cosmopolitan/third_party/python/Python/pytime.c
Justine Tunney b0df6c1fce
Implement proper time zone support
Cosmopolitan now supports 104 time zones. They're embedded inside any
binary that links the localtime() function. Doing so adds about 100kb
to the binary size. This change also gets time zones working properly
on Windows for the first time. It's not needed to have /etc/localtime
exist on Windows, since we can get this information from WIN32. We're
also now updated to the latest version of Paul Eggert's TZ library.
2024-05-04 23:06:37 -07:00

884 lines
23 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│ vi: set et ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Python 3 │
│ https://docs.python.org/3/license.html │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/python/Include/pytime.h"
#include "libc/calls/weirdtypes.h"
#include "libc/math.h"
#include "libc/nt/synchronization.h"
#include "libc/sysv/consts/clock.h"
#include "libc/time.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymath.h"
#define _PyTime_check_mul_overflow(a, b) \
(assert(b > 0), \
(_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
|| _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))
/* To millisecond (10^-3) */
#define SEC_TO_MS 1000
/* To microseconds (10^-6) */
#define MS_TO_US 1000
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)
/* To nanoseconds (10^-9) */
#define US_TO_NS 1000
#define MS_TO_NS (MS_TO_US * US_TO_NS)
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
/* Conversion from nanoseconds */
#define NS_TO_MS (1000 * 1000)
#define NS_TO_US (1000)
typedef int clockid_t;
static void
error_time_t_overflow(void)
{
PyErr_SetString(PyExc_OverflowError,
"timestamp out of range for platform time_t");
}
_PyTime_t
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
{
_PyTime_t intpart, remaining;
/* Compute (ticks * mul / div) in two parts to prevent integer overflow:
compute integer part, and then the remaining part.
(ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
The caller must ensure that "(div - 1) * mul" cannot overflow. */
intpart = ticks / div;
ticks %= div;
remaining = ticks * mul;
remaining /= div;
return intpart * mul + remaining;
}
time_t
_PyLong_AsTime_t(PyObject *obj)
{
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
long long val;
val = PyLong_AsLongLong(obj);
#else
long val;
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
val = PyLong_AsLong(obj);
#endif
if (val == -1 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_OverflowError))
error_time_t_overflow();
return -1;
}
return (time_t)val;
}
PyObject *
_PyLong_FromTime_t(time_t t)
{
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
return PyLong_FromLongLong((long long)t);
#else
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
return PyLong_FromLong((long)t);
#endif
}
/* Round to nearest with ties going to nearest even integer
(_PyTime_ROUND_HALF_EVEN) */
static double
_PyTime_RoundHalfEven(double x)
{
double rounded = round(x);
if (fabs(x-rounded) == 0.5)
/* halfway case: round to even */
rounded = 2.0*round(x/2.0);
return rounded;
}
static double
_PyTime_Round(double x, _PyTime_round_t round)
{
/* volatile avoids optimization changing how numbers are rounded */
volatile double d;
d = x;
if (round == _PyTime_ROUND_HALF_EVEN){
d = _PyTime_RoundHalfEven(d);
}
else if (round == _PyTime_ROUND_CEILING){
d = ceil(d);
}
else if (round == _PyTime_ROUND_FLOOR) {
d = floor(d);
}
else {
assert(round == _PyTime_ROUND_UP);
d = (d >= 0.0) ? ceil(d) : floor(d);
}
return d;
}
static int
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
double denominator, _PyTime_round_t round)
{
double intpart;
/* volatile avoids optimization changing how numbers are rounded */
volatile double floatpart;
floatpart = modf(d, &intpart);
floatpart *= denominator;
floatpart = _PyTime_Round(floatpart, round);
if (floatpart >= denominator) {
floatpart -= denominator;
intpart += 1.0;
}
else if (floatpart < 0) {
floatpart += denominator;
intpart -= 1.0;
}
assert(0.0 <= floatpart && floatpart < denominator);
if (!_Py_InIntegralTypeRange(time_t, intpart)) {
error_time_t_overflow();
return -1;
}
*sec = (time_t)intpart;
*numerator = (long)floatpart;
return 0;
}
static int
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
double denominator, _PyTime_round_t round)
{
assert(denominator <= (double)LONG_MAX);
