cosmopolitan/third_party/python/Modules/_winapi.c
Justine Tunney 559b024e1d Decentralize Python native module linkage
We can now link even smaller Python binaries. For example, the hello.com
program in the Python build directory is a compiled linked executable of
hello.py which just prints hello world. Using decentralized sections, we
can make that binary 1.9mb in size (noting that python.com is 6.3 megs!)

This works for nontrivial programs too. For example, say we want an APE
binary that's equivalent to python.com -m http.server. Our makefile now
builds such a binary using the new launcher and it's only 3.2mb in size
since Python sources get turned into ELF objects, which tell our linker
that we need things like native hashing algorithm code.
2021-09-07 11:40:11 -07:00

1580 lines
48 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Python 3 │
│ https://docs.python.org/3/license.html │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/nt/createfile.h"
#include "libc/nt/enum/accessmask.h"
#include "libc/nt/enum/creationdisposition.h"
#include "libc/nt/enum/fileflagandattributes.h"
#include "libc/nt/enum/fsctl.h"
#include "libc/nt/enum/processcreationflags.h"
#include "libc/nt/errors.h"
#include "libc/nt/events.h"
#include "libc/nt/files.h"
#include "libc/nt/ipc.h"
#include "libc/nt/privilege.h"
#include "libc/nt/process.h"
#include "libc/nt/runtime.h"
#include "libc/nt/struct/overlapped.h"
#include "libc/nt/struct/processinformation.h"
#include "libc/nt/struct/securityattributes.h"
#include "libc/nt/struct/startupinfo.h"
#include "libc/nt/struct/tokenprivileges.h"
#include "libc/nt/synchronization.h"
#include "libc/nt/thread.h"
#include "libc/str/str.h"
#include "third_party/python/Include/Python.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/yoink.h"
#include "third_party/python/Modules/winreparse.h"
/* clang-format off */
#define kNtIoReparseTagMountPoint 0xA0000003L
PYTHON_PROVIDE("_winapi");
/*
* Support routines from the Windows API
*
* This module was originally created by merging PC/_subprocess.c with
* Modules/_multiprocessing/win32_functions.c.
*
* Copyright (c) 2004 by Fredrik Lundh <fredrik@pythonware.com>
* Copyright (c) 2004 by Secret Labs AB, http://www.pythonware.com
* Copyright (c) 2004 by Peter Astrand <astrand@lysator.liu.se>
*
* By obtaining, using, and/or copying this software and/or its
* associated documentation, you agree that you have read, understood,
* and will comply with the following terms and conditions:
*
* Permission to use, copy, modify, and distribute this software and
* its associated documentation for any purpose and without fee is
* hereby granted, provided that the above copyright notice appears in
* all copies, and that both that copyright notice and this permission
* notice appear in supporting documentation, and that the name of the
* authors not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission.
*
* THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/* Licensed to PSF under a Contributor Agreement. */
/* See http://www.python.org/2.4/license for licensing details. */
#define HANDLE_TO_PYNUM(handle) \
PyLong_FromUnsignedLongLong(handle)
#define PYNUM_TO_HANDLE(obj) \
((int64_t)(intptr_t)PyLong_AsUnsignedLongLong(obj))
#define F_POINTER "K"
#define T_POINTER T_ULONGLONG
#define F_HANDLE F_POINTER
#define F_DWORD "k"
#define T_HANDLE T_POINTER
#define DWORD_MAX 4294967295U
/*
* A Python object wrapping an OVERLAPPED structure and other useful data
* for overlapped I/O
*/
typedef struct {
PyObject_HEAD
struct NtOverlapped overlapped;
/* For convenience, we store the file handle too */
int64_t handle;
/* Whether there's I/O in flight */
int pending;
/* Whether I/O completed successfully */
int completed;
/* Buffer used for reading (optional) */
PyObject *read_buffer;
/* Buffer used for writing (optional) */
Py_buffer write_buffer;
} OverlappedObject;
static void
overlapped_dealloc(OverlappedObject *self)
{
uint32_t bytes;
int err = GetLastError();
if (self->pending) {
if (CancelIoEx(self->handle, &self->overlapped) &&
GetOverlappedResult(self->handle, &self->overlapped, &bytes, true))
{
/* The operation is no longer pending -- nothing to do. */
}
else if (_Py_Finalizing == NULL)
{
/* The operation is still pending -- give a warning. This
will probably only happen on Windows XP. */
PyErr_SetString(PyExc_RuntimeError,
"I/O operations still in flight while destroying "
"Overlapped object, the process may crash");
PyErr_WriteUnraisable(NULL);
}
else
{
/* The operation is still pending, but the process is
probably about to exit, so we need not worry too much
about memory leaks. Leaking self prevents a potential
crash. This can happen when a daemon thread is cleaned
up at exit -- see #19565. We only expect to get here
on Windows XP. */
CloseHandle(self->overlapped.hEvent);
SetLastError(err);
return;
}
}
CloseHandle(self->overlapped.hEvent);
SetLastError(err);
if (self->write_buffer.obj)
PyBuffer_Release(&self->write_buffer);
Py_CLEAR(self->read_buffer);
PyObject_Del(self);
}
/*[clinic input]
module _winapi
class _winapi.Overlapped "OverlappedObject *" "&OverlappedType"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c13d3f5fd1dabb84]*/
/*[python input]
def create_converter(type_, format_unit):
name = type_ + '_converter'
# registered upon creation by CConverter's metaclass
type(name, (CConverter,), {'type': type_, 'format_unit': format_unit})
