mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
9359 lines
330 KiB
C++
9359 lines
330 KiB
C++
/*
|
|
* kmp_runtime.cpp -- KPTS runtime support library
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#pragma GCC diagnostic ignored "-Wvolatile" // wut
|
|
|
|
#include "kmp.h"
|
|
#include "kmp_affinity.h"
|
|
#include "kmp_atomic.h"
|
|
#include "kmp_environment.h"
|
|
#include "kmp_error.h"
|
|
#include "kmp_i18n.h"
|
|
#include "kmp_io.h"
|
|
#include "kmp_itt.h"
|
|
#include "kmp_settings.h"
|
|
#include "kmp_stats.h"
|
|
#include "kmp_str.h"
|
|
#include "kmp_wait_release.h"
|
|
#include "kmp_wrapper_getpid.h"
|
|
#include "kmp_dispatch.h"
|
|
#include "kmp_utils.h"
|
|
#if KMP_USE_HIER_SCHED
|
|
#include "kmp_dispatch_hier.h"
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
#include "ompt-specific.h"
|
|
#endif
|
|
#if OMPD_SUPPORT
|
|
#include "ompd-specific.h"
|
|
#endif
|
|
|
|
#if OMP_PROFILING_SUPPORT
|
|
// #include "llvm/Support/TimeProfiler.h"
|
|
static char *ProfileTraceFile = nullptr;
|
|
#endif
|
|
|
|
/* these are temporary issues to be dealt with */
|
|
#define KMP_USE_PRCTL 0
|
|
|
|
#if KMP_OS_WINDOWS
|
|
#include <process.h>
|
|
#endif
|
|
|
|
#ifndef KMP_USE_SHM
|
|
// Windows and WASI do not need these include files as they don't use shared
|
|
// memory.
|
|
#else
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#define SHM_SIZE 1024
|
|
#endif
|
|
|
|
#if defined(KMP_GOMP_COMPAT)
|
|
char const __kmp_version_alt_comp[] =
|
|
KMP_VERSION_PREFIX "alternative compiler support: yes";
|
|
#endif /* defined(KMP_GOMP_COMPAT) */
|
|
|
|
char const __kmp_version_omp_api[] =
|
|
KMP_VERSION_PREFIX "API version: 5.0 (201611)";
|
|
|
|
#ifdef KMP_DEBUG
|
|
char const __kmp_version_lock[] =
|
|
KMP_VERSION_PREFIX "lock type: run time selectable";
|
|
#endif /* KMP_DEBUG */
|
|
|
|
#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
#if KMP_USE_MONITOR
|
|
kmp_info_t __kmp_monitor;
|
|
#endif
|
|
|
|
/* Forward declarations */
|
|
|
|
void __kmp_cleanup(void);
|
|
|
|
static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
|
|
int gtid);
|
|
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
|
|
kmp_internal_control_t *new_icvs,
|
|
ident_t *loc);
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
static void __kmp_partition_places(kmp_team_t *team,
|
|
int update_master_only = 0);
|
|
#endif
|
|
static void __kmp_do_serial_initialize(void);
|
|
void __kmp_fork_barrier(int gtid, int tid);
|
|
void __kmp_join_barrier(int gtid);
|
|
void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
|
|
kmp_internal_control_t *new_icvs, ident_t *loc);
|
|
|
|
#ifdef USE_LOAD_BALANCE
|
|
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
|
|
#endif
|
|
|
|
static int __kmp_expand_threads(int nNeed);
|
|
#if KMP_OS_WINDOWS
|
|
static int __kmp_unregister_root_other_thread(int gtid);
|
|
#endif
|
|
static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
|
|
kmp_info_t *__kmp_thread_pool_insert_pt = NULL;
|
|
|
|
void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
|
|
int new_nthreads);
|
|
void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads);
|
|
|
|
/* Calculate the identifier of the current thread */
|
|
/* fast (and somewhat portable) way to get unique identifier of executing
|
|
thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
|
|
int __kmp_get_global_thread_id() {
|
|
int i;
|
|
kmp_info_t **other_threads;
|
|
size_t stack_data;
|
|
char *stack_addr;
|
|
size_t stack_size;
|
|
char *stack_base;
|
|
|
|
KA_TRACE(
|
|
1000,
|
|
("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n",
|
|
__kmp_nth, __kmp_all_nth));
|
|
|
|
/* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
|
|
a parallel region, made it return KMP_GTID_DNE to force serial_initialize
|
|
by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
|
|
__kmp_init_gtid for this to work. */
|
|
|
|
if (!TCR_4(__kmp_init_gtid))
|
|
return KMP_GTID_DNE;
|
|
|
|
#ifdef KMP_TDATA_GTID
|
|
if (TCR_4(__kmp_gtid_mode) >= 3) {
|
|
KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
|
|
return __kmp_gtid;
|
|
}
|
|
#endif
|
|
if (TCR_4(__kmp_gtid_mode) >= 2) {
|
|
KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
|
|
return __kmp_gtid_get_specific();
|
|
}
|
|
KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));
|
|
|
|
stack_addr = (char *)&stack_data;
|
|
other_threads = __kmp_threads;
|
|
|
|
/* ATT: The code below is a source of potential bugs due to unsynchronized
|
|
access to __kmp_threads array. For example:
|
|
1. Current thread loads other_threads[i] to thr and checks it, it is
|
|
non-NULL.
|
|
2. Current thread is suspended by OS.
|
|
3. Another thread unregisters and finishes (debug versions of free()
|
|
may fill memory with something like 0xEF).
|
|
4. Current thread is resumed.
|
|
5. Current thread reads junk from *thr.
|
|
TODO: Fix it. --ln */
|
|
|
|
for (i = 0; i < __kmp_threads_capacity; i++) {
|
|
|
|
kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
|
|
if (!thr)
|
|
continue;
|
|
|
|
stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
|
|
stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);
|
|
|
|
/* stack grows down -- search through all of the active threads */
|
|
|
|
if (stack_addr <= stack_base) {
|
|
size_t stack_diff = stack_base - stack_addr;
|
|
|
|
if (stack_diff <= stack_size) {
|
|
/* The only way we can be closer than the allocated */
|
|
/* stack size is if we are running on this thread. */
|
|
// __kmp_gtid_get_specific can return negative value because this
|
|
// function can be called by thread destructor. However, before the
|
|
// thread destructor is called, the value of the corresponding
|
|
// thread-specific data will be reset to NULL.
|
|
KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() < 0 ||
|
|
__kmp_gtid_get_specific() == i);
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* get specific to try and determine our gtid */
|
|
KA_TRACE(1000,
|
|
("*** __kmp_get_global_thread_id: internal alg. failed to find "
|
|
"thread, using TLS\n"));
|
|
i = __kmp_gtid_get_specific();
|
|
|
|
/*fprintf( stderr, "=== %d\n", i ); */ /* GROO */
|
|
|
|
/* if we havn't been assigned a gtid, then return code */
|
|
if (i < 0)
|
|
return i;
|
|
|
|
// other_threads[i] can be nullptr at this point because the corresponding
|
|
// thread could have already been destructed. It can happen when this function
|
|
// is called in end library routine.
|
|
if (!TCR_SYNC_PTR(other_threads[i]))
|
|
return i;
|
|
|
|
/* dynamically updated stack window for uber threads to avoid get_specific
|
|
call */
|
|
if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
|
|
KMP_FATAL(StackOverflow, i);
|
|
}
|
|
|
|
stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
|
|
if (stack_addr > stack_base) {
|
|
TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
|
|
TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
|
|
other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
|
|
stack_base);
|
|
} else {
|
|
TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
|
|
stack_base - stack_addr);
|
|
}
|
|
|
|
/* Reprint stack bounds for ubermaster since they have been refined */
|
|
if (__kmp_storage_map) {
|
|
char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
|
|
char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
|
|
__kmp_print_storage_map_gtid(i, stack_beg, stack_end,
|
|
other_threads[i]->th.th_info.ds.ds_stacksize,
|
|
"th_%d stack (refinement)", i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
int __kmp_get_global_thread_id_reg() {
|
|
int gtid;
|
|
|
|
if (!__kmp_init_serial) {
|
|
gtid = KMP_GTID_DNE;
|
|
} else
|
|
#ifdef KMP_TDATA_GTID
|
|
if (TCR_4(__kmp_gtid_mode) >= 3) {
|
|
KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
|
|
gtid = __kmp_gtid;
|
|
} else
|
|
#endif
|
|
if (TCR_4(__kmp_gtid_mode) >= 2) {
|
|
KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
|
|
gtid = __kmp_gtid_get_specific();
|
|
} else {
|
|
KA_TRACE(1000,
|
|
("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
|
|
gtid = __kmp_get_global_thread_id();
|
|
}
|
|
|
|
/* we must be a new uber master sibling thread */
|
|
if (gtid == KMP_GTID_DNE) {
|
|
KA_TRACE(10,
|
|
("__kmp_get_global_thread_id_reg: Encountered new root thread. "
|
|
"Registering a new gtid.\n"));
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (!__kmp_init_serial) {
|
|
__kmp_do_serial_initialize();
|
|
gtid = __kmp_gtid_get_specific();
|
|
} else {
|
|
gtid = __kmp_register_root(FALSE);
|
|
}
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
/*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(gtid >= 0);
|
|
|
|
return gtid;
|
|
}
|
|
|
|
/* caller must hold forkjoin_lock */
|
|
void __kmp_check_stack_overlap(kmp_info_t *th) {
|
|
int f;
|
|
char *stack_beg = NULL;
|
|
char *stack_end = NULL;
|
|
int gtid;
|
|
|
|
KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
|
|
if (__kmp_storage_map) {
|
|
stack_end = (char *)th->th.th_info.ds.ds_stackbase;
|
|
stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
|
|
|
|
gtid = __kmp_gtid_from_thread(th);
|
|
|
|
if (gtid == KMP_GTID_MONITOR) {
|
|
__kmp_print_storage_map_gtid(
|
|
gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
|
|
"th_%s stack (%s)", "mon",
|
|
(th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
|
|
} else {
|
|
__kmp_print_storage_map_gtid(
|
|
gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
|
|
"th_%d stack (%s)", gtid,
|
|
(th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
|
|
}
|
|
}
|
|
|
|
/* No point in checking ubermaster threads since they use refinement and
|
|
* cannot overlap */
|
|
gtid = __kmp_gtid_from_thread(th);
|
|
if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
|
|
KA_TRACE(10,
|
|
("__kmp_check_stack_overlap: performing extensive checking\n"));
|
|
if (stack_beg == NULL) {
|
|
stack_end = (char *)th->th.th_info.ds.ds_stackbase;
|
|
stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
|
|
}
|
|
|
|
for (f = 0; f < __kmp_threads_capacity; f++) {
|
|
kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);
|
|
|
|
if (f_th && f_th != th) {
|
|
char *other_stack_end =
|
|
(char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
|
|
char *other_stack_beg =
|
|
other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
|
|
if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
|
|
(stack_end > other_stack_beg && stack_end < other_stack_end)) {
|
|
|
|
/* Print the other stack values before the abort */
|
|
if (__kmp_storage_map)
|
|
__kmp_print_storage_map_gtid(
|
|
-1, other_stack_beg, other_stack_end,
|
|
(size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
|
|
"th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));
|
|
|
|
__kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
|
|
__kmp_msg_null);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
void __kmp_infinite_loop(void) {
|
|
static int done = FALSE;
|
|
|
|
while (!done) {
|
|
KMP_YIELD(TRUE);
|
|
}
|
|
}
|
|
|
|
#define MAX_MESSAGE 512
|
|
|
|
void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
|
|
char const *format, ...) {
|
|
char buffer[MAX_MESSAGE];
|
|
va_list ap;
|
|
|
|
va_start(ap, format);
|
|
KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
|
|
p2, (unsigned long)size, format);
|
|
__kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
|
|
__kmp_vprintf(kmp_err, buffer, ap);
|
|
#if KMP_PRINT_DATA_PLACEMENT
|
|
int node;
|
|
if (gtid >= 0) {
|
|
if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
|
|
if (__kmp_storage_map_verbose) {
|
|
node = __kmp_get_host_node(p1);
|
|
if (node < 0) /* doesn't work, so don't try this next time */
|
|
__kmp_storage_map_verbose = FALSE;
|
|
else {
|
|
char *last;
|
|
int lastNode;
|
|
int localProc = __kmp_get_cpu_from_gtid(gtid);
|
|
|
|
const int page_size = KMP_GET_PAGE_SIZE();
|
|
|
|
p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
|
|
p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
|
|
if (localProc >= 0)
|
|
__kmp_printf_no_lock(" GTID %d localNode %d\n", gtid,
|
|
localProc >> 1);
|
|
else
|
|
__kmp_printf_no_lock(" GTID %d\n", gtid);
|
|
#if KMP_USE_PRCTL
|
|
/* The more elaborate format is disabled for now because of the prctl
|
|
* hanging bug. */
|
|
do {
|
|
last = p1;
|
|
lastNode = node;
|
|
/* This loop collates adjacent pages with the same host node. */
|
|
do {
|
|
(char *)p1 += page_size;
|
|
} while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
|
|
__kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1,
|
|
lastNode);
|
|
} while (p1 <= p2);
|
|
#else
|
|
__kmp_printf_no_lock(" %p-%p memNode %d\n", p1,
|
|
(char *)p1 + (page_size - 1),
|
|
__kmp_get_host_node(p1));
|
|
if (p1 < p2) {
|
|
__kmp_printf_no_lock(" %p-%p memNode %d\n", p2,
|
|
(char *)p2 + (page_size - 1),
|
|
__kmp_get_host_node(p2));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
} else
|
|
__kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning));
|
|
}
|
|
#endif /* KMP_PRINT_DATA_PLACEMENT */
|
|
__kmp_release_bootstrap_lock(&__kmp_stdio_lock);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void __kmp_warn(char const *format, ...) {
|
|
char buffer[MAX_MESSAGE];
|
|
va_list ap;
|
|
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
return;
|
|
}
|
|
|
|
va_start(ap, format);
|
|
|
|
KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
|
|
__kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
|
|
__kmp_vprintf(kmp_err, buffer, ap);
|
|
__kmp_release_bootstrap_lock(&__kmp_stdio_lock);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void __kmp_abort_process() {
|
|
// Later threads may stall here, but that's ok because abort() will kill them.
|
|
__kmp_acquire_bootstrap_lock(&__kmp_exit_lock);
|
|
|
|
if (__kmp_debug_buf) {
|
|
__kmp_dump_debug_buffer();
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
// Let other threads know of abnormal termination and prevent deadlock
|
|
// if abort happened during library initialization or shutdown
|
|
__kmp_global.g.g_abort = SIGABRT;
|
|
|
|
/* On Windows* OS by default abort() causes pop-up error box, which stalls
|
|
nightly testing. Unfortunately, we cannot reliably suppress pop-up error
|
|
boxes. _set_abort_behavior() works well, but this function is not
|
|
available in VS7 (this is not problem for DLL, but it is a problem for
|
|
static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
|
|
help, at least in some versions of MS C RTL.
|
|
|
|
It seems following sequence is the only way to simulate abort() and
|
|
avoid pop-up error box. */
|
|
raise(SIGABRT);
|
|
_exit(3); // Just in case, if signal ignored, exit anyway.
|
|
#else
|
|
__kmp_unregister_library();
|
|
abort();
|
|
#endif
|
|
|
|
__kmp_infinite_loop();
|
|
__kmp_release_bootstrap_lock(&__kmp_exit_lock);
|
|
|
|
} // __kmp_abort_process
|
|
|
|
void __kmp_abort_thread(void) {
|
|
// TODO: Eliminate g_abort global variable and this function.
|
|
// In case of abort just call abort(), it will kill all the threads.
|
|
__kmp_infinite_loop();
|
|
} // __kmp_abort_thread
|
|
|
|
/* Print out the storage map for the major kmp_info_t thread data structures
|
|
that are allocated together. */
|
|
|
|
static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
|
|
__kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
|
|
gtid);
|
|
|
|
__kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
|
|
sizeof(kmp_desc_t), "th_%d.th_info", gtid);
|
|
|
|
__kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
|
|
sizeof(kmp_local_t), "th_%d.th_local", gtid);
|
|
|
|
__kmp_print_storage_map_gtid(
|
|
gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
|
|
sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);
|
|
|
|
__kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
|
|
&thr->th.th_bar[bs_plain_barrier + 1],
|
|
sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
|
|
gtid);
|
|
|
|
__kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
|
|
&thr->th.th_bar[bs_forkjoin_barrier + 1],
|
|
sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
|
|
gtid);
|
|
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
__kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
|
|
&thr->th.th_bar[bs_reduction_barrier + 1],
|
|
sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
|
|
gtid);
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
}
|
|
|
|
/* Print out the storage map for the major kmp_team_t team data structures
|
|
that are allocated together. */
|
|
|
|
static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
|
|
int team_id, int num_thr) {
|
|
int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
|
|
__kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
|
|
header, team_id);
|
|
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
|
|
&team->t.t_bar[bs_last_barrier],
|
|
sizeof(kmp_balign_team_t) * bs_last_barrier,
|
|
"%s_%d.t_bar", header, team_id);
|
|
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
|
|
&team->t.t_bar[bs_plain_barrier + 1],
|
|
sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
|
|
header, team_id);
|
|
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
|
|
&team->t.t_bar[bs_forkjoin_barrier + 1],
|
|
sizeof(kmp_balign_team_t),
|
|
"%s_%d.t_bar[forkjoin]", header, team_id);
|
|
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
|
|
&team->t.t_bar[bs_reduction_barrier + 1],
|
|
sizeof(kmp_balign_team_t),
|
|
"%s_%d.t_bar[reduction]", header, team_id);
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
|
|
__kmp_print_storage_map_gtid(
|
|
-1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
|
|
sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);
|
|
|
|
__kmp_print_storage_map_gtid(
|
|
-1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
|
|
sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);
|
|
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
|
|
&team->t.t_disp_buffer[num_disp_buff],
|
|
sizeof(dispatch_shared_info_t) * num_disp_buff,
|
|
"%s_%d.t_disp_buffer", header, team_id);
|
|
}
|
|
|
|
static void __kmp_init_allocator() {
|
|
__kmp_init_memkind();
|
|
__kmp_init_target_mem();
|
|
}
|
|
static void __kmp_fini_allocator() { __kmp_fini_memkind(); }
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
#if ENABLE_LIBOMPTARGET
|
|
static void __kmp_init_omptarget() {
|
|
__kmp_init_target_task();
|
|
}
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
#if KMP_DYNAMIC_LIB
|
|
#if KMP_OS_WINDOWS
|
|
|
|
BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
|
|
//__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );
|
|
|
|
switch (fdwReason) {
|
|
|
|
case DLL_PROCESS_ATTACH:
|
|
KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));
|
|
|
|
return TRUE;
|
|
|
|
case DLL_PROCESS_DETACH:
|
|
KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));
|
|
|
|
// According to Windows* documentation for DllMain entry point:
|
|
// for DLL_PROCESS_DETACH, lpReserved is used for telling the difference:
|
|
// lpReserved == NULL when FreeLibrary() is called,
|
|
// lpReserved != NULL when the process is terminated.