if (PyFloat_Check(obj)) {
double d = PyFloat_AsDouble(obj);
if (Py_IS_NAN(d)) {
*numerator = 0;
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
return -1;
}
return _PyTime_DoubleToDenominator(d, sec, numerator,
denominator, round);
}
else {
*sec = _PyLong_AsTime_t(obj);
*numerator = 0;
if (*sec == (time_t)-1 && PyErr_Occurred())
return -1;
return 0;
}
}
int
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
{
if (PyFloat_Check(obj)) {
double intpart;
/* volatile avoids optimization changing how numbers are rounded */
volatile double d;
d = PyFloat_AsDouble(obj);
if (Py_IS_NAN(d)) {
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
return -1;
}
d = _PyTime_Round(d, round);
(void)modf(d, &intpart);
if (!_Py_InIntegralTypeRange(time_t, intpart)) {
error_time_t_overflow();
return -1;
}
*sec = (time_t)intpart;
return 0;
}
else {
*sec = _PyLong_AsTime_t(obj);
if (*sec == (time_t)-1 && PyErr_Occurred())
return -1;
return 0;
}
}
int
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
_PyTime_round_t round)
{
int res;
res = _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round);
if (res == 0) {
assert(0 <= *nsec && *nsec < SEC_TO_NS);
}
return res;
}
int
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
_PyTime_round_t round)
{
int res;
res = _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round);
if (res == 0) {
assert(0 <= *usec && *usec < SEC_TO_US);
}
return res;
}
static void
_PyTime_overflow(void)
{
PyErr_SetString(PyExc_OverflowError,
"timestamp too large to convert to C _PyTime_t");
}
_PyTime_t
_PyTime_FromSeconds(int seconds)
{
_PyTime_t t;
t = (_PyTime_t)seconds;
/* ensure that integer overflow cannot happen, int type should have 32
bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
bits). */
Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
|| (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
t *= SEC_TO_NS;
return t;
}
_PyTime_t
_PyTime_FromNanoseconds(long long ns)
{
_PyTime_t t;
Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
t = Py_SAFE_DOWNCAST(ns, long long, _PyTime_t);
return t;
}
static int
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise)
{
int res = 0;
_PyTime_t t;
Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
t = (_PyTime_t)ts->tv_sec;
if (__builtin_mul_overflow(t, SEC_TO_NS, &t)) {
if (raise)
_PyTime_overflow();
res = -1;
}
t += ts->tv_nsec;
*tp = t;
return res;
}
int
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
{
return pytime_fromtimespec(tp, ts, 1);
}
int
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise)
{
_PyTime_t t;
int res = 0;
Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
t = (_PyTime_t)tv->tv_sec;
if (__builtin_mul_overflow(t, SEC_TO_NS, &t)) {
if (raise)
_PyTime_overflow();
res = -1;
}
t += (_PyTime_t)tv->tv_usec * US_TO_NS;
*tp = t;
return res;
}
int
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
{
return pytime_fromtimeval(tp, tv, 1);
}
static int
_PyTime_FromFloatObject(_PyTime_t *t, double value, _PyTime_round_t round,
long unit_to_ns)
{
/* volatile avoids optimization changing how numbers are rounded */
volatile double d;
/* convert to a number of nanoseconds */
d = value;
d *= (double)unit_to_ns;
d = _PyTime_Round(d, round);
if (!_Py_InIntegralTypeRange(_PyTime_t, d)) {
_PyTime_overflow();
return -1;
}
*t = (_PyTime_t)d;
return 0;
}
static int
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
long unit_to_ns)
{
if (PyFloat_Check(obj)) {
double d;
d = PyFloat_AsDouble(obj);
if (Py_IS_NAN(d)) {
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
return -1;
}
return _PyTime_FromFloatObject(t, d, round, unit_to_ns);
}
else {
long long sec;
Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
sec = PyLong_AsLongLong(obj);
if (sec == -1 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_OverflowError))
_PyTime_overflow();
return -1;
}
if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
_PyTime_overflow();
return -1;
}
*t = sec * unit_to_ns;
return 0;
}
}
int
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
}
int
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
return _PyTime_FromObject(t, obj, round, MS_TO_NS);
}
double
_PyTime_AsSecondsDouble(_PyTime_t t)
{
/* volatile avoids optimization changing how numbers are rounded */
volatile double d;
if (t % SEC_TO_NS == 0) {
_PyTime_t secs;
/* Divide using integers to avoid rounding issues on the integer part.