# format unit differs between platforms for these
create_converter('int64_t', '" F_int64_t "')
create_converter('HMODULE', '" F_int64_t "')
create_converter('LPSECURITY_ATTRIBUTES', '" F_POINTER "')
create_converter('BOOL', 'i') # F_BOOL used previously (always 'i')
create_converter('uint32_t', 'k') # F_DWORD is always "k" (which is much shorter)
create_converter('LPCTSTR', 's')
create_converter('LPWSTR', 'u')
create_converter('UINT', 'I') # F_UINT used previously (always 'I')
class int64_t_return_converter(CReturnConverter):
type = 'int64_t'
def render(self, function, data):
self.declare(data)
self.err_occurred_if("_return_value == kNtInvalidHandleValue", data)
data.return_conversion.append(
'if (_return_value == NULL) {\n Py_RETURN_NONE;\n}\n')
data.return_conversion.append(
'return_value = HANDLE_TO_PYNUM(_return_value);\n')
class uint32_t_return_converter(CReturnConverter):
type = 'uint32_t'
def render(self, function, data):
self.declare(data)
self.err_occurred_if("_return_value == uint32_t_MAX", data)
data.return_conversion.append(
'return_value = Py_BuildValue("k", _return_value);\n')
[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=94819e72d2c6d558]*/
#include "third_party/python/Modules/clinic/_winapi.inc"
/*[clinic input]
_winapi.Overlapped.GetOverlappedResult
wait: bool
/
[clinic start generated code]*/
static PyObject *
_winapi_Overlapped_GetOverlappedResult_impl(OverlappedObject *self, int wait)
/*[clinic end generated code: output=bdd0c1ed6518cd03 input=194505ee8e0e3565]*/
{
bool32 res;
uint32_t transferred = 0;
uint32_t err;
Py_BEGIN_ALLOW_THREADS
res = GetOverlappedResult(self->handle, &self->overlapped, &transferred,
wait != 0);
Py_END_ALLOW_THREADS
err = res ? kNtErrorSuccess : GetLastError();
switch (err) {
case kNtErrorSuccess:
case kNtErrorMoreData:
case kNtErrorOperationAborted:
self->completed = 1;
self->pending = 0;
break;
case kNtErrorIoIncomplete:
break;
default:
self->pending = 0;
return PyErr_SetExcFromWindowsErr(PyExc_IOError, err);
}
if (self->completed && self->read_buffer != NULL) {
assert(PyBytes_CheckExact(self->read_buffer));
if (transferred != PyBytes_GET_SIZE(self->read_buffer) &&
_PyBytes_Resize(&self->read_buffer, transferred))
return NULL;
}
return Py_BuildValue("II", (unsigned) transferred, (unsigned) err);
}
/*[clinic input]
_winapi.Overlapped.getbuffer
[clinic start generated code]*/
static PyObject *
_winapi_Overlapped_getbuffer_impl(OverlappedObject *self)
/*[clinic end generated code: output=95a3eceefae0f748 input=347fcfd56b4ceabd]*/
{
PyObject *res;
if (!self->completed) {
PyErr_SetString(PyExc_ValueError,
"can't get read buffer before GetOverlappedResult() "
"signals the operation completed");
return NULL;
}
res = self->read_buffer ? self->read_buffer : Py_None;
Py_INCREF(res);
return res;
}
/*[clinic input]
_winapi.Overlapped.cancel
[clinic start generated code]*/
static PyObject *
_winapi_Overlapped_cancel_impl(OverlappedObject *self)
/*[clinic end generated code: output=fcb9ab5df4ebdae5 input=cbf3da142290039f]*/
{
bool32 res = true;
if (self->pending) {
Py_BEGIN_ALLOW_THREADS
res = CancelIoEx(self->handle, &self->overlapped);
Py_END_ALLOW_THREADS
}
/* CancelIoEx returns ERROR_NOT_FOUND if the I/O completed in-between */
if (!res && GetLastError() != kNtErrorNotFound)
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
self->pending = 0;
Py_RETURN_NONE;
}
static PyMethodDef overlapped_methods[] = {
_WINAPI_OVERLAPPED_GETOVERLAPPEDRESULT_METHODDEF
_WINAPI_OVERLAPPED_GETBUFFER_METHODDEF
_WINAPI_OVERLAPPED_CANCEL_METHODDEF
{NULL}
};
static PyMemberDef overlapped_members[] = {
{"event", T_HANDLE,
offsetof(OverlappedObject, overlapped) + offsetof(struct NtOverlapped, hEvent),
READONLY, "overlapped event handle"},
{NULL}
};
PyTypeObject OverlappedType = {
PyVarObject_HEAD_INIT(NULL, 0)
/* tp_name */ "_winapi.Overlapped",
/* tp_basicsize */ sizeof(OverlappedObject),
/* tp_itemsize */ 0,
/* tp_dealloc */ (destructor) overlapped_dealloc,
/* tp_print */ 0,
/* tp_getattr */ 0,
/* tp_setattr */ 0,
/* tp_reserved */ 0,
/* tp_repr */ 0,
/* tp_as_number */ 0,
/* tp_as_sequence */ 0,
/* tp_as_mapping */ 0,
/* tp_hash */ 0,
/* tp_call */ 0,
/* tp_str */ 0,
/* tp_getattro */ 0,
/* tp_setattro */ 0,
/* tp_as_buffer */ 0,
/* tp_flags */ Py_TPFLAGS_DEFAULT,
/* tp_doc */ "OVERLAPPED structure wrapper",
/* tp_traverse */ 0,
/* tp_clear */ 0,
/* tp_richcompare */ 0,
/* tp_weaklistoffset */ 0,
/* tp_iter */ 0,
/* tp_iternext */ 0,
/* tp_methods */ overlapped_methods,
/* tp_members */ overlapped_members,
/* tp_getset */ 0,
/* tp_base */ 0,
/* tp_dict */ 0,
/* tp_descr_get */ 0,
/* tp_descr_set */ 0,
/* tp_dictoffset */ 0,
/* tp_init */ 0,
/* tp_alloc */ 0,
/* tp_new */ 0,
};
static OverlappedObject *
new_overlapped(int64_t handle)
{
OverlappedObject *self;
self = PyObject_New(OverlappedObject, &OverlappedType);
if (!self)
return NULL;
self->handle = handle;
self->read_buffer = NULL;
self->pending = 0;
self->completed = 0;
bzero(&self->overlapped, sizeof(struct NtOverlapped));
bzero(&self->write_buffer, sizeof(Py_buffer));
/* Manual reset, initially non-signalled */
self->overlapped.hEvent = CreateEvent(NULL, true, false, NULL);
return self;
}
/* -------------------------------------------------------------------- */
/* windows API functions */
/*[clinic input]
_winapi.CloseHandle
handle: int64_t
/
Close handle.