|
|
// When FreeLibrary() is called, worker threads remain alive. So the
|
|
// runtime's state is consistent and executing proper shutdown is OK.
|
|
// When the process is terminated, worker threads have exited or been
|
|
// forcefully terminated by the OS and only the shutdown thread remains.
|
|
// This can leave the runtime in an inconsistent state.
|
|
// Hence, only attempt proper cleanup when FreeLibrary() is called.
|
|
// Otherwise, rely on OS to reclaim resources.
|
|
if (lpReserved == NULL)
|
|
__kmp_internal_end_library(__kmp_gtid_get_specific());
|
|
|
|
return TRUE;
|
|
|
|
case DLL_THREAD_ATTACH:
|
|
KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));
|
|
|
|
/* if we want to register new siblings all the time here call
|
|
* __kmp_get_gtid(); */
|
|
return TRUE;
|
|
|
|
case DLL_THREAD_DETACH:
|
|
KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));
|
|
|
|
__kmp_internal_end_thread(__kmp_gtid_get_specific());
|
|
return TRUE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#endif /* KMP_OS_WINDOWS */
|
|
#endif /* KMP_DYNAMIC_LIB */
|
|
|
|
/* __kmp_parallel_deo -- Wait until it's our turn. */
|
|
void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
|
|
int gtid = *gtid_ref;
|
|
#ifdef BUILD_PARALLEL_ORDERED
|
|
kmp_team_t *team = __kmp_team_from_gtid(gtid);
|
|
#endif /* BUILD_PARALLEL_ORDERED */
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if (__kmp_threads[gtid]->th.th_root->r.r_active)
|
|
#if KMP_USE_DYNAMIC_LOCK
|
|
__kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
|
|
#else
|
|
__kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
|
|
#endif
|
|
}
|
|
#ifdef BUILD_PARALLEL_ORDERED
|
|
if (!team->t.t_serialized) {
|
|
KMP_MB();
|
|
KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
|
|
NULL);
|
|
KMP_MB();
|
|
}
|
|
#endif /* BUILD_PARALLEL_ORDERED */
|
|
}
|
|
|
|
/* __kmp_parallel_dxo -- Signal the next task. */
|
|
void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
|
|
int gtid = *gtid_ref;
|
|
#ifdef BUILD_PARALLEL_ORDERED
|
|
int tid = __kmp_tid_from_gtid(gtid);
|
|
kmp_team_t *team = __kmp_team_from_gtid(gtid);
|
|
#endif /* BUILD_PARALLEL_ORDERED */
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if (__kmp_threads[gtid]->th.th_root->r.r_active)
|
|
__kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
|
|
}
|
|
#ifdef BUILD_PARALLEL_ORDERED
|
|
if (!team->t.t_serialized) {
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* use the tid of the next thread in this team */
|
|
/* TODO replace with general release procedure */
|
|
team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
#endif /* BUILD_PARALLEL_ORDERED */
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
/* The BARRIER for a SINGLE process section is always explicit */
|
|
|
|
int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
|
|
int status;
|
|
kmp_info_t *th;
|
|
kmp_team_t *team;
|
|
|
|
if (!TCR_4(__kmp_init_parallel))
|
|
__kmp_parallel_initialize();
|
|
__kmp_resume_if_soft_paused();
|
|
|
|
th = __kmp_threads[gtid];
|
|
team = th->th.th_team;
|
|
status = 0;
|
|
|
|
th->th.th_ident = id_ref;
|
|
|
|
if (team->t.t_serialized) {
|
|
status = 1;
|
|
} else {
|
|
kmp_int32 old_this = th->th.th_local.this_construct;
|
|
|
|
++th->th.th_local.this_construct;
|
|
/* try to set team count to thread count--success means thread got the
|
|
single block */
|
|
/* TODO: Should this be acquire or release? */
|
|
if (team->t.t_construct == old_this) {
|
|
status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
|
|
th->th.th_local.this_construct);
|
|
}
|
|
#if USE_ITT_BUILD
|
|
if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
|
|
KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
|
|
team->t.t_active_level == 1) {
|
|
// Only report metadata by primary thread of active team at level 1
|
|
__kmp_itt_metadata_single(id_ref);
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
}
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if (status && push_ws) {
|
|
__kmp_push_workshare(gtid, ct_psingle, id_ref);
|
|
} else {
|
|
__kmp_check_workshare(gtid, ct_psingle, id_ref);
|
|
}
|
|
}
|
|
#if USE_ITT_BUILD
|
|
if (status) {
|
|
__kmp_itt_single_start(gtid);
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
return status;
|
|
}
|
|
|
|
void __kmp_exit_single(int gtid) {
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_single_end(gtid);
|
|
#endif /* USE_ITT_BUILD */
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_workshare(gtid, ct_psingle, NULL);
|
|
}
|
|
|
|
/* determine if we can go parallel or must use a serialized parallel region and
|
|
* how many threads we can use
|
|
* set_nproc is the number of threads requested for the team
|
|
* returns 0 if we should serialize or only use one thread,
|
|
* otherwise the number of threads to use
|
|
* The forkjoin lock is held by the caller. */
|
|
static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
|
|
int master_tid, int set_nthreads,
|
|
int enter_teams) {
|
|
int capacity;
|
|
int new_nthreads;
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
KMP_DEBUG_ASSERT(root && parent_team);
|
|
kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];
|
|
|
|
// If dyn-var is set, dynamically adjust the number of desired threads,
|
|
// according to the method specified by dynamic_mode.
|
|
new_nthreads = set_nthreads;
|
|
if (!get__dynamic_2(parent_team, master_tid)) {
|
|
;
|
|
}
|
|
#ifdef USE_LOAD_BALANCE
|
|
else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
|
|
new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
|
|
if (new_nthreads == 1) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
|
|
"reservation to 1 thread\n",
|
|
master_tid));
|
|
return 1;
|
|
}
|
|
if (new_nthreads < set_nthreads) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
|
|
"reservation to %d threads\n",
|
|
master_tid, new_nthreads));
|
|
}
|
|
}
|
|
#endif /* USE_LOAD_BALANCE */
|
|
else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
|
|
new_nthreads = __kmp_avail_proc - __kmp_nth +
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
|
|
if (new_nthreads <= 1) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
|
|
"reservation to 1 thread\n",
|
|
master_tid));
|
|
return 1;
|
|
}
|
|
if (new_nthreads < set_nthreads) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
|
|
"reservation to %d threads\n",
|
|
master_tid, new_nthreads));
|
|
} else {
|
|
new_nthreads = set_nthreads;
|
|
}
|
|
} else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
|
|
if (set_nthreads > 2) {
|
|
new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
|
|
new_nthreads = (new_nthreads % set_nthreads) + 1;
|
|
if (new_nthreads == 1) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
|
|
"reservation to 1 thread\n",
|
|
master_tid));
|
|
return 1;
|
|
}
|
|
if (new_nthreads < set_nthreads) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
|
|
"reservation to %d threads\n",
|
|
master_tid, new_nthreads));
|
|
}
|
|
}
|
|
} else {
|
|
KMP_ASSERT(0);
|
|
}
|
|
|
|
// Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
|
|
if (__kmp_nth + new_nthreads -
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
|
|
__kmp_max_nth) {
|
|
int tl_nthreads = __kmp_max_nth - __kmp_nth +
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
|
|
if (tl_nthreads <= 0) {
|
|
tl_nthreads = 1;
|
|
}
|
|
|
|
// If dyn-var is false, emit a 1-time warning.
|
|
if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
|
|
__kmp_reserve_warn = 1;
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
|
|
KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
|
|
}
|
|
if (tl_nthreads == 1) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
|
|
"reduced reservation to 1 thread\n",
|
|
master_tid));
|
|
return 1;
|
|
}
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
|
|
"reservation to %d threads\n",
|
|
master_tid, tl_nthreads));
|
|
new_nthreads = tl_nthreads;
|
|
}
|
|
|
|
// Respect OMP_THREAD_LIMIT
|
|
int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
|
|
int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
|
|
if (cg_nthreads + new_nthreads -
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
|
|
max_cg_threads) {
|
|
int tl_nthreads = max_cg_threads - cg_nthreads +
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
|
|
if (tl_nthreads <= 0) {
|
|
tl_nthreads = 1;
|
|
}
|
|
|
|
// If dyn-var is false, emit a 1-time warning.
|
|
if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
|
|
__kmp_reserve_warn = 1;
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
|
|
KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
|
|
}
|
|
if (tl_nthreads == 1) {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
|
|
"reduced reservation to 1 thread\n",
|
|
master_tid));
|
|
return 1;
|
|
}
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
|
|
"reservation to %d threads\n",
|
|
master_tid, tl_nthreads));
|
|
new_nthreads = tl_nthreads;
|
|
}
|
|
|
|
// Check if the threads array is large enough, or needs expanding.
|
|
// See comment in __kmp_register_root() about the adjustment if
|
|
// __kmp_threads[0] == NULL.
|
|
capacity = __kmp_threads_capacity;
|
|
if (TCR_PTR(__kmp_threads[0]) == NULL) {
|
|
--capacity;
|
|
}
|
|
// If it is not for initializing the hidden helper team, we need to take
|
|
// __kmp_hidden_helper_threads_num out of the capacity because it is included
|
|
// in __kmp_threads_capacity.
|
|
if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
|
|
capacity -= __kmp_hidden_helper_threads_num;
|
|
}
|
|
if (__kmp_nth + new_nthreads -
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
|
|
capacity) {
|
|
// Expand the threads array.
|
|
int slotsRequired = __kmp_nth + new_nthreads -
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
|
|
capacity;
|
|
int slotsAdded = __kmp_expand_threads(slotsRequired);
|
|
if (slotsAdded < slotsRequired) {
|
|
// The threads array was not expanded enough.
|
|
new_nthreads -= (slotsRequired - slotsAdded);
|
|
KMP_ASSERT(new_nthreads >= 1);
|
|
|
|
// If dyn-var is false, emit a 1-time warning.
|
|
if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
|
|
__kmp_reserve_warn = 1;
|
|
if (__kmp_tp_cached) {
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
|
|
KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
|
|
KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
|
|
} else {
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
|
|
KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef KMP_DEBUG
|
|
if (new_nthreads == 1) {
|
|
KC_TRACE(10,
|
|
("__kmp_reserve_threads: T#%d serializing team after reclaiming "
|
|
"dead roots and rechecking; requested %d threads\n",
|
|
__kmp_get_gtid(), set_nthreads));
|
|
} else {
|
|
KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
|
|
" %d threads\n",
|
|
__kmp_get_gtid(), new_nthreads, set_nthreads));
|
|
}
|
|
#endif // KMP_DEBUG
|
|
return new_nthreads;
|
|
}
|
|
|
|
/* Allocate threads from the thread pool and assign them to the new team. We are
|
|
assured that there are enough threads available, because we checked on that
|
|
earlier within critical section forkjoin */
|
|
static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
|
|
kmp_info_t *master_th, int master_gtid,
|
|
int fork_teams_workers) {
|
|
int i;
|
|
int use_hot_team;
|
|
|
|
KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
|
|
KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
|
|
KMP_MB();
|
|
|
|
/* first, let's setup the primary thread */
|
|
master_th->th.th_info.ds.ds_tid = 0;
|
|
master_th->th.th_team = team;
|
|
master_th->th.th_team_nproc = team->t.t_nproc;
|
|
master_th->th.th_team_master = master_th;
|
|
master_th->th.th_team_serialized = FALSE;
|
|
master_th->th.th_dispatch = &team->t.t_dispatch[0];
|
|
|
|
/* make sure we are not the optimized hot team */
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
use_hot_team = 0;
|
|
kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
|
|
if (hot_teams) { // hot teams array is not allocated if
|
|
// KMP_HOT_TEAMS_MAX_LEVEL=0
|
|
int level = team->t.t_active_level - 1; // index in array of hot teams
|
|
if (master_th->th.th_teams_microtask) { // are we inside the teams?
|
|
if (master_th->th.th_teams_size.nteams > 1) {
|
|
++level; // level was not increased in teams construct for
|
|
// team_of_masters
|
|
}
|
|
if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
|
|
master_th->th.th_teams_level == team->t.t_level) {
|
|
++level; // level was not increased in teams construct for
|
|
// team_of_workers before the parallel
|
|
} // team->t.t_level will be increased inside parallel
|
|
}
|
|
if (level < __kmp_hot_teams_max_level) {
|
|
if (hot_teams[level].hot_team) {
|
|
// hot team has already been allocated for given level
|
|
KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
|
|
use_hot_team = 1; // the team is ready to use
|
|
} else {
|
|
use_hot_team = 0; // AC: threads are not allocated yet
|
|
hot_teams[level].hot_team = team; // remember new hot team
|
|
hot_teams[level].hot_team_nth = team->t.t_nproc;
|
|
}
|
|
} else {
|
|
use_hot_team = 0;
|
|
}
|
|
}
|
|
#else
|
|
use_hot_team = team == root->r.r_hot_team;
|
|
#endif
|
|
if (!use_hot_team) {
|
|
|
|
/* install the primary thread */
|
|
team->t.t_threads[0] = master_th;
|
|
__kmp_initialize_info(master_th, team, 0, master_gtid);
|
|
|
|
/* now, install the worker threads */
|
|
for (i = 1; i < team->t.t_nproc; i++) {
|
|
|
|
/* fork or reallocate a new thread and install it in team */
|
|
kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
|
|
team->t.t_threads[i] = thr;
|
|
KMP_DEBUG_ASSERT(thr);
|
|
KMP_DEBUG_ASSERT(thr->th.th_team == team);
|
|
/* align team and thread arrived states */
|
|
KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
|
|
"T#%d(%d:%d) join =%llu, plain=%llu\n",
|
|
__kmp_gtid_from_tid(0, team), team->t.t_id, 0,
|
|
__kmp_gtid_from_tid(i, team), team->t.t_id, i,
|
|
team->t.t_bar[bs_forkjoin_barrier].b_arrived,
|
|
team->t.t_bar[bs_plain_barrier].b_arrived));
|
|
thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
|
|
thr->th.th_teams_level = master_th->th.th_teams_level;
|
|
thr->th.th_teams_size = master_th->th.th_teams_size;
|
|
{ // Initialize threads' barrier data.
|
|
int b;
|
|
kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
|
|
#if USE_DEBUGGER
|
|
balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// Do not partition the places list for teams construct workers who
|
|
// haven't actually been forked to do real work yet. This partitioning
|
|
// will take place in the parallel region nested within the teams construct.
|
|
if (!fork_teams_workers) {
|
|
__kmp_partition_places(team);
|
|
}
|
|
#endif
|
|
|
|
if (team->t.t_nproc > 1 &&
|
|
__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
team->t.b->update_num_threads(team->t.t_nproc);
|
|
__kmp_add_threads_to_team(team, team->t.t_nproc);
|
|
}
|
|
}
|
|
|
|
if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
|
|
for (i = 0; i < team->t.t_nproc; i++) {
|
|
kmp_info_t *thr = team->t.t_threads[i];
|
|
if (thr->th.th_prev_num_threads != team->t.t_nproc ||
|
|
thr->th.th_prev_level != team->t.t_level) {
|
|
team->t.t_display_affinity = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
KMP_MB();
|
|
}
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
// Propagate any changes to the floating point control registers out to the team
|
|
// We try to avoid unnecessary writes to the relevant cache line in the team
|
|
// structure, so we don't make changes unless they are needed.
|
|
inline static void propagateFPControl(kmp_team_t *team) {
|
|
if (__kmp_inherit_fp_control) {
|
|
kmp_int16 x87_fpu_control_word;
|
|
kmp_uint32 mxcsr;
|
|
|
|
// Get primary thread's values of FPU control flags (both X87 and vector)
|
|
__kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
|
|
__kmp_store_mxcsr(&mxcsr);
|
|
mxcsr &= KMP_X86_MXCSR_MASK;
|
|
|
|
// There is no point looking at t_fp_control_saved here.
|
|
// If it is TRUE, we still have to update the values if they are different
|
|
// from those we now have. If it is FALSE we didn't save anything yet, but
|
|
// our objective is the same. We have to ensure that the values in the team
|
|
// are the same as those we have.
|
|
// So, this code achieves what we need whether or not t_fp_control_saved is
|
|
// true. By checking whether the value needs updating we avoid unnecessary
|
|
// writes that would put the cache-line into a written state, causing all
|
|
// threads in the team to have to read it again.
|
|
KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
|
|
KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
|
|
// Although we don't use this value, other code in the runtime wants to know
|
|
// whether it should restore them. So we must ensure it is correct.
|
|
KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
|
|
} else {
|
|
// Similarly here. Don't write to this cache-line in the team structure
|
|
// unless we have to.
|
|
KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
|
|
}
|
|
}
|
|
|
|
// Do the opposite, setting the hardware registers to the updated values from
|
|
// the team.
|
|
inline static void updateHWFPControl(kmp_team_t *team) {
|
|
if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
|
|
// Only reset the fp control regs if they have been changed in the team.
|
|
// the parallel region that we are exiting.