1e-9 cannot be stored exactly in IEEE 64-bit. */
secs = t / SEC_TO_NS;
d = (double)secs;
}
else {
d = (double)t;
d /= 1e9;
}
return d;
}
PyObject *
_PyTime_AsNanosecondsObject(_PyTime_t t)
{
Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
return PyLong_FromLongLong((long long)t);
}
static _PyTime_t
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
const _PyTime_round_t round)
{
assert(k > 1);
if (round == _PyTime_ROUND_HALF_EVEN) {
_PyTime_t x, r, abs_r;
x = t / k;
r = t % k;
abs_r = Py_ABS(r);
if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
if (t >= 0)
x++;
else
x--;
}
return x;
}
else if (round == _PyTime_ROUND_CEILING) {
if (t >= 0){
return (t + k - 1) / k;
}
else{
return t / k;
}
}
else if (round == _PyTime_ROUND_FLOOR){
if (t >= 0) {
return t / k;
}
else{
return (t - (k - 1)) / k;
}
}
else {
assert(round == _PyTime_ROUND_UP);
if (t >= 0) {
return (t + k - 1) / k;
}
else {
return (t - (k - 1)) / k;
}
}
}
_PyTime_t
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
{
return _PyTime_Divide(t, NS_TO_MS, round);
}
_PyTime_t
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
{
return _PyTime_Divide(t, NS_TO_US, round);
}
static int
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
_PyTime_round_t round)
{
_PyTime_t secs, ns;
int usec;
int res = 0;
secs = t / SEC_TO_NS;
ns = t % SEC_TO_NS;
usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
if (usec < 0) {
usec += SEC_TO_US;
if (secs != _PyTime_MIN)
secs -= 1;
else
res = -1;
}
else if (usec >= SEC_TO_US) {
usec -= SEC_TO_US;
if (secs != _PyTime_MAX)
secs += 1;
else
res = -1;
}
assert(0 <= usec && usec < SEC_TO_US);
*p_secs = secs;
*p_us = usec;
return res;
}
static int
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
_PyTime_round_t round, int raise)
{
_PyTime_t secs, secs2;
int us;
int res;
res = _PyTime_AsTimeval_impl(t, &secs, &us, round);
#ifdef MS_WINDOWS
tv->tv_sec = (long)secs;
#else
tv->tv_sec = secs;
#endif
tv->tv_usec = us;
secs2 = (_PyTime_t)tv->tv_sec;
if (res < 0 || secs2 != secs) {
if (raise)
error_time_t_overflow();
return -1;
}
return 0;
}
int
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
}
int
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
}
int
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
_PyTime_round_t round)
{
_PyTime_t secs;
int res;
res = _PyTime_AsTimeval_impl(t, &secs, us, round);
*p_secs = secs;
if (res < 0 || (_PyTime_t)*p_secs != secs) {
error_time_t_overflow();
return -1;
}
return 0;
}
static int
win_perf_counter_frequency(uint64_t *pfrequency, int raise)
{
uint64_t frequency;
if (!QueryPerformanceFrequency(&frequency)) {
if (raise) {
PyErr_SetFromWindowsErr(0);
}
return -1;
}
/* Sanity check: should never occur in practice */
if (frequency < 1) {
if (raise) {
PyErr_SetString(PyExc_RuntimeError,
"invalid QueryPerformanceFrequency");
}
return -1;
}
/* Check that frequency can be casted to _PyTime_t.