[clinic start generated code]*/
static PyObject *
_winapi_CloseHandle_impl(PyObject *module, int64_t handle)
/*[clinic end generated code: output=7ad37345f07bd782 input=7f0e4ac36e0352b8]*/
{
bool32 success;
Py_BEGIN_ALLOW_THREADS
success = CloseHandle(handle);
Py_END_ALLOW_THREADS
if (!success)
return PyErr_SetFromWindowsErr(0);
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.ConnectNamedPipe
handle: int64_t
overlapped as use_overlapped: int(c_default='0') = False
[clinic start generated code]*/
static PyObject *
_winapi_ConnectNamedPipe_impl(PyObject *module, int64_t handle,
int use_overlapped)
/*[clinic end generated code: output=335a0e7086800671 input=edc83da007ebf3be]*/
{
bool32 success;
OverlappedObject *overlapped = NULL;
if (use_overlapped) {
overlapped = new_overlapped(handle);
if (!overlapped)
return NULL;
}
Py_BEGIN_ALLOW_THREADS
success = ConnectNamedPipe(handle,
overlapped ? &overlapped->overlapped : NULL);
Py_END_ALLOW_THREADS
if (overlapped) {
int err = GetLastError();
/* Overlapped ConnectNamedPipe never returns a success code */
assert(success == 0);
if (err == kNtErrorIoPending)
overlapped->pending = 1;
else if (err == kNtErrorPipeConnected)
SetEvent(overlapped->overlapped.hEvent);
else {
Py_DECREF(overlapped);
return PyErr_SetFromWindowsErr(err);
}
return (PyObject *) overlapped;
}
if (!success)
return PyErr_SetFromWindowsErr(0);
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.CreateFile -> int64_t
file_name: LPCTSTR
desired_access: uint32_t
share_mode: uint32_t
security_attributes: LPSECURITY_ATTRIBUTES
creation_disposition: uint32_t
flags_and_attributes: uint32_t
template_file: int64_t
/
[clinic start generated code]*/
static int64_t
_winapi_CreateFile_impl(PyObject *module, const char16_t *file_name,
uint32_t desired_access, uint32_t share_mode,
struct NtSecurityAttributes *security_attributes,
uint32_t creation_disposition,
uint32_t flags_and_attributes, int64_t template_file)
/*[clinic end generated code: output=417ddcebfc5a3d53 input=6423c3e40372dbd5]*/
{
int64_t handle;
Py_BEGIN_ALLOW_THREADS
handle = CreateFile(file_name, desired_access,
share_mode, security_attributes,
creation_disposition,
flags_and_attributes, template_file);
Py_END_ALLOW_THREADS
if (handle == kNtInvalidHandleValue)
PyErr_SetFromWindowsErr(0);
return handle;
}
/*[clinic input]
_winapi.CreateJunction
src_path: LPWSTR
dst_path: LPWSTR
/
[clinic start generated code]*/
static PyObject *
_winapi_CreateJunction_impl(PyObject *module, char16_t *src_path,
char16_t *dst_path)
/*[clinic end generated code: output=66b7eb746e1dfa25 input=8cd1f9964b6e3d36]*/
{
/* Privilege adjustment */
int64_t token = 0;
struct NtTokenPrivileges tp;
/* Reparse data buffer */
const uint16_t prefix_len = 4;
uint16_t print_len = 0;
uint16_t rdb_size = 0;
_Py_PREPARSE_DATA_BUFFER rdb = NULL;
/* Junction point creation */
int64_t junction = 0;
uint32_t ret = 0;
if (src_path == NULL || dst_path == NULL)
return PyErr_SetFromWindowsErr(kNtErrorInvalidParameter);
if (strncmp16(src_path, u"\\??\\", prefix_len) == 0)
return PyErr_SetFromWindowsErr(kNtErrorInvalidParameter);
/* Adjust privileges to allow rewriting directory entry as a
junction point. */
if (!OpenProcessToken(GetCurrentProcess(), kNtTokenAdjustPrivileges, &token))
goto cleanup;
if (!LookupPrivilegeValue(NULL, u"SeRestorePrivilege", &tp.Privileges[0].Luid))
goto cleanup;
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = kNtSePrivilegeEnabled;
if (!AdjustTokenPrivileges(token, false, &tp, sizeof(struct NtTokenPrivileges),
NULL, NULL))
goto cleanup;
if (GetFileAttributes(src_path) == -1)
goto cleanup;
/* Store the absolute link target path length in print_len. */
print_len = (uint16_t)GetFullPathName(src_path, 0, NULL, NULL);
if (print_len == 0)
goto cleanup;
/* NUL terminator should not be part of print_len. */
--print_len;
/* REPARSE_DATA_BUFFER usage is heavily under-documented, especially for
junction points. Here's what I've learned along the way:
- A junction point has two components: a print name and a substitute
name. They both describe the link target, but the substitute name is
the physical target and the print name is shown in directory listings.
- The print name must be a native name, prefixed with "\??\".
- Both names are stored after each other in the same buffer (the
PathBuffer) and both must be NUL-terminated.
- There are four members defining their respective offset and length
inside PathBuffer: SubstituteNameOffset, SubstituteNameLength,
PrintNameOffset and PrintNameLength.
- The total size we need to allocate for the REPARSE_DATA_BUFFER, thus,
is the sum of:
- the fixed header size (REPARSE_DATA_BUFFER_HEADER_SIZE)
- the size of the MountPointReparseBuffer member without the PathBuffer
- the size of the prefix ("\??\") in bytes
- the size of the print name in bytes
- the size of the substitute name in bytes
- the size of two NUL terminators in bytes */
rdb_size = _Py_REPARSE_DATA_BUFFER_HEADER_SIZE +
sizeof(rdb->MountPointReparseBuffer) -
sizeof(rdb->MountPointReparseBuffer.PathBuffer) +
/* Two +1's for NUL terminators. */
(prefix_len + print_len + 1 + print_len + 1) * sizeof(char16_t);
rdb = (_Py_PREPARSE_DATA_BUFFER)PyMem_RawMalloc(rdb_size);
if (rdb == NULL)
goto cleanup;
bzero(rdb, rdb_size);
rdb->ReparseTag = kNtIoReparseTagMountPoint;
rdb->ReparseDataLength = rdb_size - _Py_REPARSE_DATA_BUFFER_HEADER_SIZE;
rdb->MountPointReparseBuffer.SubstituteNameOffset = 0;
rdb->MountPointReparseBuffer.SubstituteNameLength =
(prefix_len + print_len) * sizeof(char16_t);
rdb->MountPointReparseBuffer.PrintNameOffset =
rdb->MountPointReparseBuffer.SubstituteNameLength + sizeof(char16_t);
rdb->MountPointReparseBuffer.PrintNameLength = print_len * sizeof(char16_t);
/* Store the full native path of link target at the substitute name
offset (0). */
strcpy16(rdb->MountPointReparseBuffer.PathBuffer, u"\\??\\");
if (GetFullPathName(src_path, print_len + 1,
rdb->MountPointReparseBuffer.PathBuffer + prefix_len,
NULL) == 0)
goto cleanup;