|
|
kmp_int16 x87_fpu_control_word;
|
|
kmp_uint32 mxcsr;
|
|
__kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
|
|
__kmp_store_mxcsr(&mxcsr);
|
|
mxcsr &= KMP_X86_MXCSR_MASK;
|
|
|
|
if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
|
|
__kmp_clear_x87_fpu_status_word();
|
|
__kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
|
|
}
|
|
|
|
if (team->t.t_mxcsr != mxcsr) {
|
|
__kmp_load_mxcsr(&team->t.t_mxcsr);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#define propagateFPControl(x) ((void)0)
|
|
#define updateHWFPControl(x) ((void)0)
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
|
|
int realloc); // forward declaration
|
|
|
|
/* Run a parallel region that has been serialized, so runs only in a team of the
|
|
single primary thread. */
|
|
void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
|
|
kmp_info_t *this_thr;
|
|
kmp_team_t *serial_team;
|
|
|
|
KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));
|
|
|
|
/* Skip all this code for autopar serialized loops since it results in
|
|
unacceptable overhead */
|
|
if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
|
|
return;
|
|
|
|
if (!TCR_4(__kmp_init_parallel))
|
|
__kmp_parallel_initialize();
|
|
__kmp_resume_if_soft_paused();
|
|
|
|
this_thr = __kmp_threads[global_tid];
|
|
serial_team = this_thr->th.th_serial_team;
|
|
|
|
/* utilize the serialized team held by this thread */
|
|
KMP_DEBUG_ASSERT(serial_team);
|
|
KMP_MB();
|
|
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
KMP_DEBUG_ASSERT(
|
|
this_thr->th.th_task_team ==
|
|
this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
|
|
NULL);
|
|
KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
|
|
"team %p, new task_team = NULL\n",
|
|
global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
|
|
this_thr->th.th_task_team = NULL;
|
|
}
|
|
|
|
kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
|
|
if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
|
|
proc_bind = proc_bind_false;
|
|
} else if (proc_bind == proc_bind_default) {
|
|
// No proc_bind clause was specified, so use the current value
|
|
// of proc-bind-var for this parallel region.
|
|
proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
|
|
}
|
|
// Reset for next parallel region
|
|
this_thr->th.th_set_proc_bind = proc_bind_default;
|
|
|
|
// Reset num_threads for next parallel region
|
|
this_thr->th.th_set_nproc = 0;
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t ompt_parallel_data = ompt_data_none;
|
|
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
|
|
if (ompt_enabled.enabled &&
|
|
this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
|
|
|
|
ompt_task_info_t *parent_task_info;
|
|
parent_task_info = OMPT_CUR_TASK_INFO(this_thr);
|
|
|
|
parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
|
|
if (ompt_enabled.ompt_callback_parallel_begin) {
|
|
int team_size = 1;
|
|
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
|
|
&(parent_task_info->task_data), &(parent_task_info->frame),
|
|
&ompt_parallel_data, team_size,
|
|
ompt_parallel_invoker_program | ompt_parallel_team, codeptr);
|
|
}
|
|
}
|
|
#endif // OMPT_SUPPORT
|
|
|
|
if (this_thr->th.th_team != serial_team) {
|
|
// Nested level will be an index in the nested nthreads array
|
|
int level = this_thr->th.th_team->t.t_level;
|
|
|
|
if (serial_team->t.t_serialized) {
|
|
/* this serial team was already used
|
|
TODO increase performance by making this locks more specific */
|
|
kmp_team_t *new_team;
|
|
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
new_team =
|
|
__kmp_allocate_team(this_thr->th.th_root, 1, 1,
|
|
#if OMPT_SUPPORT
|
|
ompt_parallel_data,
|
|
#endif
|
|
proc_bind, &this_thr->th.th_current_task->td_icvs,
|
|
0 USE_NESTED_HOT_ARG(NULL));
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
KMP_ASSERT(new_team);
|
|
|
|
/* setup new serialized team and install it */
|
|
new_team->t.t_threads[0] = this_thr;
|
|
new_team->t.t_parent = this_thr->th.th_team;
|
|
serial_team = new_team;
|
|
this_thr->th.th_serial_team = serial_team;
|
|
|
|
KF_TRACE(
|
|
10,
|
|
("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
|
|
global_tid, serial_team));
|
|
|
|
/* TODO the above breaks the requirement that if we run out of resources,
|
|
then we can still guarantee that serialized teams are ok, since we may
|
|
need to allocate a new one */
|
|
} else {
|
|
KF_TRACE(
|
|
10,
|
|
("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
|
|
global_tid, serial_team));
|
|
}
|
|
|
|
/* we have to initialize this serial team */
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_threads);
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
|
|
serial_team->t.t_ident = loc;
|
|
serial_team->t.t_serialized = 1;
|
|
serial_team->t.t_nproc = 1;
|
|
serial_team->t.t_parent = this_thr->th.th_team;
|
|
serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
|
|
this_thr->th.th_team = serial_team;
|
|
serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;
|
|
|
|
KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d curtask=%p\n", global_tid,
|
|
this_thr->th.th_current_task));
|
|
KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
|
|
this_thr->th.th_current_task->td_flags.executing = 0;
|
|
|
|
__kmp_push_current_task_to_thread(this_thr, serial_team, 0);
|
|
|
|
/* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
|
|
implicit task for each serialized task represented by
|
|
team->t.t_serialized? */
|
|
copy_icvs(&this_thr->th.th_current_task->td_icvs,
|
|
&this_thr->th.th_current_task->td_parent->td_icvs);
|
|
|
|
// Thread value exists in the nested nthreads array for the next nested
|
|
// level
|
|
if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
|
|
this_thr->th.th_current_task->td_icvs.nproc =
|
|
__kmp_nested_nth.nth[level + 1];
|
|
}
|
|
|
|
if (__kmp_nested_proc_bind.used &&
|
|
(level + 1 < __kmp_nested_proc_bind.used)) {
|
|
this_thr->th.th_current_task->td_icvs.proc_bind =
|
|
__kmp_nested_proc_bind.bind_types[level + 1];
|
|
}
|
|
|
|
#if USE_DEBUGGER
|
|
serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
|
|
#endif
|
|
this_thr->th.th_info.ds.ds_tid = 0;
|
|
|
|
/* set thread cache values */
|
|
this_thr->th.th_team_nproc = 1;
|
|
this_thr->th.th_team_master = this_thr;
|
|
this_thr->th.th_team_serialized = 1;
|
|
|
|
serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
|
|
serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
|
|
serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save
|
|
|
|
propagateFPControl(serial_team);
|
|
|
|
/* check if we need to allocate dispatch buffers stack */
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
|
|
if (!serial_team->t.t_dispatch->th_disp_buffer) {
|
|
serial_team->t.t_dispatch->th_disp_buffer =
|
|
(dispatch_private_info_t *)__kmp_allocate(
|
|
sizeof(dispatch_private_info_t));
|
|
}
|
|
this_thr->th.th_dispatch = serial_team->t.t_dispatch;
|
|
|
|
KMP_MB();
|
|
|
|
} else {
|
|
/* this serialized team is already being used,
|
|
* that's fine, just add another nested level */
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_threads);
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
|
|
++serial_team->t.t_serialized;
|
|
this_thr->th.th_team_serialized = serial_team->t.t_serialized;
|
|
|
|
// Nested level will be an index in the nested nthreads array
|
|
int level = this_thr->th.th_team->t.t_level;
|
|
// Thread value exists in the nested nthreads array for the next nested
|
|
// level
|
|
if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
|
|
this_thr->th.th_current_task->td_icvs.nproc =
|
|
__kmp_nested_nth.nth[level + 1];
|
|
}
|
|
serial_team->t.t_level++;
|
|
KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
|
|
"of serial team %p to %d\n",
|
|
global_tid, serial_team, serial_team->t.t_level));
|
|
|
|
/* allocate/push dispatch buffers stack */
|
|
KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
|
|
{
|
|
dispatch_private_info_t *disp_buffer =
|
|
(dispatch_private_info_t *)__kmp_allocate(
|
|
sizeof(dispatch_private_info_t));
|
|
disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
|
|
serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
|
|
}
|
|
this_thr->th.th_dispatch = serial_team->t.t_dispatch;
|
|
|
|
KMP_MB();
|
|
}
|
|
KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);
|
|
|
|
// Perform the display affinity functionality for
|
|
// serialized parallel regions
|
|
if (__kmp_display_affinity) {
|
|
if (this_thr->th.th_prev_level != serial_team->t.t_level ||
|
|
this_thr->th.th_prev_num_threads != 1) {
|
|
// NULL means use the affinity-format-var ICV
|
|
__kmp_aux_display_affinity(global_tid, NULL);
|
|
this_thr->th.th_prev_level = serial_team->t.t_level;
|
|
this_thr->th.th_prev_num_threads = 1;
|
|
}
|
|
}
|
|
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_push_parallel(global_tid, NULL);
|
|
#if OMPT_SUPPORT
|
|
serial_team->t.ompt_team_info.master_return_address = codeptr;
|
|
if (ompt_enabled.enabled &&
|
|
this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
|
|
OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
|
|
OMPT_GET_FRAME_ADDRESS(0);
|
|
|
|
ompt_lw_taskteam_t lw_taskteam;
|
|
__ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
|
|
&ompt_parallel_data, codeptr);
|
|
|
|
__ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
|
|
// don't use lw_taskteam after linking. content was swaped
|
|
|
|
/* OMPT implicit task begin */
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
|
|
OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid),
|
|
ompt_task_implicit); // TODO: Can this be ompt_task_initial?
|
|
OMPT_CUR_TASK_INFO(this_thr)->thread_num =
|
|
__kmp_tid_from_gtid(global_tid);
|
|
}
|
|
|
|
/* OMPT state */
|
|
this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
|
|
OMPT_GET_FRAME_ADDRESS(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Test if this fork is for a team closely nested in a teams construct
|
|
static inline bool __kmp_is_fork_in_teams(kmp_info_t *master_th,
|
|
microtask_t microtask, int level,
|
|
int teams_level, kmp_va_list ap) {
|
|
return (master_th->th.th_teams_microtask && ap &&
|
|
microtask != (microtask_t)__kmp_teams_master && level == teams_level);
|
|
}
|
|
|
|
// Test if this fork is for the teams construct, i.e. to form the outer league
|
|
// of teams
|
|
static inline bool __kmp_is_entering_teams(int active_level, int level,
|
|
int teams_level, kmp_va_list ap) {
|
|
return ((ap == NULL && active_level == 0) ||
|
|
(ap && teams_level > 0 && teams_level == level));
|
|
}
|
|
|
|
// AC: This is start of parallel that is nested inside teams construct.
|
|
// The team is actual (hot), all workers are ready at the fork barrier.
|
|
// No lock needed to initialize the team a bit, then free workers.
|
|
static inline int
|
|
__kmp_fork_in_teams(ident_t *loc, int gtid, kmp_team_t *parent_team,
|
|
kmp_int32 argc, kmp_info_t *master_th, kmp_root_t *root,
|
|
enum fork_context_e call_context, microtask_t microtask,
|
|
launch_t invoker, int master_set_numthreads, int level,
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t ompt_parallel_data, void *return_address,
|
|
#endif
|
|
kmp_va_list ap) {
|
|
void **argv;
|
|
int i;
|
|
|
|
parent_team->t.t_ident = loc;
|
|
__kmp_alloc_argv_entries(argc, parent_team, TRUE);
|
|
parent_team->t.t_argc = argc;
|
|
argv = (void **)parent_team->t.t_argv;
|
|
for (i = argc - 1; i >= 0; --i) {
|
|
*argv++ = va_arg(kmp_va_deref(ap), void *);
|
|
}
|
|
// Increment our nested depth levels, but not increase the serialization
|
|
if (parent_team == master_th->th.th_serial_team) {
|
|
// AC: we are in serialized parallel
|
|
__kmpc_serialized_parallel(loc, gtid);
|
|
KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);
|
|
|
|
if (call_context == fork_context_gnu) {
|
|
// AC: need to decrement t_serialized for enquiry functions to work
|
|
// correctly, will restore at join time
|
|
parent_team->t.t_serialized--;
|
|
return TRUE;
|
|
}
|
|
|
|
#if OMPD_SUPPORT
|
|
parent_team->t.t_pkfn = microtask;
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
void *dummy;
|
|
void **exit_frame_p;
|
|
ompt_data_t *implicit_task_data;
|
|
ompt_lw_taskteam_t lw_taskteam;
|
|
|
|
if (ompt_enabled.enabled) {
|
|
__ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
|
|
&ompt_parallel_data, return_address);
|
|
exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);
|
|
|
|
__ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
|
|
// Don't use lw_taskteam after linking. Content was swapped.
|
|
|
|
/* OMPT implicit task begin */
|
|
implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num = __kmp_tid_from_gtid(gtid);
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), implicit_task_data,
|
|
1, OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
|
|
/* OMPT state */
|
|
master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
} else {
|
|
exit_frame_p = &dummy;
|
|
}
|
|
#endif
|
|
|
|
// AC: need to decrement t_serialized for enquiry functions to work
|
|
// correctly, will restore at join time
|
|
parent_team->t.t_serialized--;
|
|
|
|
{
|
|
KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
|
|
KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
|
|
__kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
|
|
#if OMPT_SUPPORT
|
|
,
|
|
exit_frame_p
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
*exit_frame_p = NULL;
|
|
OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, implicit_task_data, 1,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
|
|
__ompt_lw_taskteam_unlink(master_th);
|
|
if (ompt_enabled.ompt_callback_parallel_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
|
|
&ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th),
|
|
OMPT_INVOKER(call_context) | ompt_parallel_team, return_address);
|
|
}
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
return TRUE;
|
|
}
|
|
|
|
parent_team->t.t_pkfn = microtask;
|
|
parent_team->t.t_invoke = invoker;
|
|
KMP_ATOMIC_INC(&root->r.r_in_parallel);
|
|
parent_team->t.t_active_level++;
|
|
parent_team->t.t_level++;
|
|
parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save
|
|
|
|
// If the threads allocated to the team are less than the thread limit, update
|
|
// the thread limit here. th_teams_size.nth is specific to this team nested
|
|
// in a teams construct, the team is fully created, and we're about to do
|
|
// the actual fork. Best to do this here so that the subsequent uses below
|
|
// and in the join have the correct value.
|
|
master_th->th.th_teams_size.nth = parent_team->t.t_nproc;
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
ompt_lw_taskteam_t lw_taskteam;
|
|
__ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, &ompt_parallel_data,
|
|
return_address);
|
|
__ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true);
|
|
}
|
|
#endif
|
|
|
|
/* Change number of threads in the team if requested */
|
|
if (master_set_numthreads) { // The parallel has num_threads clause
|
|
if (master_set_numthreads <= master_th->th.th_teams_size.nth) {
|
|
// AC: only can reduce number of threads dynamically, can't increase
|
|
kmp_info_t **other_threads = parent_team->t.t_threads;
|
|
// NOTE: if using distributed barrier, we need to run this code block
|
|
// even when the team size appears not to have changed from the max.
|
|
int old_proc = master_th->th.th_teams_size.nth;
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
__kmp_resize_dist_barrier(parent_team, old_proc, master_set_numthreads);
|
|
__kmp_add_threads_to_team(parent_team, master_set_numthreads);
|
|
}
|
|
parent_team->t.t_nproc = master_set_numthreads;
|
|
for (i = 0; i < master_set_numthreads; ++i) {
|
|
other_threads[i]->th.th_team_nproc = master_set_numthreads;
|
|
}
|
|
}
|
|
// Keep extra threads hot in the team for possible next parallels
|
|
master_th->th.th_set_nproc = 0;
|
|
}
|
|
|
|
#if USE_DEBUGGER
|
|
if (__kmp_debugging) { // Let debugger override number of threads.
|
|
int nth = __kmp_omp_num_threads(loc);
|
|
if (nth > 0) { // 0 means debugger doesn't want to change num threads
|
|
master_set_numthreads = nth;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Figure out the proc_bind policy for the nested parallel within teams
|
|
kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
|
|
// proc_bind_default means don't update
|
|
kmp_proc_bind_t proc_bind_icv = proc_bind_default;
|
|
if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
|
|
proc_bind = proc_bind_false;
|
|
} else {
|
|
// No proc_bind clause specified; use current proc-bind-var
|
|
if (proc_bind == proc_bind_default) {
|
|
proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
|
|
}
|
|
/* else: The proc_bind policy was specified explicitly on parallel clause.
|
|
This overrides proc-bind-var for this parallel region, but does not
|
|
change proc-bind-var. */
|
|
// Figure the value of proc-bind-var for the child threads.