*
* Make also sure that (ticks * SEC_TO_NS) cannot overflow in
* _PyTime_MulDiv(), with ticks < frequency.
*
* Known QueryPerformanceFrequency() values:
*
* - 10,000,000 (10 MHz): 100 ns resolution
* - 3,579,545 Hz (3.6 MHz): 279 ns resolution
*
* None of these frequencies can overflow with 64-bit _PyTime_t, but
* check for overflow, just in case.
*/
if (frequency > _PyTime_MAX
|| frequency > (int64_t)_PyTime_MAX / (int64_t)SEC_TO_NS)
{
if (raise) {
PyErr_SetString(PyExc_OverflowError,
"QueryPerformanceFrequency is too large");
}
return -1;
}
*pfrequency = frequency;
return 0;
}
static int
py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
static uint64_t frequency;
if (!frequency) {
if (win_perf_counter_frequency(&frequency, raise) < 0) {
return -1;
}
}
if (info) {
info->implementation = "QueryPerformanceCounter()";
info->resolution = 1 / (double)frequency;
info->monotonic = 1;
info->adjustable = 0;
}
uint64_t ticksll;
QueryPerformanceCounter(&ticksll);
/* Make sure that casting int64_t to _PyTime_t cannot overflow,
both types are signed */
_PyTime_t ticks;
Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
ticks = (_PyTime_t)ticksll;
*tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
return 0;
}
int
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
if (!IsWindows()) {
return _PyTime_GetMonotonicClockWithInfo(t, info);
} else {
return py_get_win_perf_counter(t, info, 1);
}
}
int
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
{
_PyTime_t secs, nsec;
secs = t / SEC_TO_NS;
nsec = t % SEC_TO_NS;
if (nsec < 0) {
nsec += SEC_TO_NS;
secs -= 1;
}
ts->tv_sec = (time_t)secs;
assert(0 <= nsec && nsec < SEC_TO_NS);
ts->tv_nsec = nsec;
if ((_PyTime_t)ts->tv_sec != secs) {
error_time_t_overflow();
return -1;
}
return 0;
}
static int
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
if (IsWindows()) {
uint64_t large;
struct NtFileTime system_time;
assert(info == NULL || raise);
GetSystemTimeAsFileTime(&system_time);
large = system_time.dwHighDateTime;
large <<= 32;
large |= system_time.dwLowDateTime;
/* 11,644,473,600,000,000,000: number of nanoseconds between
the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
days). */
*tp = large * 100 - 11644473600000000000ull;
if (info) {
bool32 isTimeAdjustmentDisabled;
uint32_t timeAdjustment, timeIncrement;
info->implementation = "GetSystemTimeAsFileTime()";
info->monotonic = 0;
if (!GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&isTimeAdjustmentDisabled)) {
PyErr_SetFromWindowsErr(0);
return -1;
}
info->resolution = timeIncrement * 1e-7;
info->adjustable = 1;
}
} else {
int err;
struct timespec ts;
assert(info == NULL || raise);
err = clock_gettime(CLOCK_REALTIME, &ts);
if (err) {
if (raise)
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
if (pytime_fromtimespec(tp, &ts, raise) < 0)
return -1;
if (info) {
struct timespec res;
info->implementation = "clock_gettime(CLOCK_REALTIME)";
info->monotonic = 0;
info->adjustable = 1;
if (clock_getres(CLOCK_REALTIME, &res) == 0)
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
else
info->resolution = 1e-9;
}
}
return 0;
}
_PyTime_t
_PyTime_GetSystemClock(void)
{
_PyTime_t t;
if (pygettimeofday(&t, NULL, 0) < 0) {
/* should not happen, _PyTime_Init() checked the clock at startup */
assert(0);
/* use a fixed value instead of a random value from the stack */
t = 0;
}
return t;
}
int
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
return pygettimeofday(t, info, 1);
}