/* Copy everything but the native prefix to the print name offset. */
strcpy16(rdb->MountPointReparseBuffer.PathBuffer +
prefix_len + print_len + 1,
rdb->MountPointReparseBuffer.PathBuffer + prefix_len);
/* Create a directory for the junction point. */
if (!CreateDirectory(dst_path, NULL))
goto cleanup;
junction = CreateFile(dst_path, kNtGenericRead | kNtGenericWrite, 0, NULL,
kNtOpenExisting,
kNtFileFlagOpenReparsePoint | kNtFileFlagBackupSemantics, 0);
if (junction == kNtInvalidHandleValue)
goto cleanup;
/* Make the directory entry a junction point. */
if (!DeviceIoControl(junction, kNtFsctlSetReparsePoint, rdb, rdb_size,
NULL, 0, &ret, NULL))
goto cleanup;
cleanup:
ret = GetLastError();
CloseHandle(token);
CloseHandle(junction);
PyMem_RawFree(rdb);
if (ret != 0)
return PyErr_SetFromWindowsErr(ret);
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.CreateNamedPipe -> int64_t
name: LPCTSTR
open_mode: uint32_t
pipe_mode: uint32_t
max_instances: uint32_t
out_buffer_size: uint32_t
in_buffer_size: uint32_t
default_timeout: uint32_t
security_attributes: LPSECURITY_ATTRIBUTES
/
[clinic start generated code]*/
static int64_t
_winapi_CreateNamedPipe_impl(PyObject *module, const char16_t *name, uint32_t open_mode,
uint32_t pipe_mode, uint32_t max_instances,
uint32_t out_buffer_size, uint32_t in_buffer_size,
uint32_t default_timeout,
struct NtSecurityAttributes *security_attributes)
/*[clinic end generated code: output=80f8c07346a94fbc input=5a73530b84d8bc37]*/
{
int64_t handle;
Py_BEGIN_ALLOW_THREADS
handle = CreateNamedPipe(name, open_mode, pipe_mode,
max_instances, out_buffer_size,
in_buffer_size, default_timeout,
security_attributes);
Py_END_ALLOW_THREADS
if (handle == kNtInvalidHandleValue)
PyErr_SetFromWindowsErr(0);
return handle;
}
/*[clinic input]
_winapi.CreatePipe
pipe_attrs: object
Ignored internally, can be None.
size: uint32_t
/
Create an anonymous pipe.
Returns a 2-tuple of handles, to the read and write ends of the pipe.
[clinic start generated code]*/
static PyObject *
_winapi_CreatePipe_impl(PyObject *module, PyObject *pipe_attrs, uint32_t size)
/*[clinic end generated code: output=1c4411d8699f0925 input=c4f2cfa56ef68d90]*/
{
int64_t read_pipe;
int64_t write_pipe;
bool32 result;
Py_BEGIN_ALLOW_THREADS
result = CreatePipe(&read_pipe, &write_pipe, NULL, size);
Py_END_ALLOW_THREADS
if (! result)
return PyErr_SetFromWindowsErr(GetLastError());
return Py_BuildValue(
"NN", HANDLE_TO_PYNUM(read_pipe), HANDLE_TO_PYNUM(write_pipe));
}
/* helpers for createprocess */
static unsigned long
getulong(PyObject* obj, const char* name)
{
PyObject* value;
unsigned long ret;
value = PyObject_GetAttrString(obj, name);
if (! value) {
PyErr_Clear(); /* FIXME: propagate error? */
return 0;
}
ret = PyLong_AsUnsignedLong(value);
Py_DECREF(value);
return ret;
}
static int64_t
gethandle(PyObject* obj, const char* name)
{
PyObject* value;
int64_t ret;
value = PyObject_GetAttrString(obj, name);
if (! value) {
PyErr_Clear(); /* FIXME: propagate error? */
return 0;
}
if (value == Py_None)
ret = 0;
else
ret = PYNUM_TO_HANDLE(value);
Py_DECREF(value);
return ret;
}
static PyObject*
getenvironment(PyObject* environment)
{
Py_ssize_t i, envsize, totalsize;
Py_UCS4 *buffer = NULL, *p, *end;
PyObject *keys, *values, *res;
/* convert environment dictionary to windows environment string */
if (! PyMapping_Check(environment)) {
PyErr_SetString(
PyExc_TypeError, "environment must be dictionary or None");
return NULL;
}
keys = PyMapping_Keys(environment);
if (!keys) {
return NULL;
}
values = PyMapping_Values(environment);
if (!values) {
goto error;
}
envsize = PySequence_Fast_GET_SIZE(keys);
if (PySequence_Fast_GET_SIZE(values) != envsize) {
PyErr_SetString(PyExc_RuntimeError,
"environment changed size during iteration");
goto error;
}
totalsize = 1; /* trailing null character */
for (i = 0; i < envsize; i++) {
PyObject* key = PySequence_Fast_GET_ITEM(keys, i);
PyObject* value = PySequence_Fast_GET_ITEM(values, i);
if (! PyUnicode_Check(key) || ! PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"environment can only contain strings");
goto error;
}
if (PyUnicode_FindChar(key, '\0', 0, PyUnicode_GET_LENGTH(key), 1) != -1 ||
PyUnicode_FindChar(value, '\0', 0, PyUnicode_GET_LENGTH(value), 1) != -1)
{
PyErr_SetString(PyExc_ValueError, "embedded null character");
goto error;
}
/* Search from index 1 because on Windows starting '=' is allowed for
defining hidden environment variables. */
if (PyUnicode_GET_LENGTH(key) == 0 ||
PyUnicode_FindChar(key, '=', 1, PyUnicode_GET_LENGTH(key), 1) != -1)
{
PyErr_SetString(PyExc_ValueError, "illegal environment variable name");
goto error;
}
if (totalsize > PY_SSIZE_T_MAX - PyUnicode_GET_LENGTH(key) - 1) {
PyErr_SetString(PyExc_OverflowError, "environment too long");
goto error;
}
totalsize += PyUnicode_GET_LENGTH(key) + 1; /* +1 for '=' */
if (totalsize > PY_SSIZE_T_MAX - PyUnicode_GET_LENGTH(value) - 1) {
PyErr_SetString(PyExc_OverflowError, "environment too long");
goto error;
}
totalsize += PyUnicode_GET_LENGTH(value) + 1; /* +1 for '\0' */
}
buffer = PyMem_NEW(Py_UCS4, totalsize);
if (! buffer) {
PyErr_NoMemory();
goto error;
}
p = buffer;
end = buffer + totalsize;
for (i = 0; i < envsize; i++) {
PyObject* key = PySequence_Fast_GET_ITEM(keys, i);
PyObject* value = PySequence_Fast_GET_ITEM(values, i);
if (!PyUnicode_AsUCS4(key, p, end - p, 0))
goto error;
p += PyUnicode_GET_LENGTH(key);
*p++ = '=';
if (!PyUnicode_AsUCS4(value, p, end - p, 0))
goto error;
p += PyUnicode_GET_LENGTH(value);
*p++ = '\0';
}
/* add trailing null byte */
*p++ = '\0';
assert(p == end);
Py_XDECREF(keys);
Py_XDECREF(values);
res = PyUnicode_FromKindAndData(PyUnicode_4BYTE_KIND, buffer, p - buffer);
PyMem_Free(buffer);
return res;
error:
PyMem_Free(buffer);
Py_XDECREF(keys);
Py_XDECREF(values);
return NULL;
}
/*[clinic input]
_winapi.CreateProcess
application_name: Py_UNICODE(accept={str, NoneType})
command_line: Py_UNICODE(accept={str, NoneType})
proc_attrs: object
Ignored internally, can be None.