|
|
if ((level + 1 < __kmp_nested_proc_bind.used) &&
|
|
(__kmp_nested_proc_bind.bind_types[level + 1] !=
|
|
master_th->th.th_current_task->td_icvs.proc_bind)) {
|
|
proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
|
|
}
|
|
}
|
|
KMP_CHECK_UPDATE(parent_team->t.t_proc_bind, proc_bind);
|
|
// Need to change the bind-var ICV to correct value for each implicit task
|
|
if (proc_bind_icv != proc_bind_default &&
|
|
master_th->th.th_current_task->td_icvs.proc_bind != proc_bind_icv) {
|
|
kmp_info_t **other_threads = parent_team->t.t_threads;
|
|
for (i = 0; i < master_th->th.th_team_nproc; ++i) {
|
|
other_threads[i]->th.th_current_task->td_icvs.proc_bind = proc_bind_icv;
|
|
}
|
|
}
|
|
// Reset for next parallel region
|
|
master_th->th.th_set_proc_bind = proc_bind_default;
|
|
|
|
#if USE_ITT_BUILD && USE_ITT_NOTIFY
|
|
if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) ||
|
|
KMP_ITT_DEBUG) &&
|
|
__kmp_forkjoin_frames_mode == 3 &&
|
|
parent_team->t.t_active_level == 1 // only report frames at level 1
|
|
&& master_th->th.th_teams_size.nteams == 1) {
|
|
kmp_uint64 tmp_time = __itt_get_timestamp();
|
|
master_th->th.th_frame_time = tmp_time;
|
|
parent_team->t.t_region_time = tmp_time;
|
|
}
|
|
if (__itt_stack_caller_create_ptr) {
|
|
KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
|
|
// create new stack stitching id before entering fork barrier
|
|
parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
|
|
}
|
|
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_partition_places(parent_team);
|
|
#endif
|
|
|
|
KF_TRACE(10, ("__kmp_fork_in_teams: before internal fork: root=%p, team=%p, "
|
|
"master_th=%p, gtid=%d\n",
|
|
root, parent_team, master_th, gtid));
|
|
__kmp_internal_fork(loc, gtid, parent_team);
|
|
KF_TRACE(10, ("__kmp_fork_in_teams: after internal fork: root=%p, team=%p, "
|
|
"master_th=%p, gtid=%d\n",
|
|
root, parent_team, master_th, gtid));
|
|
|
|
if (call_context == fork_context_gnu)
|
|
return TRUE;
|
|
|
|
/* Invoke microtask for PRIMARY thread */
|
|
KA_TRACE(20, ("__kmp_fork_in_teams: T#%d(%d:0) invoke microtask = %p\n", gtid,
|
|
parent_team->t.t_id, parent_team->t.t_pkfn));
|
|
|
|
if (!parent_team->t.t_invoke(gtid)) {
|
|
KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
|
|
}
|
|
KA_TRACE(20, ("__kmp_fork_in_teams: T#%d(%d:0) done microtask = %p\n", gtid,
|
|
parent_team->t.t_id, parent_team->t.t_pkfn));
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(20, ("__kmp_fork_in_teams: parallel exit T#%d\n", gtid));
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
// Create a serialized parallel region
|
|
static inline int
|
|
__kmp_serial_fork_call(ident_t *loc, int gtid, enum fork_context_e call_context,
|
|
kmp_int32 argc, microtask_t microtask, launch_t invoker,
|
|
kmp_info_t *master_th, kmp_team_t *parent_team,
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t *ompt_parallel_data, void **return_address,
|
|
ompt_data_t **parent_task_data,
|
|
#endif
|
|
kmp_va_list ap) {
|
|
kmp_team_t *team;
|
|
int i;
|
|
void **argv;
|
|
|
|
/* josh todo: hypothetical question: what do we do for OS X*? */
|
|
#if KMP_OS_LINUX && \
|
|
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
|
|
SimpleVLA<void *> args(argc);
|
|
#else
|
|
void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
|
|
#endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
|
|
KMP_ARCH_AARCH64) */
|
|
|
|
KA_TRACE(
|
|
20, ("__kmp_serial_fork_call: T#%d serializing parallel region\n", gtid));
|
|
|
|
__kmpc_serialized_parallel(loc, gtid);
|
|
|
|
#if OMPD_SUPPORT
|
|
master_th->th.th_serial_team->t.t_pkfn = microtask;
|
|
#endif
|
|
|
|
if (call_context == fork_context_intel) {
|
|
/* TODO this sucks, use the compiler itself to pass args! :) */
|
|
master_th->th.th_serial_team->t.t_ident = loc;
|
|
if (!ap) {
|
|
// revert change made in __kmpc_serialized_parallel()
|
|
master_th->th.th_serial_team->t.t_level--;
|
|
// Get args from parent team for teams construct
|
|
|
|
#if OMPT_SUPPORT
|
|
void *dummy;
|
|
void **exit_frame_p;
|
|
ompt_task_info_t *task_info;
|
|
ompt_lw_taskteam_t lw_taskteam;
|
|
|
|
if (ompt_enabled.enabled) {
|
|
__ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
|
|
ompt_parallel_data, *return_address);
|
|
|
|
__ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
|
|
// don't use lw_taskteam after linking. content was swaped
|
|
task_info = OMPT_CUR_TASK_INFO(master_th);
|
|
exit_frame_p = &(task_info->frame.exit_frame.ptr);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num = __kmp_tid_from_gtid(gtid);
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
|
|
&(task_info->task_data), 1,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
|
|
/* OMPT state */
|
|
master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
} else {
|
|
exit_frame_p = &dummy;
|
|
}
|
|
#endif
|
|
|
|
{
|
|
KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
|
|
KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
|
|
__kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
|
|
#if OMPT_SUPPORT
|
|
,
|
|
exit_frame_p
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
*exit_frame_p = NULL;
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, &(task_info->task_data), 1,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
*ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
|
|
__ompt_lw_taskteam_unlink(master_th);
|
|
if (ompt_enabled.ompt_callback_parallel_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
|
|
ompt_parallel_data, *parent_task_data,
|
|
OMPT_INVOKER(call_context) | ompt_parallel_team, *return_address);
|
|
}
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
} else if (microtask == (microtask_t)__kmp_teams_master) {
|
|
KMP_DEBUG_ASSERT(master_th->th.th_team == master_th->th.th_serial_team);
|
|
team = master_th->th.th_team;
|
|
// team->t.t_pkfn = microtask;
|
|
team->t.t_invoke = invoker;
|
|
__kmp_alloc_argv_entries(argc, team, TRUE);
|
|
team->t.t_argc = argc;
|
|
argv = (void **)team->t.t_argv;
|
|
if (ap) {
|
|
for (i = argc - 1; i >= 0; --i)
|
|
*argv++ = va_arg(kmp_va_deref(ap), void *);
|
|
} else {
|
|
for (i = 0; i < argc; ++i)
|
|
// Get args from parent team for teams construct
|
|
argv[i] = parent_team->t.t_argv[i];
|
|
}
|
|
// AC: revert change made in __kmpc_serialized_parallel()
|
|
// because initial code in teams should have level=0
|
|
team->t.t_level--;
|
|
// AC: call special invoker for outer "parallel" of teams construct
|
|
invoker(gtid);
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, &(task_info->task_data), 0,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial);
|
|
}
|
|
if (ompt_enabled.ompt_callback_parallel_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
|
|
ompt_parallel_data, *parent_task_data,
|
|
OMPT_INVOKER(call_context) | ompt_parallel_league,
|
|
*return_address);
|
|
}
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
} else {
|
|
argv = args;
|
|
for (i = argc - 1; i >= 0; --i)
|
|
*argv++ = va_arg(kmp_va_deref(ap), void *);
|
|
KMP_MB();
|
|
|
|
#if OMPT_SUPPORT
|
|
void *dummy;
|
|
void **exit_frame_p;
|
|
ompt_task_info_t *task_info;
|
|
ompt_lw_taskteam_t lw_taskteam;
|
|
ompt_data_t *implicit_task_data;
|
|
|
|
if (ompt_enabled.enabled) {
|
|
__ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
|
|
ompt_parallel_data, *return_address);
|
|
__ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
|
|
// don't use lw_taskteam after linking. content was swaped
|
|
task_info = OMPT_CUR_TASK_INFO(master_th);
|
|
exit_frame_p = &(task_info->frame.exit_frame.ptr);
|
|
|
|
/* OMPT implicit task begin */
|
|
implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
|
|
implicit_task_data, 1, __kmp_tid_from_gtid(gtid),
|
|
ompt_task_implicit);
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num = __kmp_tid_from_gtid(gtid);
|
|
}
|
|
|
|
/* OMPT state */
|
|
master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
} else {
|
|
exit_frame_p = &dummy;
|
|
}
|
|
#endif
|
|
|
|
{
|
|
KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
|
|
KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
|
|
__kmp_invoke_microtask(microtask, gtid, 0, argc, args
|
|
#if OMPT_SUPPORT
|
|
,
|
|
exit_frame_p
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
*exit_frame_p = NULL;
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, &(task_info->task_data), 1,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
|
|
*ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
|
|
__ompt_lw_taskteam_unlink(master_th);
|
|
if (ompt_enabled.ompt_callback_parallel_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
|
|
ompt_parallel_data, *parent_task_data,
|
|
OMPT_INVOKER(call_context) | ompt_parallel_team, *return_address);
|
|
}
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
}
|
|
} else if (call_context == fork_context_gnu) {
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
ompt_lw_taskteam_t lwt;
|
|
__ompt_lw_taskteam_init(&lwt, master_th, gtid, ompt_parallel_data,
|
|
*return_address);
|
|
|
|
lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
|
|
__ompt_lw_taskteam_link(&lwt, master_th, 1);
|
|
}
|
|
// don't use lw_taskteam after linking. content was swaped
|
|
#endif
|
|
|
|
// we were called from GNU native code
|
|
KA_TRACE(20, ("__kmp_serial_fork_call: T#%d serial exit\n", gtid));
|
|
return FALSE;
|
|
} else {
|
|
KMP_ASSERT2(call_context < fork_context_last,
|
|
"__kmp_serial_fork_call: unknown fork_context parameter");
|
|
}
|
|
|
|
KA_TRACE(20, ("__kmp_serial_fork_call: T#%d serial exit\n", gtid));
|
|
KMP_MB();
|
|
return FALSE;
|
|
}
|
|
|
|
/* most of the work for a fork */
|
|
/* return true if we really went parallel, false if serialized */
|
|
int __kmp_fork_call(ident_t *loc, int gtid,
|
|
enum fork_context_e call_context, // Intel, GNU, ...
|
|
kmp_int32 argc, microtask_t microtask, launch_t invoker,
|
|
kmp_va_list ap) {
|
|
void **argv;
|
|
int i;
|
|
int master_tid;
|
|
int master_this_cons;
|
|
kmp_team_t *team;
|
|
kmp_team_t *parent_team;
|
|
kmp_info_t *master_th;
|
|
kmp_root_t *root;
|
|
int nthreads;
|
|
int master_active;
|
|
int master_set_numthreads;
|
|
int task_thread_limit = 0;
|
|
int level;
|
|
int active_level;
|
|
int teams_level;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
kmp_hot_team_ptr_t **p_hot_teams;
|
|
#endif
|
|
{ // KMP_TIME_BLOCK
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
|
|
KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);
|
|
|
|
KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
|
|
if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
|
|
/* Some systems prefer the stack for the root thread(s) to start with */
|
|
/* some gap from the parent stack to prevent false sharing. */
|
|
void *dummy = KMP_ALLOCA(__kmp_stkpadding);
|
|
/* These 2 lines below are so this does not get optimized out */
|
|
if (__kmp_stkpadding > KMP_MAX_STKPADDING)
|
|
__kmp_stkpadding += (short)((kmp_int64)dummy);
|
|
}
|
|
|
|
/* initialize if needed */
|
|
KMP_DEBUG_ASSERT(
|
|
__kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
|
|
if (!TCR_4(__kmp_init_parallel))
|
|
__kmp_parallel_initialize();
|
|
__kmp_resume_if_soft_paused();
|
|
|
|
/* setup current data */
|
|
// AC: potentially unsafe, not in sync with library shutdown,
|
|
// __kmp_threads can be freed
|
|
master_th = __kmp_threads[gtid];
|
|
|
|
parent_team = master_th->th.th_team;
|
|
master_tid = master_th->th.th_info.ds.ds_tid;
|
|
master_this_cons = master_th->th.th_local.this_construct;
|
|
root = master_th->th.th_root;
|
|
master_active = root->r.r_active;
|
|
master_set_numthreads = master_th->th.th_set_nproc;
|
|
task_thread_limit =
|
|
master_th->th.th_current_task->td_icvs.task_thread_limit;
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t ompt_parallel_data = ompt_data_none;
|
|
ompt_data_t *parent_task_data;
|
|
ompt_frame_t *ompt_frame;
|
|
void *return_address = NULL;
|
|
|
|
if (ompt_enabled.enabled) {
|
|
__ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
|
|
NULL, NULL);
|
|
return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
|
|
}
|
|
#endif
|
|
|
|
// Assign affinity to root thread if it hasn't happened yet
|
|
__kmp_assign_root_init_mask();
|
|
|
|
// Nested level will be an index in the nested nthreads array
|
|
level = parent_team->t.t_level;
|
|
// used to launch non-serial teams even if nested is not allowed
|
|
active_level = parent_team->t.t_active_level;
|
|
// needed to check nesting inside the teams
|
|
teams_level = master_th->th.th_teams_level;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
p_hot_teams = &master_th->th.th_hot_teams;
|
|
if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
|
|
*p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
|
|
sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
|
|
(*p_hot_teams)[0].hot_team = root->r.r_hot_team;
|
|
// it is either actual or not needed (when active_level > 0)
|
|
(*p_hot_teams)[0].hot_team_nth = 1;
|
|
}
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
if (ompt_enabled.ompt_callback_parallel_begin) {
|
|
int team_size = master_set_numthreads
|
|
? master_set_numthreads
|
|
: get__nproc_2(parent_team, master_tid);
|
|
int flags = OMPT_INVOKER(call_context) |
|
|
((microtask == (microtask_t)__kmp_teams_master)
|
|
? ompt_parallel_league
|
|
: ompt_parallel_team);
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
|
|
parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags,
|
|
return_address);
|
|
}
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
|
|
master_th->th.th_ident = loc;
|
|
|
|
// Parallel closely nested in teams construct:
|
|
if (__kmp_is_fork_in_teams(master_th, microtask, level, teams_level, ap)) {
|
|
return __kmp_fork_in_teams(loc, gtid, parent_team, argc, master_th, root,
|
|
call_context, microtask, invoker,
|
|
master_set_numthreads, level,
|
|
#if OMPT_SUPPORT
|
|
ompt_parallel_data, return_address,
|
|
#endif
|
|
ap);
|
|
} // End parallel closely nested in teams construct
|
|
|
|
#if KMP_DEBUG
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
|
|
parent_team->t.t_task_team[master_th->th.th_task_state]);
|
|
}
|
|
#endif
|
|
|
|
// Need this to happen before we determine the number of threads, not while
|
|
// we are allocating the team
|
|
//__kmp_push_current_task_to_thread(master_th, parent_team, 0);
|
|
|
|
// Determine the number of threads
|
|
int enter_teams =
|
|
__kmp_is_entering_teams(active_level, level, teams_level, ap);
|
|
if ((!enter_teams &&
|
|
(parent_team->t.t_active_level >=
|
|
master_th->th.th_current_task->td_icvs.max_active_levels)) ||
|
|
(__kmp_library == library_serial)) {
|
|
KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team\n", gtid));
|
|
nthreads = 1;
|
|
} else {
|
|
nthreads = master_set_numthreads
|
|
? master_set_numthreads
|
|
// TODO: get nproc directly from current task
|
|
: get__nproc_2(parent_team, master_tid);
|
|
// Use the thread_limit set for the current target task if exists, else go
|
|
// with the deduced nthreads
|
|
nthreads = task_thread_limit > 0 && task_thread_limit < nthreads
|
|
? task_thread_limit
|
|
: nthreads;
|
|
// Check if we need to take forkjoin lock? (no need for serialized
|
|
// parallel out of teams construct).
|
|
if (nthreads > 1) {
|
|
/* determine how many new threads we can use */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
/* AC: If we execute teams from parallel region (on host), then teams
|
|
should be created but each can only have 1 thread if nesting is
|
|
disabled. If teams called from serial region, then teams and their
|
|
threads should be created regardless of the nesting setting. */
|
|
nthreads = __kmp_reserve_threads(root, parent_team, master_tid,
|
|
nthreads, enter_teams);
|
|
if (nthreads == 1) {
|
|
// Free lock for single thread execution here; for multi-thread
|
|
// execution it will be freed later after team of threads created
|
|
// and initialized
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
}
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(nthreads > 0);
|
|
|
|
// If we temporarily changed the set number of threads then restore it now
|
|
master_th->th.th_set_nproc = 0;
|
|
|
|
if (nthreads == 1) {
|
|
return __kmp_serial_fork_call(loc, gtid, call_context, argc, microtask,
|
|
invoker, master_th, parent_team,
|
|
#if OMPT_SUPPORT
|
|
&ompt_parallel_data, &return_address,
|
|
&parent_task_data,
|
|
#endif
|
|
ap);
|
|
} // if (nthreads == 1)
|
|
|
|
// GEH: only modify the executing flag in the case when not serialized
|
|
// serialized case is handled in kmpc_serialized_parallel
|
|
KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
|
|
"curtask=%p, curtask_max_aclevel=%d\n",
|
|
parent_team->t.t_active_level, master_th,
|
|
master_th->th.th_current_task,
|
|
master_th->th.th_current_task->td_icvs.max_active_levels));
|
|
// TODO: GEH - cannot do this assertion because root thread not set up as
|
|
// executing
|
|
// KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
|
|
master_th->th.th_current_task->td_flags.executing = 0;
|
|
|
|
if (!master_th->th.th_teams_microtask || level > teams_level) {
|
|
/* Increment our nested depth level */
|
|
KMP_ATOMIC_INC(&root->r.r_in_parallel);
|
|
}
|
|
|
|
// See if we need to make a copy of the ICVs.
|
|
int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
|
|
if ((level + 1 < __kmp_nested_nth.used) &&
|
|
(__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
|
|
nthreads_icv = __kmp_nested_nth.nth[level + 1];
|
|
} else {
|
|
nthreads_icv = 0; // don't update
|
|
}
|
|
|
|
// Figure out the proc_bind_policy for the new team.
|
|
kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
|
|
// proc_bind_default means don't update
|
|
kmp_proc_bind_t proc_bind_icv = proc_bind_default;
|
|
if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
|
|
proc_bind = proc_bind_false;
|
|
} else {
|
|
// No proc_bind clause specified; use current proc-bind-var for this
|
|
// parallel region
|
|
if (proc_bind == proc_bind_default) {
|
|
proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
|
|
}
|
|
// Have teams construct take proc_bind value from KMP_TEAMS_PROC_BIND
|
|
if (master_th->th.th_teams_microtask &&
|
|
microtask == (microtask_t)__kmp_teams_master) {
|
|
proc_bind = __kmp_teams_proc_bind;
|
|
}
|
|
/* else: The proc_bind policy was specified explicitly on parallel clause.
|
|
This overrides proc-bind-var for this parallel region, but does not
|
|
change proc-bind-var. */
|
|
// Figure the value of proc-bind-var for the child threads.
|
|
if ((level + 1 < __kmp_nested_proc_bind.used) &&
|
|
(__kmp_nested_proc_bind.bind_types[level + 1] !=
|
|
master_th->th.th_current_task->td_icvs.proc_bind)) {
|
|
// Do not modify the proc bind icv for the two teams construct forks
|
|
// They just let the proc bind icv pass through
|
|
if (!master_th->th.th_teams_microtask ||
|
|
!(microtask == (microtask_t)__kmp_teams_master || ap == NULL))
|
|
proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
|
|
}
|
|
}
|
|
|
|
// Reset for next parallel region
|
|
master_th->th.th_set_proc_bind = proc_bind_default;
|
|
|
|
if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) {
|
|
kmp_internal_control_t new_icvs;
|
|
copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
|
|
new_icvs.next = NULL;
|
|
if (nthreads_icv > 0) {
|
|
new_icvs.nproc = nthreads_icv;
|
|
}
|
|
if (proc_bind_icv != proc_bind_default) {
|
|
new_icvs.proc_bind = proc_bind_icv;
|
|
}
|
|
|
|
/* allocate a new parallel team */
|
|
KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
|
|
team = __kmp_allocate_team(root, nthreads, nthreads,
|
|
#if OMPT_SUPPORT
|
|
ompt_parallel_data,
|
|
#endif
|
|
proc_bind, &new_icvs,
|
|
argc USE_NESTED_HOT_ARG(master_th));
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
|
|
copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs, &new_icvs);
|
|
} else {
|
|
/* allocate a new parallel team */
|
|
KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
|
|
team = __kmp_allocate_team(root, nthreads, nthreads,
|
|
#if OMPT_SUPPORT
|
|
ompt_parallel_data,
|
|
#endif
|
|
proc_bind,
|
|
&master_th->th.th_current_task->td_icvs,
|
|
argc USE_NESTED_HOT_ARG(master_th));
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
|
|
copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs,
|
|
&master_th->th.th_current_task->td_icvs);
|
|
}
|
|
KF_TRACE(
|
|
10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));
|
|
|
|
/* setup the new team */
|
|
KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
|
|
KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
|
|
KMP_CHECK_UPDATE(team->t.t_ident, loc);
|
|
KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
|
|
KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
|
|
#if OMPT_SUPPORT
|
|
KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
|
|
return_address);
|
|
#endif
|
|
KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
|
|
// TODO: parent_team->t.t_level == INT_MAX ???