static int
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
if (IsWindows()) {
uint64_t ticks;
_PyTime_t t;
assert(info == NULL || raise);
ticks = GetTickCount64();
Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
t = (_PyTime_t)ticks;
if (__builtin_mul_overflow(t, MS_TO_NS, &t)) {
if (raise) {
_PyTime_overflow();
return -1;
}
/* Hello, time traveler! */
assert(0);
}
*tp = t * MS_TO_NS;
if (info) {
uint32_t timeAdjustment, timeIncrement;
bool32 isTimeAdjustmentDisabled, ok;
info->implementation = "GetTickCount64()";
info->monotonic = 1;
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&isTimeAdjustmentDisabled);
if (!ok) {
PyErr_SetFromWindowsErr(0);
return -1;
}
info->resolution = timeIncrement * 1e-7;
info->adjustable = 0;
}
return 0;
}
#ifdef __APPLE__
static mach_timebase_info_data_t timebase;
uint64_t time;
if (timebase.denom == 0) {
/* According to the Technical Q&A QA1398, mach_timebase_info() cannot
fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
(void)mach_timebase_info(&timebase);
}
time = mach_absolute_time();
/* apply timebase factor */
time *= timebase.numer;
time /= timebase.denom;
*tp = time;
if (info) {
info->implementation = "mach_absolute_time()";
info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
info->monotonic = 1;
info->adjustable = 0;
}
#else
struct timespec ts;
#ifdef CLOCK_HIGHRES
const clockid_t clk_id = CLOCK_HIGHRES;
const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
#else
const clockid_t clk_id = CLOCK_MONOTONIC;
const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
#endif
assert(info == NULL || raise);
if (clock_gettime(clk_id, &ts) != 0) {
if (raise) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return -1;
}
if (info) {
struct timespec res;
info->monotonic = 1;
info->implementation = implementation;
info->adjustable = 0;
if (clock_getres(clk_id, &res) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
}
if (pytime_fromtimespec(tp, &ts, raise) < 0)
return -1;
#endif
return 0;
}
_PyTime_t
_PyTime_GetMonotonicClock(void)
{
_PyTime_t t;
if (pymonotonic(&t, NULL, 0) < 0) {
/* should not happen, _PyTime_Init() checked that monotonic clock at
startup */
assert(0);
/* use a fixed value instead of a random value from the stack */
t = 0;
}
return t;
}
int
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
return pymonotonic(tp, info, 1);
}
int
_PyTime_Init(void)
{
_PyTime_t t;
/* ensure that the system clock works */
if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0)
return -1;
/* ensure that the operating system provides a monotonic clock */
if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0)
return -1;
return 0;
}
int
_PyTime_localtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
int error;
error = localtime_s(tm, &t);
if (error != 0) {
errno = error;
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return 0;
#else /* !MS_WINDOWS */
if (localtime_r(&t, tm) == NULL) {
#ifdef EINVAL
if (errno == 0)
errno = EINVAL;
#endif
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return 0;
#endif /* MS_WINDOWS */
}
int
_PyTime_gmtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
int error;
error = gmtime_s(tm, &t);
if (error != 0) {
errno = error;
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return 0;
#else /* !MS_WINDOWS */
if (gmtime_r(&t, tm) == NULL) {
#ifdef EINVAL
if (errno == 0)
errno = EINVAL;
#endif
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return 0;
#endif /* MS_WINDOWS */
}