thread_attrs: object
Ignored internally, can be None.
inherit_handles: bool32
creation_flags: uint32_t
env_mapping: object
current_directory: Py_UNICODE(accept={str, NoneType})
startup_info: object
/
Create a new process and its primary thread.
The return value is a tuple of the process handle, thread handle,
process ID, and thread ID.
[clinic start generated code]*/
static PyObject *
_winapi_CreateProcess_impl(PyObject *module, Py_UNICODE *application_name,
Py_UNICODE *command_line, PyObject *proc_attrs,
PyObject *thread_attrs, bool32 inherit_handles,
uint32_t creation_flags, PyObject *env_mapping,
Py_UNICODE *current_directory,
PyObject *startup_info)
/*[clinic end generated code: output=4652a33aff4b0ae1 input=4a43b05038d639bb]*/
{
bool32 result;
struct NtProcessInformation pi;
struct NtStartupInfo si;
PyObject* environment;
wchar_t *wenvironment;
bzero(&si, sizeof(si));
si.cb = sizeof(si);
/* note: we only support a small subset of all SI attributes */
si.dwFlags = getulong(startup_info, "dwFlags");
si.wShowWindow = (int16_t)getulong(startup_info, "wShowWindow");
si.hStdInput = gethandle(startup_info, "hStdInput");
si.hStdOutput = gethandle(startup_info, "hStdOutput");
si.hStdError = gethandle(startup_info, "hStdError");
if (PyErr_Occurred())
return NULL;
if (env_mapping != Py_None) {
environment = getenvironment(env_mapping);
if (environment == NULL) {
return NULL;
}
/* contains embedded null characters */
wenvironment = PyUnicode_AsUnicode(environment);
if (wenvironment == NULL) {
Py_DECREF(environment);
return NULL;
}
}
else {
environment = NULL;
wenvironment = NULL;
}
Py_BEGIN_ALLOW_THREADS
result = CreateProcess(application_name,
command_line,
NULL,
NULL,
inherit_handles,
creation_flags | kNtCreateUnicodeEnvironment,
wenvironment,
current_directory,
&si,
&pi);
Py_END_ALLOW_THREADS
Py_XDECREF(environment);
if (! result)
return PyErr_SetFromWindowsErr(GetLastError());
return Py_BuildValue("NNkk",
HANDLE_TO_PYNUM(pi.hProcess),
HANDLE_TO_PYNUM(pi.hThread),
pi.dwProcessId,
pi.dwThreadId);
}
/*[clinic input]
_winapi.DuplicateHandle -> int64_t
source_process_handle: int64_t
source_handle: int64_t
target_process_handle: int64_t
desired_access: uint32_t
inherit_handle: bool32
options: uint32_t = 0
/
Return a duplicate handle object.
The duplicate handle refers to the same object as the original
handle. Therefore, any changes to the object are reflected
through both handles.
[clinic start generated code]*/
static int64_t
_winapi_DuplicateHandle_impl(PyObject *module, int64_t source_process_handle,
int64_t source_handle,
int64_t target_process_handle,
uint32_t desired_access, bool32 inherit_handle,
uint32_t options)
/*[clinic end generated code: output=ad9711397b5dcd4e input=b933e3f2356a8c12]*/
{
int64_t target_handle;
bool32 result;
Py_BEGIN_ALLOW_THREADS
result = DuplicateHandle(
source_process_handle,
source_handle,
target_process_handle,
&target_handle,
desired_access,
inherit_handle,
options
);
Py_END_ALLOW_THREADS
if (! result) {
PyErr_SetFromWindowsErr(GetLastError());
return kNtInvalidHandleValue;
}
return target_handle;
}
/*[clinic input]
_winapi.ExitProcess
ExitCode: UINT
/
[clinic start generated code]*/
static PyObject *
_winapi_ExitProcess_impl(PyObject *module, UINT ExitCode)
/*[clinic end generated code: output=a387deb651175301 input=4f05466a9406c558]*/
{
#if defined(Py_DEBUG)
SetErrorMode(SEM_FAILCRITICALERRORS|SEM_NOALIGNMENTFAULTEXCEPT|
SEM_NOGPFAULTERRORBOX|SEM_NOOPENFILEERRORBOX);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG);
#endif
ExitProcess(ExitCode);
return NULL;
}
/*[clinic input]
_winapi.GetCurrentProcess -> int64_t
Return a handle object for the current process.
[clinic start generated code]*/
static int64_t
_winapi_GetCurrentProcess_impl(PyObject *module)
/*[clinic end generated code: output=ddeb4dd2ffadf344 input=b213403fd4b96b41]*/
{
return GetCurrentProcess();
}
/*[clinic input]
_winapi.GetExitCodeProcess -> uint32_t
process: int64_t
/
Return the termination status of the specified process.
[clinic start generated code]*/
static uint32_t
_winapi_GetExitCodeProcess_impl(PyObject *module, int64_t process)
/*[clinic end generated code: output=b4620bdf2bccf36b input=61b6bfc7dc2ee374]*/
{
uint32_t exit_code;
bool32 result;
result = GetExitCodeProcess(process, &exit_code);
if (! result) {
PyErr_SetFromWindowsErr(GetLastError());
exit_code = uint32_t_MAX;
}
return exit_code;
}
/*[clinic input]
_winapi.GetLastError -> uint32_t
[clinic start generated code]*/
static uint32_t
_winapi_GetLastError_impl(PyObject *module)
/*[clinic end generated code: output=8585b827cb1a92c5 input=62d47fb9bce038ba]*/
{
return GetLastError();
}
/*[clinic input]
_winapi.GetModuleFileName
module_handle: HMODULE
/
Return the fully-qualified path for the file that contains module.