|
|
if (!master_th->th.th_teams_microtask || level > teams_level) {
|
|
int new_level = parent_team->t.t_level + 1;
|
|
KMP_CHECK_UPDATE(team->t.t_level, new_level);
|
|
new_level = parent_team->t.t_active_level + 1;
|
|
KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
|
|
} else {
|
|
// AC: Do not increase parallel level at start of the teams construct
|
|
int new_level = parent_team->t.t_level;
|
|
KMP_CHECK_UPDATE(team->t.t_level, new_level);
|
|
new_level = parent_team->t.t_active_level;
|
|
KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
|
|
}
|
|
kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
|
|
// set primary thread's schedule as new run-time schedule
|
|
KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
|
|
|
|
KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
|
|
KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);
|
|
|
|
// Update the floating point rounding in the team if required.
|
|
propagateFPControl(team);
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_parallel_begin();
|
|
#endif
|
|
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
// Set primary thread's task team to team's task team. Unless this is hot
|
|
// team, it should be NULL.
|
|
KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
|
|
parent_team->t.t_task_team[master_th->th.th_task_state]);
|
|
KA_TRACE(20, ("__kmp_fork_call: Primary T#%d pushing task_team %p / team "
|
|
"%p, new task_team %p / team %p\n",
|
|
__kmp_gtid_from_thread(master_th),
|
|
master_th->th.th_task_team, parent_team,
|
|
team->t.t_task_team[master_th->th.th_task_state], team));
|
|
|
|
if (active_level || master_th->th.th_task_team) {
|
|
// Take a memo of primary thread's task_state
|
|
KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
|
|
if (master_th->th.th_task_state_top >=
|
|
master_th->th.th_task_state_stack_sz) { // increase size
|
|
kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
|
|
kmp_uint8 *old_stack, *new_stack;
|
|
kmp_uint32 i;
|
|
new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
|
|
for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
|
|
new_stack[i] = master_th->th.th_task_state_memo_stack[i];
|
|
}
|
|
for (i = master_th->th.th_task_state_stack_sz; i < new_size;
|
|
++i) { // zero-init rest of stack
|
|
new_stack[i] = 0;
|
|
}
|
|
old_stack = master_th->th.th_task_state_memo_stack;
|
|
master_th->th.th_task_state_memo_stack = new_stack;
|
|
master_th->th.th_task_state_stack_sz = new_size;
|
|
__kmp_free(old_stack);
|
|
}
|
|
// Store primary thread's task_state on stack
|
|
master_th->th
|
|
.th_task_state_memo_stack[master_th->th.th_task_state_top] =
|
|
master_th->th.th_task_state;
|
|
master_th->th.th_task_state_top++;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
if (master_th->th.th_hot_teams &&
|
|
active_level < __kmp_hot_teams_max_level &&
|
|
team == master_th->th.th_hot_teams[active_level].hot_team) {
|
|
// Restore primary thread's nested state if nested hot team
|
|
master_th->th.th_task_state =
|
|
master_th->th
|
|
.th_task_state_memo_stack[master_th->th.th_task_state_top];
|
|
} else {
|
|
#endif
|
|
master_th->th.th_task_state = 0;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
}
|
|
#endif
|
|
}
|
|
#if !KMP_NESTED_HOT_TEAMS
|
|
KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
|
|
(team == root->r.r_hot_team));
|
|
#endif
|
|
}
|
|
|
|
KA_TRACE(
|
|
20,
|
|
("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
|
|
gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
|
|
team->t.t_nproc));
|
|
KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
|
|
(team->t.t_master_tid == 0 &&
|
|
(team->t.t_parent == root->r.r_root_team ||
|
|
team->t.t_parent->t.t_serialized)));
|
|
KMP_MB();
|
|
|
|
/* now, setup the arguments */
|
|
argv = (void **)team->t.t_argv;
|
|
if (ap) {
|
|
for (i = argc - 1; i >= 0; --i) {
|
|
void *new_argv = va_arg(kmp_va_deref(ap), void *);
|
|
KMP_CHECK_UPDATE(*argv, new_argv);
|
|
argv++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < argc; ++i) {
|
|
// Get args from parent team for teams construct
|
|
KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
|
|
}
|
|
}
|
|
|
|
/* now actually fork the threads */
|
|
KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
|
|
if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
|
|
root->r.r_active = TRUE;
|
|
|
|
__kmp_fork_team_threads(root, team, master_th, gtid, !ap);
|
|
__kmp_setup_icv_copy(team, nthreads,
|
|
&master_th->th.th_current_task->td_icvs, loc);
|
|
|
|
#if OMPT_SUPPORT
|
|
master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
#endif
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
#if USE_ITT_BUILD
|
|
if (team->t.t_active_level == 1 // only report frames at level 1
|
|
&& !master_th->th.th_teams_microtask) { // not in teams construct
|
|
#if USE_ITT_NOTIFY
|
|
if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
|
|
(__kmp_forkjoin_frames_mode == 3 ||
|
|
__kmp_forkjoin_frames_mode == 1)) {
|
|
kmp_uint64 tmp_time = 0;
|
|
if (__itt_get_timestamp_ptr)
|
|
tmp_time = __itt_get_timestamp();
|
|
// Internal fork - report frame begin
|
|
master_th->th.th_frame_time = tmp_time;
|
|
if (__kmp_forkjoin_frames_mode == 3)
|
|
team->t.t_region_time = tmp_time;
|
|
} else
|
|
// only one notification scheme (either "submit" or "forking/joined", not both)
|
|
#endif /* USE_ITT_NOTIFY */
|
|
if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
|
|
__kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
|
|
// Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
|
|
__kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
|
|
}
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
/* now go on and do the work */
|
|
KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
|
|
KMP_MB();
|
|
KF_TRACE(10,
|
|
("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
|
|
root, team, master_th, gtid));
|
|
|
|
#if USE_ITT_BUILD
|
|
if (__itt_stack_caller_create_ptr) {
|
|
// create new stack stitching id before entering fork barrier
|
|
if (!enter_teams) {
|
|
KMP_DEBUG_ASSERT(team->t.t_stack_id == NULL);
|
|
team->t.t_stack_id = __kmp_itt_stack_caller_create();
|
|
} else if (parent_team->t.t_serialized) {
|
|
// keep stack stitching id in the serialized parent_team;
|
|
// current team will be used for parallel inside the teams;
|
|
// if parent_team is active, then it already keeps stack stitching id
|
|
// for the league of teams
|
|
KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
|
|
parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
|
|
}
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
// AC: skip __kmp_internal_fork at teams construct, let only primary
|
|
// threads execute
|
|
if (ap) {
|
|
__kmp_internal_fork(loc, gtid, team);
|
|
KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
|
|
"master_th=%p, gtid=%d\n",
|
|
root, team, master_th, gtid));
|
|
}
|
|
|
|
if (call_context == fork_context_gnu) {
|
|
KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
|
|
return TRUE;
|
|
}
|
|
|
|
/* Invoke microtask for PRIMARY thread */
|
|
KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
|
|
team->t.t_id, team->t.t_pkfn));
|
|
} // END of timer KMP_fork_call block
|
|
|
|
#if KMP_STATS_ENABLED
|
|
// If beginning a teams construct, then change thread state
|
|
stats_state_e previous_state = KMP_GET_THREAD_STATE();
|
|
if (!ap) {
|
|
KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
|
|
}
|
|
#endif
|
|
|
|
if (!team->t.t_invoke(gtid)) {
|
|
KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
|
|
}
|
|
|
|
#if KMP_STATS_ENABLED
|
|
// If was beginning of a teams construct, then reset thread state
|
|
if (!ap) {
|
|
KMP_SET_THREAD_STATE(previous_state);
|
|
}
|
|
#endif
|
|
|
|
KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
|
|
team->t.t_id, team->t.t_pkfn));
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
static inline void __kmp_join_restore_state(kmp_info_t *thread,
|
|
kmp_team_t *team) {
|
|
// restore state outside the region
|
|
thread->th.ompt_thread_info.state =
|
|
((team->t.t_serialized) ? ompt_state_work_serial
|
|
: ompt_state_work_parallel);
|
|
}
|
|
|
|
static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
|
|
kmp_team_t *team, ompt_data_t *parallel_data,
|
|
int flags, void *codeptr) {
|
|
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
|
|
if (ompt_enabled.ompt_callback_parallel_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
|
|
parallel_data, &(task_info->task_data), flags, codeptr);
|
|
}
|
|
|
|
task_info->frame.enter_frame = ompt_data_none;
|
|
__kmp_join_restore_state(thread, team);
|
|
}
|
|
#endif
|
|
|
|
void __kmp_join_call(ident_t *loc, int gtid
|
|
#if OMPT_SUPPORT
|
|
,
|
|
enum fork_context_e fork_context
|
|
#endif
|
|
,
|
|
int exit_teams) {
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
|
|
kmp_team_t *team;
|
|
kmp_team_t *parent_team;
|
|
kmp_info_t *master_th;
|
|
kmp_root_t *root;
|
|
int master_active;
|
|
|
|
KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));
|
|
|
|
/* setup current data */
|
|
master_th = __kmp_threads[gtid];
|
|
root = master_th->th.th_root;
|
|
team = master_th->th.th_team;
|
|
parent_team = team->t.t_parent;
|
|
|
|
master_th->th.th_ident = loc;
|
|
|
|
#if OMPT_SUPPORT
|
|
void *team_microtask = (void *)team->t.t_pkfn;
|
|
// For GOMP interface with serialized parallel, need the
|
|
// __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
|
|
// and end-parallel events.
|
|
if (ompt_enabled.enabled &&
|
|
!(team->t.t_serialized && fork_context == fork_context_gnu)) {
|
|
master_th->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
|
|
#if KMP_DEBUG
|
|
if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
|
|
KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
|
|
"th_task_team = %p\n",
|
|
__kmp_gtid_from_thread(master_th), team,
|
|
team->t.t_task_team[master_th->th.th_task_state],
|
|
master_th->th.th_task_team));
|
|
KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
|
|
team->t.t_task_team[master_th->th.th_task_state]);
|
|
}
|
|
#endif
|
|
|
|
if (team->t.t_serialized) {
|
|
if (master_th->th.th_teams_microtask) {
|
|
// We are in teams construct
|
|
int level = team->t.t_level;
|
|
int tlevel = master_th->th.th_teams_level;
|
|
if (level == tlevel) {
|
|
// AC: we haven't incremented it earlier at start of teams construct,
|
|
// so do it here - at the end of teams construct
|
|
team->t.t_level++;
|
|
} else if (level == tlevel + 1) {
|
|
// AC: we are exiting parallel inside teams, need to increment
|
|
// serialization in order to restore it in the next call to
|
|
// __kmpc_end_serialized_parallel
|
|
team->t.t_serialized++;
|
|
}
|
|
}
|
|
__kmpc_end_serialized_parallel(loc, gtid);
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
if (fork_context == fork_context_gnu) {
|
|
__ompt_lw_taskteam_unlink(master_th);
|
|
}
|
|
__kmp_join_restore_state(master_th, parent_team);
|
|
}
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
master_active = team->t.t_master_active;
|
|
|
|
if (!exit_teams) {
|
|
// AC: No barrier for internal teams at exit from teams construct.
|
|
// But there is barrier for external team (league).
|
|
__kmp_internal_join(loc, gtid, team);
|
|
#if USE_ITT_BUILD
|
|
if (__itt_stack_caller_create_ptr) {
|
|
KMP_DEBUG_ASSERT(team->t.t_stack_id != NULL);
|
|
// destroy the stack stitching id after join barrier
|
|
__kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id);
|
|
team->t.t_stack_id = NULL;
|
|
}
|
|
#endif
|
|
} else {
|
|
master_th->th.th_task_state =
|
|
0; // AC: no tasking in teams (out of any parallel)
|
|
#if USE_ITT_BUILD
|
|
if (__itt_stack_caller_create_ptr && parent_team->t.t_serialized) {
|
|
KMP_DEBUG_ASSERT(parent_team->t.t_stack_id != NULL);
|
|
// destroy the stack stitching id on exit from the teams construct
|
|
// if parent_team is active, then the id will be destroyed later on
|
|
// by master of the league of teams
|
|
__kmp_itt_stack_caller_destroy((__itt_caller)parent_team->t.t_stack_id);
|
|
parent_team->t.t_stack_id = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
KMP_MB();
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
|
|
void *codeptr = team->t.ompt_team_info.master_return_address;
|
|
#endif
|
|
|
|
#if USE_ITT_BUILD
|
|
// Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
|
|
if (team->t.t_active_level == 1 &&
|
|
(!master_th->th.th_teams_microtask || /* not in teams construct */
|
|
master_th->th.th_teams_size.nteams == 1)) {
|
|
master_th->th.th_ident = loc;
|
|
// only one notification scheme (either "submit" or "forking/joined", not
|
|
// both)
|
|
if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
|
|
__kmp_forkjoin_frames_mode == 3)
|
|
__kmp_itt_frame_submit(gtid, team->t.t_region_time,
|
|
master_th->th.th_frame_time, 0, loc,
|
|
master_th->th.th_team_nproc, 1);
|
|
else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
|
|
!__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
|
|
__kmp_itt_region_joined(gtid);
|
|
} // active_level == 1
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
if (!exit_teams) {
|
|
// Restore master thread's partition.
|
|
master_th->th.th_first_place = team->t.t_first_place;
|
|
master_th->th.th_last_place = team->t.t_last_place;
|
|
}
|
|
#endif // KMP_AFFINITY_SUPPORTED
|
|
|
|
if (master_th->th.th_teams_microtask && !exit_teams &&
|
|
team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
|
|
team->t.t_level == master_th->th.th_teams_level + 1) {
|
|
// AC: We need to leave the team structure intact at the end of parallel
|
|
// inside the teams construct, so that at the next parallel same (hot) team
|
|
// works, only adjust nesting levels
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t ompt_parallel_data = ompt_data_none;
|
|
if (ompt_enabled.enabled) {
|
|
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
int ompt_team_size = team->t.t_nproc;
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
|
|
}
|
|
task_info->frame.exit_frame = ompt_data_none;
|
|
task_info->task_data = ompt_data_none;
|
|
ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
|
|
__ompt_lw_taskteam_unlink(master_th);
|
|
}
|
|
#endif
|
|
/* Decrement our nested depth level */
|
|
team->t.t_level--;
|
|
team->t.t_active_level--;
|
|
KMP_ATOMIC_DEC(&root->r.r_in_parallel);
|
|
|
|
// Restore number of threads in the team if needed. This code relies on
|
|
// the proper adjustment of th_teams_size.nth after the fork in
|
|
// __kmp_teams_master on each teams primary thread in the case that
|
|
// __kmp_reserve_threads reduced it.
|
|
if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
|
|
int old_num = master_th->th.th_team_nproc;
|
|
int new_num = master_th->th.th_teams_size.nth;
|
|
kmp_info_t **other_threads = team->t.t_threads;
|
|
team->t.t_nproc = new_num;
|
|
for (int i = 0; i < old_num; ++i) {
|
|
other_threads[i]->th.th_team_nproc = new_num;
|
|
}
|
|
// Adjust states of non-used threads of the team
|
|
for (int i = old_num; i < new_num; ++i) {
|
|
// Re-initialize thread's barrier data.
|
|
KMP_DEBUG_ASSERT(other_threads[i]);
|
|
kmp_balign_t *balign = other_threads[i]->th.th_bar;
|
|
for (int b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
|
|
#if USE_DEBUGGER
|
|
balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
|
|
#endif
|
|
}
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
// Synchronize thread's task state
|
|
other_threads[i]->th.th_task_state = master_th->th.th_task_state;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
__kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data,
|
|
OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr);
|
|
}
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
/* do cleanup and restore the parent team */
|
|
master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
|
|
master_th->th.th_local.this_construct = team->t.t_master_this_cons;
|
|
|
|
master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];
|
|
|
|
/* jc: The following lock has instructions with REL and ACQ semantics,
|
|
separating the parallel user code called in this parallel region
|
|
from the serial user code called after this function returns. */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
if (!master_th->th.th_teams_microtask ||
|
|
team->t.t_level > master_th->th.th_teams_level) {
|
|
/* Decrement our nested depth level */
|
|
KMP_ATOMIC_DEC(&root->r.r_in_parallel);
|
|
}
|
|
KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
int flags = (team_microtask == (void *)__kmp_teams_master)
|
|
? ompt_task_initial
|
|
: ompt_task_implicit;
|
|
int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc;
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
|
|
OMPT_CUR_TASK_INFO(master_th)->thread_num, flags);
|
|
}
|
|
task_info->frame.exit_frame = ompt_data_none;
|
|
task_info->task_data = ompt_data_none;
|
|
}
|
|
#endif
|
|
|
|
KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
|
|
master_th, team));
|
|
__kmp_pop_current_task_from_thread(master_th);
|
|
|
|
master_th->th.th_def_allocator = team->t.t_def_allocator;
|
|
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_parallel_end();
|
|
#endif
|
|
updateHWFPControl(team);
|
|
|
|
if (root->r.r_active != master_active)
|
|
root->r.r_active = master_active;
|
|
|
|
__kmp_free_team(root, team USE_NESTED_HOT_ARG(
|
|
master_th)); // this will free worker threads
|
|
|
|
/* this race was fun to find. make sure the following is in the critical
|
|
region otherwise assertions may fail occasionally since the old team may be
|
|
reallocated and the hierarchy appears inconsistent. it is actually safe to
|
|
run and won't cause any bugs, but will cause those assertion failures. it's
|
|
only one deref&assign so might as well put this in the critical region */
|
|
master_th->th.th_team = parent_team;
|
|
master_th->th.th_team_nproc = parent_team->t.t_nproc;
|
|
master_th->th.th_team_master = parent_team->t.t_threads[0];
|
|
master_th->th.th_team_serialized = parent_team->t.t_serialized;
|
|
|
|
/* restore serialized team, if need be */
|
|
if (parent_team->t.t_serialized &&
|
|
parent_team != master_th->th.th_serial_team &&
|
|
parent_team != root->r.r_root_team) {
|
|
__kmp_free_team(root,
|
|
master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
|
|
master_th->th.th_serial_team = parent_team;
|
|
}
|
|
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
if (master_th->th.th_task_state_top >
|
|
0) { // Restore task state from memo stack
|
|
KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
|
|
// Remember primary thread's state if we re-use this nested hot team
|
|
master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
|
|
master_th->th.th_task_state;
|
|
--master_th->th.th_task_state_top; // pop
|
|
// Now restore state at this level
|
|
master_th->th.th_task_state =
|
|
master_th->th
|
|
.th_task_state_memo_stack[master_th->th.th_task_state_top];
|
|
} else if (team != root->r.r_hot_team) {
|
|
// Reset the task state of primary thread if we are not hot team because
|
|
// in this case all the worker threads will be free, and their task state
|
|
// will be reset. If not reset the primary's, the task state will be
|
|
// inconsistent.
