|
|
char* _Round = _First;
|
|
while (true) {
|
|
if (_Round == _Original_first) {
|
|
_Round[0] = '1';
|
|
++__exp;
|
|
break;
|
|
}
|
|
--_Round;
|
|
const char __c = _Round[0];
|
|
if (__c == '.') {
|
|
// Keep going.
|
|
} else if (__c == '9') {
|
|
_Round[0] = '0';
|
|
__roundUp = 1;
|
|
} else {
|
|
if (__roundUp == 1 || __c % 2 != 0) {
|
|
_Round[0] = __c + 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
char _Sign_character;
|
|
|
|
if (__exp < 0) {
|
|
_Sign_character = '-';
|
|
__exp = -__exp;
|
|
} else {
|
|
_Sign_character = '+';
|
|
}
|
|
|
|
const int _Exponent_part_length = __exp >= 100
|
|
? 5 // "e+NNN"
|
|
: 4; // "e+NN"
|
|
|
|
if (_Last - _First < _Exponent_part_length) {
|
|
return { _Last, errc::value_too_large };
|
|
}
|
|
|
|
*_First++ = 'e';
|
|
*_First++ = _Sign_character;
|
|
|
|
if (__exp >= 100) {
|
|
const int32_t __c = __exp % 10;
|
|
std::memcpy(_First, __DIGIT_TABLE + 2 * (__exp / 10), 2);
|
|
_First[2] = static_cast<char>('0' + __c);
|
|
_First += 3;
|
|
} else {
|
|
std::memcpy(_First, __DIGIT_TABLE + 2 * __exp, 2);
|
|
_First += 2;
|
|
}
|
|
|
|
return { _First, errc{} };
|
|
}
|
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
// clang-format on
|