The module must have been loaded by the current process.
The module parameter should be a handle to the loaded module
whose path is being requested. If this parameter is 0,
GetModuleFileName retrieves the path of the executable file
of the current process.
[clinic start generated code]*/
static PyObject *
_winapi_GetModuleFileName_impl(PyObject *module, HMODULE module_handle)
/*[clinic end generated code: output=85b4b728c5160306 input=6d66ff7deca5d11f]*/
{
bool32 result;
char16_t filename[MAX_PATH];
result = GetModuleFileNameW(module_handle, filename, MAX_PATH);
filename[MAX_PATH-1] = '\0';
if (! result)
return PyErr_SetFromWindowsErr(GetLastError());
return PyUnicode_FromWideChar(filename, wcslen(filename));
}
/*[clinic input]
_winapi.GetStdHandle -> int64_t
std_handle: uint32_t
One of STD_INPUT_HANDLE, STD_OUTPUT_HANDLE, or STD_ERROR_int64_t.
/
Return a handle to the specified standard device.
The integer associated with the handle object is returned.
[clinic start generated code]*/
static int64_t
_winapi_GetStdHandle_impl(PyObject *module, uint32_t std_handle)
/*[clinic end generated code: output=0e613001e73ab614 input=07016b06a2fc8826]*/
{
int64_t handle;
Py_BEGIN_ALLOW_THREADS
handle = GetStdHandle(std_handle);
Py_END_ALLOW_THREADS
if (handle == kNtInvalidHandleValue)
PyErr_SetFromWindowsErr(GetLastError());
return handle;
}
/*[clinic input]
_winapi.GetVersion -> long
Return the version number of the current operating system.
[clinic start generated code]*/
static long
_winapi_GetVersion_impl(PyObject *module)
/*[clinic end generated code: output=e41f0db5a3b82682 input=e21dff8d0baeded2]*/
/* Disable deprecation warnings about GetVersionEx as the result is
being passed straight through to the caller, who is responsible for
using it correctly. */
#pragma warning(push)
#pragma warning(disable:4996)
{
return GetVersion();
}
#pragma warning(pop)
/*[clinic input]
_winapi.OpenProcess -> int64_t
desired_access: uint32_t
inherit_handle: bool32
process_id: uint32_t
/
[clinic start generated code]*/
static int64_t
_winapi_OpenProcess_impl(PyObject *module, uint32_t desired_access,
bool32 inherit_handle, uint32_t process_id)
/*[clinic end generated code: output=b42b6b81ea5a0fc3 input=ec98c4cf4ea2ec36]*/
{
int64_t handle;
handle = OpenProcess(desired_access, inherit_handle, process_id);
if (handle == NULL) {
PyErr_SetFromWindowsErr(0);
handle = kNtInvalidHandleValue;
}
return handle;
}
/*[clinic input]
_winapi.PeekNamedPipe
handle: int64_t
size: int = 0
/
[clinic start generated code]*/
static PyObject *
_winapi_PeekNamedPipe_impl(PyObject *module, int64_t handle, int size)
/*[clinic end generated code: output=d0c3e29e49d323dd input=c7aa53bfbce69d70]*/
{
PyObject *buf = NULL;
uint32_t nread, navail, nleft;
bool32 ret;
if (size < 0) {
PyErr_SetString(PyExc_ValueError, "negative size");
return NULL;
}
if (size) {
buf = PyBytes_FromStringAndSize(NULL, size);
if (!buf)
return NULL;
Py_BEGIN_ALLOW_THREADS
ret = PeekNamedPipe(handle, PyBytes_AS_STRING(buf), size, &nread,
&navail, &nleft);
Py_END_ALLOW_THREADS
if (!ret) {
Py_DECREF(buf);
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
}
if (_PyBytes_Resize(&buf, nread))
return NULL;
return Py_BuildValue("NII", buf, navail, nleft);
}
else {
Py_BEGIN_ALLOW_THREADS
ret = PeekNamedPipe(handle, NULL, 0, NULL, &navail, &nleft);
Py_END_ALLOW_THREADS
if (!ret) {
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
}
return Py_BuildValue("II", navail, nleft);
}
}
/*[clinic input]
_winapi.ReadFile
handle: int64_t
size: uint32_t
overlapped as use_overlapped: int(c_default='0') = False
[clinic start generated code]*/
static PyObject *
_winapi_ReadFile_impl(PyObject *module, int64_t handle, uint32_t size,
int use_overlapped)
/*[clinic end generated code: output=d3d5b44a8201b944 input=1b7d0ed0de1e50bc]*/
{
uint32_t nread;
PyObject *buf;
bool32 ret;
uint32_t err;
OverlappedObject *overlapped = NULL;
buf = PyBytes_FromStringAndSize(NULL, size);
if (!buf)
return NULL;
if (use_overlapped) {
overlapped = new_overlapped(handle);
if (!overlapped) {
Py_DECREF(buf);
return NULL;
}
/* Steals reference to buf */
overlapped->read_buffer = buf;
}
Py_BEGIN_ALLOW_THREADS
ret = ReadFile(handle, PyBytes_AS_STRING(buf), size, &nread,
overlapped ? &overlapped->overlapped : NULL);
Py_END_ALLOW_THREADS
err = ret ? 0 : GetLastError();
if (overlapped) {
if (!ret) {
if (err == ERROR_IO_PENDING)
overlapped->pending = 1;
else if (err != ERROR_MORE_DATA) {
Py_DECREF(overlapped);
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
}
}
return Py_BuildValue("NI", (PyObject *) overlapped, err);
}
if (!ret && err != ERROR_MORE_DATA) {
Py_DECREF(buf);
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
}
if (_PyBytes_Resize(&buf, nread))
return NULL;
return Py_BuildValue("NI", buf, err);
}
/*[clinic input]
_winapi.SetNamedPipeHandleState
named_pipe: int64_t
mode: object
max_collection_count: object
collect_data_timeout: object
/
[clinic start generated code]*/
static PyObject *
_winapi_SetNamedPipeHandleState_impl(PyObject *module, int64_t named_pipe,
PyObject *mode,
PyObject *max_collection_count,
PyObject *collect_data_timeout)
/*[clinic end generated code: output=f2129d222cbfa095 input=9142d72163d0faa6]*/
{
PyObject *oArgs[3] = {mode, max_collection_count, collect_data_timeout};
uint32_t dwArgs[3], *pArgs[3] = {NULL, NULL, NULL};
int i;
PyErr_Clear();
for (i = 0 ; i < 3 ; i++) {
if (oArgs[i] != Py_None) {
dwArgs[i] = PyLong_AsUnsignedLongMask(oArgs[i]);
if (PyErr_Occurred())
return NULL;
pArgs[i] = &dwArgs[i];
}
}
if (!SetNamedPipeHandleState(named_pipe, pArgs[0], pArgs[1], pArgs[2]))
return PyErr_SetFromWindowsErr(0);
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.TerminateProcess
handle: int64_t
exit_code: UINT
/
Terminate the specified process and all of its threads.