|
|
master_th->th.th_task_state = 0;
|
|
}
|
|
// Copy the task team from the parent team to the primary thread
|
|
master_th->th.th_task_team =
|
|
parent_team->t.t_task_team[master_th->th.th_task_state];
|
|
KA_TRACE(20,
|
|
("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n",
|
|
__kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
|
|
parent_team));
|
|
}
|
|
|
|
// TODO: GEH - cannot do this assertion because root thread not set up as
|
|
// executing
|
|
// KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
|
|
master_th->th.th_current_task->td_flags.executing = 1;
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
if (master_th->th.th_team->t.t_level == 0 && __kmp_affinity.flags.reset) {
|
|
__kmp_reset_root_init_mask(gtid);
|
|
}
|
|
#endif
|
|
#if OMPT_SUPPORT
|
|
int flags =
|
|
OMPT_INVOKER(fork_context) |
|
|
((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league
|
|
: ompt_parallel_team);
|
|
if (ompt_enabled.enabled) {
|
|
__kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags,
|
|
codeptr);
|
|
}
|
|
#endif
|
|
|
|
KMP_MB();
|
|
KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
|
|
}
|
|
|
|
/* Check whether we should push an internal control record onto the
|
|
serial team stack. If so, do it. */
|
|
void __kmp_save_internal_controls(kmp_info_t *thread) {
|
|
|
|
if (thread->th.th_team != thread->th.th_serial_team) {
|
|
return;
|
|
}
|
|
if (thread->th.th_team->t.t_serialized > 1) {
|
|
int push = 0;
|
|
|
|
if (thread->th.th_team->t.t_control_stack_top == NULL) {
|
|
push = 1;
|
|
} else {
|
|
if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
|
|
thread->th.th_team->t.t_serialized) {
|
|
push = 1;
|
|
}
|
|
}
|
|
if (push) { /* push a record on the serial team's stack */
|
|
kmp_internal_control_t *control =
|
|
(kmp_internal_control_t *)__kmp_allocate(
|
|
sizeof(kmp_internal_control_t));
|
|
|
|
copy_icvs(control, &thread->th.th_current_task->td_icvs);
|
|
|
|
control->serial_nesting_level = thread->th.th_team->t.t_serialized;
|
|
|
|
control->next = thread->th.th_team->t.t_control_stack_top;
|
|
thread->th.th_team->t.t_control_stack_top = control;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Changes set_nproc */
|
|
void __kmp_set_num_threads(int new_nth, int gtid) {
|
|
kmp_info_t *thread;
|
|
kmp_root_t *root;
|
|
|
|
KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
if (new_nth < 1)
|
|
new_nth = 1;
|
|
else if (new_nth > __kmp_max_nth)
|
|
new_nth = __kmp_max_nth;
|
|
|
|
KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
|
|
thread = __kmp_threads[gtid];
|
|
if (thread->th.th_current_task->td_icvs.nproc == new_nth)
|
|
return; // nothing to do
|
|
|
|
__kmp_save_internal_controls(thread);
|
|
|
|
set__nproc(thread, new_nth);
|
|
|
|
// If this omp_set_num_threads() call will cause the hot team size to be
|
|
// reduced (in the absence of a num_threads clause), then reduce it now,
|
|
// rather than waiting for the next parallel region.
|
|
root = thread->th.th_root;
|
|
if (__kmp_init_parallel && (!root->r.r_active) &&
|
|
(root->r.r_hot_team->t.t_nproc > new_nth)
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
&& __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
|
|
#endif
|
|
) {
|
|
kmp_team_t *hot_team = root->r.r_hot_team;
|
|
int f;
|
|
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
__kmp_resize_dist_barrier(hot_team, hot_team->t.t_nproc, new_nth);
|
|
}
|
|
// Release the extra threads we don't need any more.
|
|
for (f = new_nth; f < hot_team->t.t_nproc; f++) {
|
|
KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
// When decreasing team size, threads no longer in the team should unref
|
|
// task team.
|
|
hot_team->t.t_threads[f]->th.th_task_team = NULL;
|
|
}
|
|
__kmp_free_thread(hot_team->t.t_threads[f]);
|
|
hot_team->t.t_threads[f] = NULL;
|
|
}
|
|
hot_team->t.t_nproc = new_nth;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
if (thread->th.th_hot_teams) {
|
|
KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
|
|
thread->th.th_hot_teams[0].hot_team_nth = new_nth;
|
|
}
|
|
#endif
|
|
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
hot_team->t.b->update_num_threads(new_nth);
|
|
__kmp_add_threads_to_team(hot_team, new_nth);
|
|
}
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
// Update the t_nproc field in the threads that are still active.
|
|
for (f = 0; f < new_nth; f++) {
|
|
KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
|
|
hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
|
|
}
|
|
// Special flag in case omp_set_num_threads() call
|
|
hot_team->t.t_size_changed = -1;
|
|
}
|
|
}
|
|
|
|
/* Changes max_active_levels */
|
|
void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
|
|
kmp_info_t *thread;
|
|
|
|
KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
|
|
"%d = (%d)\n",
|
|
gtid, max_active_levels));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
// validate max_active_levels
|
|
if (max_active_levels < 0) {
|
|
KMP_WARNING(ActiveLevelsNegative, max_active_levels);
|
|
// We ignore this call if the user has specified a negative value.
|
|
// The current setting won't be changed. The last valid setting will be
|
|
// used. A warning will be issued (if warnings are allowed as controlled by
|
|
// the KMP_WARNINGS env var).
|
|
KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
|
|
"max_active_levels for thread %d = (%d)\n",
|
|
gtid, max_active_levels));
|
|
return;
|
|
}
|
|
if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
|
|
// it's OK, the max_active_levels is within the valid range: [ 0;
|
|
// KMP_MAX_ACTIVE_LEVELS_LIMIT ]
|
|
// We allow a zero value. (implementation defined behavior)
|
|
} else {
|
|
KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
|
|
KMP_MAX_ACTIVE_LEVELS_LIMIT);
|
|
max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
|
|
// Current upper limit is MAX_INT. (implementation defined behavior)
|
|
// If the input exceeds the upper limit, we correct the input to be the
|
|
// upper limit. (implementation defined behavior)
|
|
// Actually, the flow should never get here until we use MAX_INT limit.
|
|
}
|
|
KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
|
|
"max_active_levels for thread %d = (%d)\n",
|
|
gtid, max_active_levels));
|
|
|
|
thread = __kmp_threads[gtid];
|
|
|
|
__kmp_save_internal_controls(thread);
|
|
|
|
set__max_active_levels(thread, max_active_levels);
|
|
}
|
|
|
|
/* Gets max_active_levels */
|
|
int __kmp_get_max_active_levels(int gtid) {
|
|
kmp_info_t *thread;
|
|
|
|
KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
thread = __kmp_threads[gtid];
|
|
KMP_DEBUG_ASSERT(thread->th.th_current_task);
|
|
KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
|
|
"curtask_maxaclevel=%d\n",
|
|
gtid, thread->th.th_current_task,
|
|
thread->th.th_current_task->td_icvs.max_active_levels));
|
|
return thread->th.th_current_task->td_icvs.max_active_levels;
|
|
}
|
|
|
|
// nteams-var per-device ICV
|
|
void __kmp_set_num_teams(int num_teams) {
|
|
if (num_teams > 0)
|
|
__kmp_nteams = num_teams;
|
|
}
|
|
int __kmp_get_max_teams(void) { return __kmp_nteams; }
|
|
// teams-thread-limit-var per-device ICV
|
|
void __kmp_set_teams_thread_limit(int limit) {
|
|
if (limit > 0)
|
|
__kmp_teams_thread_limit = limit;
|
|
}
|
|
int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit; }
|
|
|
|
KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int));
|
|
KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int));
|
|
|
|
/* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
|
|
void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
|
|
kmp_info_t *thread;
|
|
kmp_sched_t orig_kind;
|
|
// kmp_team_t *team;
|
|
|
|
KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
|
|
gtid, (int)kind, chunk));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
// Check if the kind parameter is valid, correct if needed.
|
|
// Valid parameters should fit in one of two intervals - standard or extended:
|
|
// <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
|
|
// 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103
|
|
orig_kind = kind;
|
|
kind = __kmp_sched_without_mods(kind);
|
|
|
|
if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
|
|
(kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
|
|
// TODO: Hint needs attention in case we change the default schedule.
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
|
|
KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
|
|
__kmp_msg_null);
|
|
kind = kmp_sched_default;
|
|
chunk = 0; // ignore chunk value in case of bad kind
|
|
}
|
|
|
|
thread = __kmp_threads[gtid];
|
|
|
|
__kmp_save_internal_controls(thread);
|
|
|
|
if (kind < kmp_sched_upper_std) {
|
|
if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
|
|
// differ static chunked vs. unchunked: chunk should be invalid to
|
|
// indicate unchunked schedule (which is the default)
|
|
thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
|
|
} else {
|
|
thread->th.th_current_task->td_icvs.sched.r_sched_type =
|
|
__kmp_sch_map[kind - kmp_sched_lower - 1];
|
|
}
|
|
} else {
|
|
// __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
|
|
// kmp_sched_lower - 2 ];
|
|
thread->th.th_current_task->td_icvs.sched.r_sched_type =
|
|
__kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
|
|
kmp_sched_lower - 2];
|
|
}
|
|
__kmp_sched_apply_mods_intkind(
|
|
orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type));
|
|
if (kind == kmp_sched_auto || chunk < 1) {
|
|
// ignore parameter chunk for schedule auto
|
|
thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
|
|
} else {
|
|
thread->th.th_current_task->td_icvs.sched.chunk = chunk;
|
|
}
|
|
}
|
|
|
|
/* Gets def_sched_var ICV values */
|
|
void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
|
|
kmp_info_t *thread;
|
|
enum sched_type th_type;
|
|
|
|
KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
thread = __kmp_threads[gtid];
|
|
|
|
th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
|
|
switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) {
|
|
case kmp_sch_static:
|
|
case kmp_sch_static_greedy:
|
|
case kmp_sch_static_balanced:
|
|
*kind = kmp_sched_static;
|
|
__kmp_sched_apply_mods_stdkind(kind, th_type);
|
|
*chunk = 0; // chunk was not set, try to show this fact via zero value
|
|
return;
|
|
case kmp_sch_static_chunked:
|
|
*kind = kmp_sched_static;
|
|
break;
|
|
case kmp_sch_dynamic_chunked:
|
|
*kind = kmp_sched_dynamic;
|
|
break;
|
|
case kmp_sch_guided_chunked:
|
|
case kmp_sch_guided_iterative_chunked:
|
|
case kmp_sch_guided_analytical_chunked:
|
|
*kind = kmp_sched_guided;
|
|
break;
|
|
case kmp_sch_auto:
|
|
*kind = kmp_sched_auto;
|
|
break;
|
|
case kmp_sch_trapezoidal:
|
|
*kind = kmp_sched_trapezoidal;
|
|
break;
|
|
#if KMP_STATIC_STEAL_ENABLED
|
|
case kmp_sch_static_steal:
|
|
*kind = kmp_sched_static_steal;
|
|
break;
|
|
#endif
|
|
default:
|
|
KMP_FATAL(UnknownSchedulingType, th_type);
|
|
}
|
|
|
|
__kmp_sched_apply_mods_stdkind(kind, th_type);
|
|
*chunk = thread->th.th_current_task->td_icvs.sched.chunk;
|
|
}
|
|
|
|
int __kmp_get_ancestor_thread_num(int gtid, int level) {
|
|
|
|
int ii, dd;
|
|
kmp_team_t *team;
|
|
kmp_info_t *thr;
|
|
|
|
KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
// validate level
|
|
if (level == 0)
|
|
return 0;
|
|
if (level < 0)
|
|
return -1;
|
|
thr = __kmp_threads[gtid];
|
|
team = thr->th.th_team;
|
|
ii = team->t.t_level;
|
|
if (level > ii)
|
|
return -1;
|
|
|
|
if (thr->th.th_teams_microtask) {
|
|
// AC: we are in teams region where multiple nested teams have same level
|
|
int tlevel = thr->th.th_teams_level; // the level of the teams construct
|
|
if (level <=
|
|
tlevel) { // otherwise usual algorithm works (will not touch the teams)
|
|
KMP_DEBUG_ASSERT(ii >= tlevel);
|
|
// AC: As we need to pass by the teams league, we need to artificially
|
|
// increase ii
|
|
if (ii == tlevel) {
|
|
ii += 2; // three teams have same level
|
|
} else {
|
|
ii++; // two teams have same level
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ii == level)
|
|
return __kmp_tid_from_gtid(gtid);
|
|
|
|
dd = team->t.t_serialized;
|
|
level++;
|
|
while (ii > level) {
|
|
for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
|
|
}
|
|
if ((team->t.t_serialized) && (!dd)) {
|
|
team = team->t.t_parent;
|
|
continue;
|
|
}
|
|
if (ii > level) {
|
|
team = team->t.t_parent;
|
|
dd = team->t.t_serialized;
|
|
ii--;
|
|
}
|
|
}
|
|
|
|
return (dd > 1) ? (0) : (team->t.t_master_tid);
|
|
}
|
|
|
|
int __kmp_get_team_size(int gtid, int level) {
|
|
|
|
int ii, dd;
|
|
kmp_team_t *team;
|
|
kmp_info_t *thr;
|
|
|
|
KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
|
|
KMP_DEBUG_ASSERT(__kmp_init_serial);
|
|
|
|
// validate level
|
|
if (level == 0)
|
|
return 1;
|
|
if (level < 0)
|
|
return -1;
|
|
thr = __kmp_threads[gtid];
|
|
team = thr->th.th_team;
|
|
ii = team->t.t_level;
|
|
if (level > ii)
|
|
return -1;
|
|
|
|
if (thr->th.th_teams_microtask) {
|
|
// AC: we are in teams region where multiple nested teams have same level
|
|
int tlevel = thr->th.th_teams_level; // the level of the teams construct
|
|
if (level <=
|
|
tlevel) { // otherwise usual algorithm works (will not touch the teams)
|
|
KMP_DEBUG_ASSERT(ii >= tlevel);
|
|
// AC: As we need to pass by the teams league, we need to artificially
|
|
// increase ii
|
|
if (ii == tlevel) {
|
|
ii += 2; // three teams have same level
|
|
} else {
|
|
ii++; // two teams have same level
|
|
}
|
|
}
|
|
}
|
|
|
|
while (ii > level) {
|
|
for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
|
|
}
|
|
if (team->t.t_serialized && (!dd)) {
|
|
team = team->t.t_parent;
|
|
continue;
|
|
}
|
|
if (ii > level) {
|
|
team = team->t.t_parent;
|
|
ii--;
|
|
}
|
|
}
|
|
|
|
return team->t.t_nproc;
|
|
}
|
|
|
|
kmp_r_sched_t __kmp_get_schedule_global() {
|
|
// This routine created because pairs (__kmp_sched, __kmp_chunk) and
|
|
// (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
|
|
// independently. So one can get the updated schedule here.
|
|
|
|
kmp_r_sched_t r_sched;
|
|
|
|
// create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
|
|
// __kmp_guided. __kmp_sched should keep original value, so that user can set
|
|
// KMP_SCHEDULE multiple times, and thus have different run-time schedules in
|
|
// different roots (even in OMP 2.5)
|
|
enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
|
|
enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched);
|
|
if (s == kmp_sch_static) {
|
|
// replace STATIC with more detailed schedule (balanced or greedy)
|
|
r_sched.r_sched_type = __kmp_static;
|
|
} else if (s == kmp_sch_guided_chunked) {
|
|
// replace GUIDED with more detailed schedule (iterative or analytical)
|
|
r_sched.r_sched_type = __kmp_guided;
|
|
} else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
|
|
r_sched.r_sched_type = __kmp_sched;
|
|
}
|
|
SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers);
|
|
|
|
if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
|
|
// __kmp_chunk may be wrong here (if it was not ever set)
|
|
r_sched.chunk = KMP_DEFAULT_CHUNK;
|
|
} else {
|
|
r_sched.chunk = __kmp_chunk;
|
|
}
|
|
|
|
return r_sched;
|
|
}
|
|
|
|
/* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
|
|
at least argc number of *t_argv entries for the requested team. */
|
|
static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {
|
|
|
|
KMP_DEBUG_ASSERT(team);
|
|
if (!realloc || argc > team->t.t_max_argc) {
|
|
|
|
KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
|
|
"current entries=%d\n",
|
|
team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
|
|
/* if previously allocated heap space for args, free them */
|
|
if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
|
|
__kmp_free((void *)team->t.t_argv);
|
|
|
|
if (argc <= KMP_INLINE_ARGV_ENTRIES) {
|
|
/* use unused space in the cache line for arguments */
|
|
team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
|
|
KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
|
|
"argv entries\n",
|
|
team->t.t_id, team->t.t_max_argc));
|
|
team->t.t_argv = &team->t.t_inline_argv[0];
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_storage_map_gtid(
|
|
-1, &team->t.t_inline_argv[0],
|
|
&team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
|
|
(sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
|
|
team->t.t_id);
|
|
}
|
|
} else {
|
|
/* allocate space for arguments in the heap */
|
|
team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
|
|
? KMP_MIN_MALLOC_ARGV_ENTRIES
|
|
: 2 * argc;
|
|
KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
|
|
"argv entries\n",
|
|
team->t.t_id, team->t.t_max_argc));
|
|
team->t.t_argv =
|
|
(void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
|
|
&team->t.t_argv[team->t.t_max_argc],
|
|
sizeof(void *) * team->t.t_max_argc,
|
|
"team_%d.t_argv", team->t.t_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
|
|
int i;
|
|
int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
|
|
team->t.t_threads =
|
|
(kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
|
|
team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
|
|
sizeof(dispatch_shared_info_t) * num_disp_buff);
|
|
team->t.t_dispatch =
|
|
(kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
|
|
team->t.t_implicit_task_taskdata =
|
|
(kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
|
|
team->t.t_max_nproc = max_nth;
|
|
|
|
/* setup dispatch buffers */
|
|
for (i = 0; i < num_disp_buff; ++i) {
|
|
team->t.t_disp_buffer[i].buffer_index = i;
|
|
team->t.t_disp_buffer[i].doacross_buf_idx = i;
|
|
}
|
|
}
|
|
|
|
static void __kmp_free_team_arrays(kmp_team_t *team) {
|
|
/* Note: this does not free the threads in t_threads (__kmp_free_threads) */
|
|
int i;
|
|
for (i = 0; i < team->t.t_max_nproc; ++i) {
|
|
if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
|
|
__kmp_free(team->t.t_dispatch[i].th_disp_buffer);
|
|
team->t.t_dispatch[i].th_disp_buffer = NULL;
|
|
}
|
|
}
|
|
#if KMP_USE_HIER_SCHED
|
|
__kmp_dispatch_free_hierarchies(team);
|
|
#endif
|
|
__kmp_free(team->t.t_threads);
|
|
__kmp_free(team->t.t_disp_buffer);
|
|
__kmp_free(team->t.t_dispatch);
|
|
__kmp_free(team->t.t_implicit_task_taskdata);
|
|
team->t.t_threads = NULL;
|
|
team->t.t_disp_buffer = NULL;
|
|
team->t.t_dispatch = NULL;
|
|
team->t.t_implicit_task_taskdata = 0;
|
|
}
|
|
|
|
static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
|
|
kmp_info_t **oldThreads = team->t.t_threads;
|
|
|
|
__kmp_free(team->t.t_disp_buffer);
|
|
__kmp_free(team->t.t_dispatch);
|
|
__kmp_free(team->t.t_implicit_task_taskdata);
|
|
__kmp_allocate_team_arrays(team, max_nth);
|
|
|
|
KMP_MEMCPY(team->t.t_threads, oldThreads,
|
|
team->t.t_nproc * sizeof(kmp_info_t *));
|
|
|
|
__kmp_free(oldThreads);
|
|
}
|
|
|
|
static kmp_internal_control_t __kmp_get_global_icvs(void) {
|
|
|
|
kmp_r_sched_t r_sched =
|
|
__kmp_get_schedule_global(); // get current state of scheduling globals
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);
|
|
|
|
kmp_internal_control_t g_icvs = {
|
|
0, // int serial_nesting_level; //corresponds to value of th_team_serialized
|
|
(kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
|
|
// adjustment of threads (per thread)
|
|
(kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
|
|
// whether blocktime is explicitly set
|
|
__kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
|
|
#if KMP_USE_MONITOR
|
|
__kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
|
|
// intervals
|
|
#endif
|
|
__kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
|
|
// next parallel region (per thread)
|
|
// (use a max ub on value if __kmp_parallel_initialize not called yet)
|
|
__kmp_cg_max_nth, // int thread_limit;
|
|
__kmp_task_max_nth, // int task_thread_limit; // to set the thread_limit
|
|
// on task. This is used in the case of target thread_limit
|
|
__kmp_dflt_max_active_levels, // int max_active_levels; //internal control
|
|
// for max_active_levels
|
|
r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
|
|
// {sched,chunk} pair
|
|
__kmp_nested_proc_bind.bind_types[0],
|
|
__kmp_default_device,
|
|
NULL // struct kmp_internal_control *next;
|
|
};
|
|
|
|
return g_icvs;
|
|
}
|
|
|
|
static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {
|
|
|
|
kmp_internal_control_t gx_icvs;
|
|
gx_icvs.serial_nesting_level =
|
|
0; // probably =team->t.t_serial like in save_inter_controls
|
|
copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
|
|
gx_icvs.next = NULL;
|
|
|
|
return gx_icvs;
|
|
}
|
|
|
|
static void __kmp_initialize_root(kmp_root_t *root) {
|
|
int f;
|
|
kmp_team_t *root_team;
|
|
kmp_team_t *hot_team;
|
|
int hot_team_max_nth;
|
|
kmp_r_sched_t r_sched =
|
|
__kmp_get_schedule_global(); // get current state of scheduling globals
|
|
kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
|
|
KMP_DEBUG_ASSERT(root);
|
|
KMP_ASSERT(!root->r.r_begin);
|
|
|
|
/* setup the root state structure */
|
|
__kmp_init_lock(&root->r.r_begin_lock);
|
|
root->r.r_begin = FALSE;
|
|
root->r.r_active = FALSE;
|
|
root->r.r_in_parallel = 0;
|
|
root->r.r_blocktime = __kmp_dflt_blocktime;
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
root->r.r_affinity_assigned = FALSE;
|
|
#endif
|
|
|
|
/* setup the root team for this task */
|
|
/* allocate the root team structure */
|
|
KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));
|
|
|
|
root_team =
|
|
__kmp_allocate_team(root,
|
|
1, // new_nproc
|
|
1, // max_nproc
|
|
#if OMPT_SUPPORT
|
|
ompt_data_none, // root parallel id
|
|
#endif
|
|
__kmp_nested_proc_bind.bind_types[0], &r_icvs,
|
|
0 // argc
|
|
USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
|
|
);
|
|
#if USE_DEBUGGER
|
|
// Non-NULL value should be assigned to make the debugger display the root
|
|
// team.
|
|
TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
|
|
#endif
|
|
|
|
KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));
|
|
|
|
root->r.r_root_team = root_team;
|
|
root_team->t.t_control_stack_top = NULL;
|
|
|
|
/* initialize root team */
|
|
root_team->t.t_threads[0] = NULL;
|
|
root_team->t.t_nproc = 1;
|
|
root_team->t.t_serialized = 1;
|
|
// TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
|
|
root_team->t.t_sched.sched = r_sched.sched;
|
|
KA_TRACE(
|
|
20,
|
|
("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
|
|
root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
|
|
|
|
/* setup the hot team for this task */
|
|
/* allocate the hot team structure */
|
|
KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));
|
|
|
|
hot_team =
|
|
__kmp_allocate_team(root,
|
|
1, // new_nproc
|
|
__kmp_dflt_team_nth_ub * 2, // max_nproc
|
|
#if OMPT_SUPPORT
|
|
ompt_data_none, // root parallel id
|
|
#endif
|
|
__kmp_nested_proc_bind.bind_types[0], &r_icvs,
|
|
0 // argc
|
|
USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
|
|
);
|
|
KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));
|
|
|
|
root->r.r_hot_team = hot_team;
|
|
root_team->t.t_control_stack_top = NULL;
|
|
|
|
/* first-time initialization */
|
|
hot_team->t.t_parent = root_team;
|
|
|
|
/* initialize hot team */
|
|
hot_team_max_nth = hot_team->t.t_max_nproc;
|
|
for (f = 0; f < hot_team_max_nth; ++f) {
|
|
hot_team->t.t_threads[f] = NULL;
|
|
}
|
|
hot_team->t.t_nproc = 1;
|
|
// TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
|
|
hot_team->t.t_sched.sched = r_sched.sched;
|
|
hot_team->t.t_size_changed = 0;
|
|
}
|
|
|
|
#ifdef KMP_DEBUG
|
|
|
|
typedef struct kmp_team_list_item {
|
|
kmp_team_p const *entry;
|
|
struct kmp_team_list_item *next;
|
|
} kmp_team_list_item_t;
|
|
typedef kmp_team_list_item_t *kmp_team_list_t;
|
|
|
|
static void __kmp_print_structure_team_accum( // Add team to list of teams.
|
|
kmp_team_list_t list, // List of teams.
|
|
kmp_team_p const *team // Team to add.
|
|
) {
|
|
|
|
// List must terminate with item where both entry and next are NULL.
|
|
// Team is added to the list only once.
|
|
// List is sorted in ascending order by team id.
|
|
// Team id is *not* a key.
|
|
|
|
kmp_team_list_t l;
|
|
|
|
KMP_DEBUG_ASSERT(list != NULL);
|
|
if (team == NULL) {
|
|
return;
|
|
}
|
|
|
|
__kmp_print_structure_team_accum(list, team->t.t_parent);
|
|
__kmp_print_structure_team_accum(list, team->t.t_next_pool);
|
|
|
|
// Search list for the team.
|
|
l = list;
|
|
while (l->next != NULL && l->entry != team) {
|
|
l = l->next;
|
|
}
|
|
if (l->next != NULL) {
|
|
return; // Team has been added before, exit.
|
|
}
|
|
|
|
// Team is not found. Search list again for insertion point.
|
|
l = list;
|
|
while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
|
|
l = l->next;
|
|
}
|
|
|
|
// Insert team.
|
|
{
|
|
kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
|
|
sizeof(kmp_team_list_item_t));
|
|
*item = *l;
|
|
l->entry = team;
|
|
l->next = item;
|
|
}
|
|
}
|
|
|
|
static void __kmp_print_structure_team(char const *title, kmp_team_p const *team
|
|
|
|
) {
|
|
__kmp_printf("%s", title);
|
|
if (team != NULL) {
|
|
__kmp_printf("%2x %p\n", team->t.t_id, team);
|
|
} else {
|
|
__kmp_printf(" - (nil)\n");
|
|
}
|
|
}
|
|
|
|
static void __kmp_print_structure_thread(char const *title,
|
|
kmp_info_p const *thread) {
|
|
__kmp_printf("%s", title);
|
|
if (thread != NULL) {
|
|
__kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
|
|
} else {
|
|
__kmp_printf(" - (nil)\n");
|
|
}
|
|
}
|
|
|
|
void __kmp_print_structure(void) {
|
|
|
|
kmp_team_list_t list;
|
|
|
|
// Initialize list of teams.
|
|
list =
|
|
(kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
|
|
list->entry = NULL;
|
|
list->next = NULL;
|
|
|
|
__kmp_printf("\n------------------------------\nGlobal Thread "
|
|
"Table\n------------------------------\n");
|
|
{
|
|
int gtid;
|
|
for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
|
|
__kmp_printf("%2d", gtid);
|
|
if (__kmp_threads != NULL) {
|
|
__kmp_printf(" %p", __kmp_threads[gtid]);
|
|
}
|
|
if (__kmp_root != NULL) {
|
|
__kmp_printf(" %p", __kmp_root[gtid]);
|
|
}
|
|
__kmp_printf("\n");
|
|
}
|
|
}
|
|
|
|
// Print out __kmp_threads array.
|
|
__kmp_printf("\n------------------------------\nThreads\n--------------------"
|
|
"----------\n");
|
|
if (__kmp_threads != NULL) {
|
|
int gtid;
|
|
for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
|
|
kmp_info_t const *thread = __kmp_threads[gtid];
|
|
if (thread != NULL) {
|
|
__kmp_printf("GTID %2d %p:\n", gtid, thread);
|
|
__kmp_printf(" Our Root: %p\n", thread->th.th_root);
|
|
__kmp_print_structure_team(" Our Team: ", thread->th.th_team);
|
|
__kmp_print_structure_team(" Serial Team: ",
|
|
thread->th.th_serial_team);
|
|
__kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc);
|
|
__kmp_print_structure_thread(" Primary: ",
|
|
thread->th.th_team_master);
|
|
__kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized);
|
|
__kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc);
|
|
__kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
|
|
__kmp_print_structure_thread(" Next in pool: ",
|
|
thread->th.th_next_pool);
|
|
__kmp_printf("\n");
|
|
__kmp_print_structure_team_accum(list, thread->th.th_team);
|
|
__kmp_print_structure_team_accum(list, thread->th.th_serial_team);
|
|
}
|
|
}
|
|
} else {
|
|
__kmp_printf("Threads array is not allocated.\n");
|
|
}
|
|
|
|
// Print out __kmp_root array.
|
|
__kmp_printf("\n------------------------------\nUbers\n----------------------"
|
|
"--------\n");
|
|
if (__kmp_root != NULL) {
|
|
int gtid;
|
|
for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
|
|
kmp_root_t const *root = __kmp_root[gtid];
|
|
if (root != NULL) {
|
|
__kmp_printf("GTID %2d %p:\n", gtid, root);
|
|
__kmp_print_structure_team(" Root Team: ", root->r.r_root_team);
|
|
__kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team);
|
|
__kmp_print_structure_thread(" Uber Thread: ",
|
|
root->r.r_uber_thread);
|
|
__kmp_printf(" Active?: %2d\n", root->r.r_active);
|
|
__kmp_printf(" In Parallel: %2d\n",
|
|
KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
|
|
__kmp_printf("\n");
|
|
__kmp_print_structure_team_accum(list, root->r.r_root_team);
|
|
__kmp_print_structure_team_accum(list, root->r.r_hot_team);
|
|
}
|
|
}
|
|
} else {
|
|
__kmp_printf("Ubers array is not allocated.\n");
|
|
}
|
|
|
|
__kmp_printf("\n------------------------------\nTeams\n----------------------"
|
|
"--------\n");
|
|
while (list->next != NULL) {
|
|
kmp_team_p const *team = list->entry;
|
|
int i;
|
|
__kmp_printf("Team %2x %p:\n", team->t.t_id, team);
|
|
__kmp_print_structure_team(" Parent Team: ", team->t.t_parent);
|
|
__kmp_printf(" Primary TID: %2d\n", team->t.t_master_tid);
|
|
__kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc);
|
|
__kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized);
|
|
__kmp_printf(" Number threads: %2d\n", team->t.t_nproc);
|
|
for (i = 0; i < team->t.t_nproc; ++i) {
|
|
__kmp_printf(" Thread %2d: ", i);
|
|
__kmp_print_structure_thread("", team->t.t_threads[i]);
|
|
}
|
|
__kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool);
|
|
__kmp_printf("\n");
|
|
list = list->next;
|
|
}
|
|
|
|
// Print out __kmp_thread_pool and __kmp_team_pool.
|
|
__kmp_printf("\n------------------------------\nPools\n----------------------"
|
|
"--------\n");
|
|
__kmp_print_structure_thread("Thread pool: ",
|
|
CCAST(kmp_info_t *, __kmp_thread_pool));
|
|
__kmp_print_structure_team("Team pool: ",
|
|
CCAST(kmp_team_t *, __kmp_team_pool));
|
|
__kmp_printf("\n");
|
|
|
|
// Free team list.
|
|
while (list != NULL) {
|
|
kmp_team_list_item_t *item = list;
|
|
list = list->next;
|
|
KMP_INTERNAL_FREE(item);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Stuff for per-thread fast random number generator
|
|
// Table of primes
|
|
static const unsigned __kmp_primes[] = {
|
|
0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
|
|
0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
|
|
0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
|
|
0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
|
|
0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
|
|
0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
|
|
0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
|
|
0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
|
|
0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
|
|
0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
|
|
0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};
|
|
|
|
//---------------------------------------------------------------------------
|
|
// __kmp_get_random: Get a random number using a linear congruential method.
|
|
unsigned short __kmp_get_random(kmp_info_t *thread) {
|
|
unsigned x = thread->th.th_x;
|
|
unsigned short r = (unsigned short)(x >> 16);
|
|
|
|
thread->th.th_x = x * thread->th.th_a + 1;
|
|
|
|
KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
|
|
thread->th.th_info.ds.ds_tid, r));
|
|
|
|
return r;
|
|
}
|
|
//--------------------------------------------------------
|
|
// __kmp_init_random: Initialize a random number generator
|
|
void __kmp_init_random(kmp_info_t *thread) {
|
|
unsigned seed = thread->th.th_info.ds.ds_tid;
|
|
|
|
thread->th.th_a =
|
|
__kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
|
|
thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
|
|
KA_TRACE(30,
|
|
("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
/* reclaim array entries for root threads that are already dead, returns number
|
|
* reclaimed */
|
|
static int __kmp_reclaim_dead_roots(void) {
|
|
int i, r = 0;
|
|
|
|
for (i = 0; i < __kmp_threads_capacity; ++i) {
|
|
if (KMP_UBER_GTID(i) &&
|
|
!__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
|
|
!__kmp_root[i]
|
|
->r.r_active) { // AC: reclaim only roots died in non-active state
|
|
r += __kmp_unregister_root_other_thread(i);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
/* This function attempts to create free entries in __kmp_threads and
|
|
__kmp_root, and returns the number of free entries generated.
|
|
|
|
For Windows* OS static library, the first mechanism used is to reclaim array
|
|
entries for root threads that are already dead.
|
|
|
|
On all platforms, expansion is attempted on the arrays __kmp_threads_ and
|
|
__kmp_root, with appropriate update to __kmp_threads_capacity. Array
|
|
capacity is increased by doubling with clipping to __kmp_tp_capacity, if
|
|
threadprivate cache array has been created. Synchronization with
|
|
__kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.
|
|
|
|
After any dead root reclamation, if the clipping value allows array expansion
|
|
to result in the generation of a total of nNeed free slots, the function does
|
|
that expansion. If not, nothing is done beyond the possible initial root
|
|
thread reclamation.
|
|
|
|
If any argument is negative, the behavior is undefined. */
|
|
static int __kmp_expand_threads(int nNeed) {
|
|
int added = 0;
|
|
int minimumRequiredCapacity;
|
|
int newCapacity;
|
|
kmp_info_t **newThreads;
|
|
kmp_root_t **newRoot;
|
|
|
|
// All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
|
|
// resizing __kmp_threads does not need additional protection if foreign
|
|
// threads are present
|
|
|
|
#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
|
|
/* only for Windows static library */
|
|
/* reclaim array entries for root threads that are already dead */
|
|
added = __kmp_reclaim_dead_roots();
|
|
|
|
if (nNeed) {
|
|
nNeed -= added;
|
|
if (nNeed < 0)
|
|
nNeed = 0;
|
|
}
|
|
#endif
|
|
if (nNeed <= 0)
|
|
return added;
|
|
|
|
// Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
|
|
// __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
|
|
// user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
|
|
// > __kmp_max_nth in one of two ways:
|
|
//
|
|
// 1) The initialization thread (gtid = 0) exits. __kmp_threads[0]
|
|
// may not be reused by another thread, so we may need to increase
|
|
// __kmp_threads_capacity to __kmp_max_nth + 1.