[clinic start generated code]*/
static PyObject *
_winapi_TerminateProcess_impl(PyObject *module, int64_t handle,
UINT exit_code)
/*[clinic end generated code: output=f4e99ac3f0b1f34a input=d6bc0aa1ee3bb4df]*/
{
bool32 result;
result = TerminateProcess(handle, exit_code);
if (! result)
return PyErr_SetFromWindowsErr(GetLastError());
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.WaitNamedPipe
name: LPCTSTR
timeout: uint32_t
/
[clinic start generated code]*/
static PyObject *
_winapi_WaitNamedPipe_impl(PyObject *module, const char16_t *name, uint32_t timeout)
/*[clinic end generated code: output=c2866f4439b1fe38 input=36fc781291b1862c]*/
{
bool32 success;
Py_BEGIN_ALLOW_THREADS
success = WaitNamedPipe(name, timeout);
Py_END_ALLOW_THREADS
if (!success)
return PyErr_SetFromWindowsErr(0);
Py_RETURN_NONE;
}
/*[clinic input]
_winapi.WaitForMultipleObjects
handle_seq: object
wait_flag: bool32
milliseconds: uint32_t(c_default='INFINITE') = _winapi.INFINITE
/
[clinic start generated code]*/
static PyObject *
_winapi_WaitForMultipleObjects_impl(PyObject *module, PyObject *handle_seq,
bool32 wait_flag, uint32_t milliseconds)
/*[clinic end generated code: output=295e3f00b8e45899 input=36f76ca057cd28a0]*/
{
uint32_t result;
int64_t handles[MAXIMUM_WAIT_OBJECTS];
int64_t sigint_event = 0;
Py_ssize_t nhandles, i;
if (!PySequence_Check(handle_seq)) {
PyErr_Format(PyExc_TypeError,
"sequence type expected, got '%s'",
Py_TYPE(handle_seq)->tp_name);
return NULL;
}
nhandles = PySequence_Length(handle_seq);
if (nhandles == -1)
return NULL;
if (nhandles < 0 || nhandles >= MAXIMUM_WAIT_OBJECTS - 1) {
PyErr_Format(PyExc_ValueError,
"need at most %zd handles, got a sequence of length %zd",
MAXIMUM_WAIT_OBJECTS - 1, nhandles);
return NULL;
}
for (i = 0; i < nhandles; i++) {
int64_t h;
PyObject *v = PySequence_GetItem(handle_seq, i);
if (v == NULL)
return NULL;
if (!PyArg_Parse(v, F_int64_t, &h)) {
Py_DECREF(v);
return NULL;
}
handles[i] = h;
Py_DECREF(v);
}
/* If this is the main thread then make the wait interruptible
by Ctrl-C unless we are waiting for *all* handles */
if (!wait_flag && _PyOS_IsMainThread()) {
sigint_event = _PyOS_SigintEvent();
assert(sigint_event != NULL);
handles[nhandles++] = sigint_event;
}
Py_BEGIN_ALLOW_THREADS
if (sigint_event != NULL)
ResetEvent(sigint_event);
result = WaitForMultipleObjects((uint32_t) nhandles, handles,
wait_flag, milliseconds);
Py_END_ALLOW_THREADS
if (result == WAIT_FAILED)
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
else if (sigint_event != NULL && result == WAIT_OBJECT_0 + nhandles - 1) {
errno = EINTR;
return PyErr_SetFromErrno(PyExc_IOError);
}
return PyLong_FromLong((int) result);
}
/*[clinic input]
_winapi.WaitForSingleObject -> long
handle: int64_t
milliseconds: uint32_t
/
Wait for a single object.
Wait until the specified object is in the signaled state or
the time-out interval elapses. The timeout value is specified
in milliseconds.
[clinic start generated code]*/
static long
_winapi_WaitForSingleObject_impl(PyObject *module, int64_t handle,
uint32_t milliseconds)
/*[clinic end generated code: output=3c4715d8f1b39859 input=443d1ab076edc7b1]*/
{
uint32_t result;
Py_BEGIN_ALLOW_THREADS
result = WaitForSingleObject(handle, milliseconds);
Py_END_ALLOW_THREADS
if (result == WAIT_FAILED) {
PyErr_SetFromWindowsErr(GetLastError());
return -1;
}
return result;
}
/*[clinic input]
_winapi.WriteFile
handle: int64_t
buffer: object
overlapped as use_overlapped: int(c_default='0') = False
[clinic start generated code]*/
static PyObject *
_winapi_WriteFile_impl(PyObject *module, int64_t handle, PyObject *buffer,
int use_overlapped)
/*[clinic end generated code: output=2ca80f6bf3fa92e3 input=51846a5af52053fd]*/
{
Py_buffer _buf, *buf;
uint32_t len, written;
bool32 ret;
uint32_t err;
OverlappedObject *overlapped = NULL;
if (use_overlapped) {
overlapped = new_overlapped(handle);
if (!overlapped)
return NULL;
buf = &overlapped->write_buffer;
}
else
buf = &_buf;
if (!PyArg_Parse(buffer, "y*", buf)) {
Py_XDECREF(overlapped);
return NULL;
}
Py_BEGIN_ALLOW_THREADS
len = (uint32_t)Py_MIN(buf->len, uint32_t_MAX);
ret = WriteFile(handle, buf->buf, len, &written,
overlapped ? &overlapped->overlapped : NULL);
Py_END_ALLOW_THREADS
err = ret ? 0 : GetLastError();
if (overlapped) {
if (!ret) {
if (err == ERROR_IO_PENDING)
overlapped->pending = 1;
else {
Py_DECREF(overlapped);
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
}
}
return Py_BuildValue("NI", (PyObject *) overlapped, err);
}
PyBuffer_Release(buf);
if (!ret)
return PyErr_SetExcFromWindowsErr(PyExc_IOError, 0);
return Py_BuildValue("II", written, err);
}
static PyMethodDef winapi_functions[] = {
_WINAPI_CLOSEHANDLE_METHODDEF
_WINAPI_CONNECTNAMEDPIPE_METHODDEF
_WINAPI_CREATEFILE_METHODDEF
_WINAPI_CREATENAMEDPIPE_METHODDEF
_WINAPI_CREATEPIPE_METHODDEF
_WINAPI_CREATEPROCESS_METHODDEF
_WINAPI_CREATEJUNCTION_METHODDEF
_WINAPI_DUPLICATEHANDLE_METHODDEF
_WINAPI_EXITPROCESS_METHODDEF
_WINAPI_GETCURRENTPROCESS_METHODDEF
_WINAPI_GETEXITCODEPROCESS_METHODDEF
_WINAPI_GETLASTERROR_METHODDEF
_WINAPI_GETMODULEFILENAME_METHODDEF
_WINAPI_GETSTDHANDLE_METHODDEF
_WINAPI_GETVERSION_METHODDEF
_WINAPI_OPENPROCESS_METHODDEF
_WINAPI_PEEKNAMEDPIPE_METHODDEF
_WINAPI_READFILE_METHODDEF
_WINAPI_SETNAMEDPIPEHANDLESTATE_METHODDEF
_WINAPI_TERMINATEPROCESS_METHODDEF
_WINAPI_WAITNAMEDPIPE_METHODDEF
_WINAPI_WAITFORMULTIPLEOBJECTS_METHODDEF
_WINAPI_WAITFORSINGLEOBJECT_METHODDEF
_WINAPI_WRITEFILE_METHODDEF
{NULL, NULL}
};
static struct PyModuleDef winapi_module = {
PyModuleDef_HEAD_INIT,
"_winapi",
NULL,
-1,
winapi_functions,
NULL,
NULL,
NULL,
NULL
};
#define WINAPI_CONSTANT(fmt, con) \
PyDict_SetItemString(d, #con, Py_BuildValue(fmt, con))
PyMODINIT_FUNC
PyInit__winapi(void)
{
PyObject *d;
PyObject *m;
if (PyType_Ready(&OverlappedType) < 0)
return NULL;
m = PyModule_Create(&winapi_module);
if (m == NULL)
return NULL;
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "Overlapped", (PyObject *) &OverlappedType);
/* constants */
WINAPI_CONSTANT(F_DWORD, CREATE_NEW_CONSOLE);
WINAPI_CONSTANT(F_DWORD, CREATE_NEW_PROCESS_GROUP);
WINAPI_CONSTANT(F_DWORD, DUPLICATE_SAME_ACCESS);
WINAPI_CONSTANT(F_DWORD, DUPLICATE_CLOSE_SOURCE);
WINAPI_CONSTANT(F_DWORD, ERROR_ALREADY_EXISTS);
WINAPI_CONSTANT(F_DWORD, ERROR_BROKEN_PIPE);
WINAPI_CONSTANT(F_DWORD, ERROR_IO_PENDING);
WINAPI_CONSTANT(F_DWORD, ERROR_MORE_DATA);
WINAPI_CONSTANT(F_DWORD, ERROR_NETNAME_DELETED);
WINAPI_CONSTANT(F_DWORD, ERROR_NO_SYSTEM_RESOURCES);
WINAPI_CONSTANT(F_DWORD, ERROR_MORE_DATA);
WINAPI_CONSTANT(F_DWORD, ERROR_NETNAME_DELETED);
WINAPI_CONSTANT(F_DWORD, ERROR_NO_DATA);
WINAPI_CONSTANT(F_DWORD, ERROR_NO_SYSTEM_RESOURCES);
WINAPI_CONSTANT(F_DWORD, ERROR_OPERATION_ABORTED);
WINAPI_CONSTANT(F_DWORD, ERROR_PIPE_BUSY);
WINAPI_CONSTANT(F_DWORD, ERROR_PIPE_CONNECTED);
WINAPI_CONSTANT(F_DWORD, ERROR_SEM_TIMEOUT);
WINAPI_CONSTANT(F_DWORD, FILE_FLAG_FIRST_PIPE_INSTANCE);
WINAPI_CONSTANT(F_DWORD, FILE_FLAG_OVERLAPPED);
WINAPI_CONSTANT(F_DWORD, FILE_GENERIC_READ);
WINAPI_CONSTANT(F_DWORD, FILE_GENERIC_WRITE);
WINAPI_CONSTANT(F_DWORD, GENERIC_READ);
WINAPI_CONSTANT(F_DWORD, GENERIC_WRITE);
WINAPI_CONSTANT(F_DWORD, INFINITE);
WINAPI_CONSTANT(F_DWORD, NMPWAIT_WAIT_FOREVER);
WINAPI_CONSTANT(F_DWORD, OPEN_EXISTING);
WINAPI_CONSTANT(F_DWORD, PIPE_ACCESS_DUPLEX);
WINAPI_CONSTANT(F_DWORD, PIPE_ACCESS_INBOUND);
WINAPI_CONSTANT(F_DWORD, PIPE_READMODE_MESSAGE);
WINAPI_CONSTANT(F_DWORD, PIPE_TYPE_MESSAGE);
WINAPI_CONSTANT(F_DWORD, PIPE_UNLIMITED_INSTANCES);
WINAPI_CONSTANT(F_DWORD, PIPE_WAIT);
WINAPI_CONSTANT(F_DWORD, PROCESS_ALL_ACCESS);
WINAPI_CONSTANT(F_DWORD, PROCESS_DUP_HANDLE);
WINAPI_CONSTANT(F_DWORD, STARTF_USESHOWWINDOW);
WINAPI_CONSTANT(F_DWORD, STARTF_USESTDHANDLES);
WINAPI_CONSTANT(F_DWORD, STD_INPUT_HANDLE);
WINAPI_CONSTANT(F_DWORD, STD_OUTPUT_HANDLE);
WINAPI_CONSTANT(F_DWORD, STD_ERROR_HANDLE);
WINAPI_CONSTANT(F_DWORD, STILL_ACTIVE);
WINAPI_CONSTANT(F_DWORD, SW_HIDE);
WINAPI_CONSTANT(F_DWORD, WAIT_OBJECT_0);
WINAPI_CONSTANT(F_DWORD, WAIT_ABANDONED_0);
WINAPI_CONSTANT(F_DWORD, WAIT_TIMEOUT);
WINAPI_CONSTANT("i", NULL);
return m;
}