|
|
//
|
|
// 2) New foreign root(s) are encountered. We always register new foreign
|
|
// roots. This may cause a smaller # of threads to be allocated at
|
|
// subsequent parallel regions, but the worker threads hang around (and
|
|
// eventually go to sleep) and need slots in the __kmp_threads[] array.
|
|
//
|
|
// Anyway, that is the reason for moving the check to see if
|
|
// __kmp_max_nth was exceeded into __kmp_reserve_threads()
|
|
// instead of having it performed here. -BB
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);
|
|
|
|
/* compute expansion headroom to check if we can expand */
|
|
if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
|
|
/* possible expansion too small -- give up */
|
|
return added;
|
|
}
|
|
minimumRequiredCapacity = __kmp_threads_capacity + nNeed;
|
|
|
|
newCapacity = __kmp_threads_capacity;
|
|
do {
|
|
newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
|
|
: __kmp_sys_max_nth;
|
|
} while (newCapacity < minimumRequiredCapacity);
|
|
newThreads = (kmp_info_t **)__kmp_allocate(
|
|
(sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
|
|
newRoot =
|
|
(kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
|
|
KMP_MEMCPY(newThreads, __kmp_threads,
|
|
__kmp_threads_capacity * sizeof(kmp_info_t *));
|
|
KMP_MEMCPY(newRoot, __kmp_root,
|
|
__kmp_threads_capacity * sizeof(kmp_root_t *));
|
|
// Put old __kmp_threads array on a list. Any ongoing references to the old
|
|
// list will be valid. This list is cleaned up at library shutdown.
|
|
kmp_old_threads_list_t *node =
|
|
(kmp_old_threads_list_t *)__kmp_allocate(sizeof(kmp_old_threads_list_t));
|
|
node->threads = __kmp_threads;
|
|
node->next = __kmp_old_threads_list;
|
|
__kmp_old_threads_list = node;
|
|
|
|
*(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
|
|
*(kmp_root_t * *volatile *)&__kmp_root = newRoot;
|
|
added += newCapacity - __kmp_threads_capacity;
|
|
*(volatile int *)&__kmp_threads_capacity = newCapacity;
|
|
|
|
if (newCapacity > __kmp_tp_capacity) {
|
|
__kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
|
|
if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
|
|
__kmp_threadprivate_resize_cache(newCapacity);
|
|
} else { // increase __kmp_tp_capacity to correspond with kmp_threads size
|
|
*(volatile int *)&__kmp_tp_capacity = newCapacity;
|
|
}
|
|
__kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
|
|
}
|
|
|
|
return added;
|
|
}
|
|
|
|
/* Register the current thread as a root thread and obtain our gtid. We must
|
|
have the __kmp_initz_lock held at this point. Argument TRUE only if are the
|
|
thread that calls from __kmp_do_serial_initialize() */
|
|
int __kmp_register_root(int initial_thread) {
|
|
kmp_info_t *root_thread;
|
|
kmp_root_t *root;
|
|
int gtid;
|
|
int capacity;
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
KA_TRACE(20, ("__kmp_register_root: entered\n"));
|
|
KMP_MB();
|
|
|
|
/* 2007-03-02:
|
|
If initial thread did not invoke OpenMP RTL yet, and this thread is not an
|
|
initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
|
|
work as expected -- it may return false (that means there is at least one
|
|
empty slot in __kmp_threads array), but it is possible the only free slot
|
|
is #0, which is reserved for initial thread and so cannot be used for this
|
|
one. Following code workarounds this bug.
|
|
|
|
However, right solution seems to be not reserving slot #0 for initial
|
|
thread because:
|
|
(1) there is no magic in slot #0,
|
|
(2) we cannot detect initial thread reliably (the first thread which does
|
|
serial initialization may be not a real initial thread).
|
|
*/
|
|
capacity = __kmp_threads_capacity;
|
|
if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
|
|
--capacity;
|
|
}
|
|
|
|
// If it is not for initializing the hidden helper team, we need to take
|
|
// __kmp_hidden_helper_threads_num out of the capacity because it is included
|
|
// in __kmp_threads_capacity.
|
|
if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
|
|
capacity -= __kmp_hidden_helper_threads_num;
|
|
}
|
|
|
|
/* see if there are too many threads */
|
|
if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
|
|
if (__kmp_tp_cached) {
|
|
__kmp_fatal(KMP_MSG(CantRegisterNewThread),
|
|
KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
|
|
KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
|
|
} else {
|
|
__kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
|
|
__kmp_msg_null);
|
|
}
|
|
}
|
|
|
|
// When hidden helper task is enabled, __kmp_threads is organized as follows:
|
|
// 0: initial thread, also a regular OpenMP thread.
|
|
// [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads.
|
|
// [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for
|
|
// regular OpenMP threads.
|
|
if (TCR_4(__kmp_init_hidden_helper_threads)) {
|
|
// Find an available thread slot for hidden helper thread. Slots for hidden
|
|
// helper threads start from 1 to __kmp_hidden_helper_threads_num.
|
|
for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL &&
|
|
gtid <= __kmp_hidden_helper_threads_num;
|
|
gtid++)
|
|
;
|
|
KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num);
|
|
KA_TRACE(1, ("__kmp_register_root: found slot in threads array for "
|
|
"hidden helper thread: T#%d\n",
|
|
gtid));
|
|
} else {
|
|
/* find an available thread slot */
|
|
// Don't reassign the zero slot since we need that to only be used by
|
|
// initial thread. Slots for hidden helper threads should also be skipped.
|
|
if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
|
|
gtid = 0;
|
|
} else {
|
|
for (gtid = __kmp_hidden_helper_threads_num + 1;
|
|
TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++)
|
|
;
|
|
}
|
|
KA_TRACE(
|
|
1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
|
|
KMP_ASSERT(gtid < __kmp_threads_capacity);
|
|
}
|
|
|
|
/* update global accounting */
|
|
__kmp_all_nth++;
|
|
TCW_4(__kmp_nth, __kmp_nth + 1);
|
|
|
|
// if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
|
|
// numbers of procs, and method #2 (keyed API call) for higher numbers.
|
|
if (__kmp_adjust_gtid_mode) {
|
|
if (__kmp_all_nth >= __kmp_tls_gtid_min) {
|
|
if (TCR_4(__kmp_gtid_mode) != 2) {
|
|
TCW_4(__kmp_gtid_mode, 2);
|
|
}
|
|
} else {
|
|
if (TCR_4(__kmp_gtid_mode) != 1) {
|
|
TCW_4(__kmp_gtid_mode, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime to zero if necessary */
|
|
/* Middle initialization might not have occurred yet */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
if (__kmp_nth > __kmp_avail_proc) {
|
|
__kmp_zero_bt = TRUE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
/* setup this new hierarchy */
|
|
if (!(root = __kmp_root[gtid])) {
|
|
root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
|
|
KMP_DEBUG_ASSERT(!root->r.r_root_team);
|
|
}
|
|
|
|
#if KMP_STATS_ENABLED
|
|
// Initialize stats as soon as possible (right after gtid assignment).
|
|
__kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
|
|
__kmp_stats_thread_ptr->startLife();
|
|
KMP_SET_THREAD_STATE(SERIAL_REGION);
|
|
KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
|
|
#endif
|
|
__kmp_initialize_root(root);
|
|
|
|
/* setup new root thread structure */
|
|
if (root->r.r_uber_thread) {
|
|
root_thread = root->r.r_uber_thread;
|
|
} else {
|
|
root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_thread_storage_map(root_thread, gtid);
|
|
}
|
|
root_thread->th.th_info.ds.ds_gtid = gtid;
|
|
#if OMPT_SUPPORT
|
|
root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
|
|
#endif
|
|
root_thread->th.th_root = root;
|
|
if (__kmp_env_consistency_check) {
|
|
root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
|
|
}
|
|
#if USE_FAST_MEMORY
|
|
__kmp_initialize_fast_memory(root_thread);
|
|
#endif /* USE_FAST_MEMORY */
|
|
|
|
#if KMP_USE_BGET
|
|
KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
|
|
__kmp_initialize_bget(root_thread);
|
|
#endif
|
|
__kmp_init_random(root_thread); // Initialize random number generator
|
|
}
|
|
|
|
/* setup the serial team held in reserve by the root thread */
|
|
if (!root_thread->th.th_serial_team) {
|
|
kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
|
|
KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
|
|
root_thread->th.th_serial_team = __kmp_allocate_team(
|
|
root, 1, 1,
|
|
#if OMPT_SUPPORT
|
|
ompt_data_none, // root parallel id
|
|
#endif
|
|
proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
|
|
}
|
|
KMP_ASSERT(root_thread->th.th_serial_team);
|
|
KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
|
|
root_thread->th.th_serial_team));
|
|
|
|
/* drop root_thread into place */
|
|
TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);
|
|
|
|
root->r.r_root_team->t.t_threads[0] = root_thread;
|
|
root->r.r_hot_team->t.t_threads[0] = root_thread;
|
|
root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
|
|
// AC: the team created in reserve, not for execution (it is unused for now).
|
|
root_thread->th.th_serial_team->t.t_serialized = 0;
|
|
root->r.r_uber_thread = root_thread;
|
|
|
|
/* initialize the thread, get it ready to go */
|
|
__kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
|
|
TCW_4(__kmp_init_gtid, TRUE);
|
|
|
|
/* prepare the primary thread for get_gtid() */
|
|
__kmp_gtid_set_specific(gtid);
|
|
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_thread_name(gtid);
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
#ifdef KMP_TDATA_GTID
|
|
__kmp_gtid = gtid;
|
|
#endif
|
|
__kmp_create_worker(gtid, root_thread, __kmp_stksize);
|
|
KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);
|
|
|
|
KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
|
|
"plain=%u\n",
|
|
gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
|
|
root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
|
|
KMP_INIT_BARRIER_STATE));
|
|
{ // Initialize barrier data.
|
|
int b;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
|
|
#if USE_DEBUGGER
|
|
root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
|
|
#endif
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
|
|
KMP_INIT_BARRIER_STATE);
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
|
|
root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
|
|
root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
|
|
root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
root_thread->th.th_def_allocator = __kmp_def_allocator;
|
|
root_thread->th.th_prev_level = 0;
|
|
root_thread->th.th_prev_num_threads = 1;
|
|
|
|
kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
|
|
tmp->cg_root = root_thread;
|
|
tmp->cg_thread_limit = __kmp_cg_max_nth;
|
|
tmp->cg_nthreads = 1;
|
|
KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
|
|
" cg_nthreads init to 1\n",
|
|
root_thread, tmp));
|
|
tmp->up = NULL;
|
|
root_thread->th.th_cg_roots = tmp;
|
|
|
|
__kmp_root_counter++;
|
|
|
|
#if OMPT_SUPPORT
|
|
if (!initial_thread && ompt_enabled.enabled) {
|
|
|
|
kmp_info_t *root_thread = ompt_get_thread();
|
|
|
|
ompt_set_thread_state(root_thread, ompt_state_overhead);
|
|
|
|
if (ompt_enabled.ompt_callback_thread_begin) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
|
|
ompt_thread_initial, __ompt_get_thread_data_internal());
|
|
}
|
|
ompt_data_t *task_data;
|
|
ompt_data_t *parallel_data;
|
|
__ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data,
|
|
NULL);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial);
|
|
}
|
|
|
|
ompt_set_thread_state(root_thread, ompt_state_work_serial);
|
|
}
|
|
#endif
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_thread_begin();
|
|
#endif
|
|
|
|
KMP_MB();
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
return gtid;
|
|
}
|
|
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
|
|
const int max_level) {
|
|
int i, n, nth;
|
|
kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
|
|
if (!hot_teams || !hot_teams[level].hot_team) {
|
|
return 0;
|
|
}
|
|
KMP_DEBUG_ASSERT(level < max_level);
|
|
kmp_team_t *team = hot_teams[level].hot_team;
|
|
nth = hot_teams[level].hot_team_nth;
|
|
n = nth - 1; // primary thread is not freed
|
|
if (level < max_level - 1) {
|
|
for (i = 0; i < nth; ++i) {
|
|
kmp_info_t *th = team->t.t_threads[i];
|
|
n += __kmp_free_hot_teams(root, th, level + 1, max_level);
|
|
if (i > 0 && th->th.th_hot_teams) {
|
|
__kmp_free(th->th.th_hot_teams);
|
|
th->th.th_hot_teams = NULL;
|
|
}
|
|
}
|
|
}
|
|
__kmp_free_team(root, team, NULL);
|
|
return n;
|
|
}
|
|
#endif
|
|
|
|
// Resets a root thread and clear its root and hot teams.
|
|
// Returns the number of __kmp_threads entries directly and indirectly freed.
|
|
static int __kmp_reset_root(int gtid, kmp_root_t *root) {
|
|
kmp_team_t *root_team = root->r.r_root_team;
|
|
kmp_team_t *hot_team = root->r.r_hot_team;
|
|
int n = hot_team->t.t_nproc;
|
|
int i;
|
|
|
|
KMP_DEBUG_ASSERT(!root->r.r_active);
|
|
|
|
root->r.r_root_team = NULL;
|
|
root->r.r_hot_team = NULL;
|
|
// __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
|
|
// before call to __kmp_free_team().
|
|
__kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
if (__kmp_hot_teams_max_level >
|
|
0) { // need to free nested hot teams and their threads if any
|
|
for (i = 0; i < hot_team->t.t_nproc; ++i) {
|
|
kmp_info_t *th = hot_team->t.t_threads[i];
|
|
if (__kmp_hot_teams_max_level > 1) {
|
|
n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
|
|
}
|
|
if (th->th.th_hot_teams) {
|
|
__kmp_free(th->th.th_hot_teams);
|
|
th->th.th_hot_teams = NULL;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
__kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));
|
|
|
|
// Before we can reap the thread, we need to make certain that all other
|
|
// threads in the teams that had this root as ancestor have stopped trying to
|
|
// steal tasks.
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
__kmp_wait_to_unref_task_teams();
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
/* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
|
|
KA_TRACE(
|
|
10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
|
|
"\n",
|
|
(LPVOID) & (root->r.r_uber_thread->th),
|
|
root->r.r_uber_thread->th.th_info.ds.ds_thread));
|
|
__kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
|
|
#endif /* KMP_OS_WINDOWS */
|
|
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_thread_end();
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t *task_data;
|
|
ompt_data_t *parallel_data;
|
|
__ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data,
|
|
NULL);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial);
|
|
}
|
|
if (ompt_enabled.ompt_callback_thread_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
|
|
&(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
|
|
}
|
|
#endif
|
|
|
|
TCW_4(__kmp_nth,
|
|
__kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
|
|
i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
|
|
KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
|
|
" to %d\n",
|
|
root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
|
|
root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
|
|
if (i == 1) {
|
|
// need to free contention group structure
|
|
KMP_DEBUG_ASSERT(root->r.r_uber_thread ==
|
|
root->r.r_uber_thread->th.th_cg_roots->cg_root);
|
|
KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL);
|
|
__kmp_free(root->r.r_uber_thread->th.th_cg_roots);
|
|
root->r.r_uber_thread->th.th_cg_roots = NULL;
|
|
}
|
|
__kmp_reap_thread(root->r.r_uber_thread, 1);
|
|
|
|
// We canot put root thread to __kmp_thread_pool, so we have to reap it
|
|
// instead of freeing.
|
|
root->r.r_uber_thread = NULL;
|
|
/* mark root as no longer in use */
|
|
root->r.r_begin = FALSE;
|
|
|
|
return n;
|
|
}
|
|
|
|
void __kmp_unregister_root_current_thread(int gtid) {
|
|
KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
|
|
/* this lock should be ok, since unregister_root_current_thread is never
|
|
called during an abort, only during a normal close. furthermore, if you
|
|
have the forkjoin lock, you should never try to get the initz lock */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
|
|
KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
|
|
"exiting T#%d\n",
|
|
gtid));
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
return;
|
|
}
|
|
kmp_root_t *root = __kmp_root[gtid];
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
|
|
KMP_ASSERT(KMP_UBER_GTID(gtid));
|
|
KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
|
|
KMP_ASSERT(root->r.r_active == FALSE);
|
|
|
|
KMP_MB();
|
|
|
|
kmp_info_t *thread = __kmp_threads[gtid];
|
|
kmp_team_t *team = thread->th.th_team;
|
|
kmp_task_team_t *task_team = thread->th.th_task_team;
|
|
|
|
// we need to wait for the proxy tasks before finishing the thread
|
|
if (task_team != NULL && (task_team->tt.tt_found_proxy_tasks ||
|
|
task_team->tt.tt_hidden_helper_task_encountered)) {
|
|
#if OMPT_SUPPORT
|
|
// the runtime is shutting down so we won't report any events
|
|
thread->th.ompt_thread_info.state = ompt_state_undefined;
|
|
#endif
|
|
__kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
|
|
}
|
|
|
|
__kmp_reset_root(gtid, root);
|
|
|
|
KMP_MB();
|
|
KC_TRACE(10,
|
|
("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
/* __kmp_forkjoin_lock must be already held
|
|
Unregisters a root thread that is not the current thread. Returns the number
|
|
of __kmp_threads entries freed as a result. */
|
|
static int __kmp_unregister_root_other_thread(int gtid) {
|
|
kmp_root_t *root = __kmp_root[gtid];
|
|
int r;
|
|
|
|
KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
|
|
KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
|
|
KMP_ASSERT(KMP_UBER_GTID(gtid));
|
|
KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
|
|
KMP_ASSERT(root->r.r_active == FALSE);
|
|
|
|
r = __kmp_reset_root(gtid, root);
|
|
KC_TRACE(10,
|
|
("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
#if KMP_DEBUG
|
|
void __kmp_task_info() {
|
|
|
|
kmp_int32 gtid = __kmp_entry_gtid();
|
|
kmp_int32 tid = __kmp_tid_from_gtid(gtid);
|
|
kmp_info_t *this_thr = __kmp_threads[gtid];
|
|
kmp_team_t *steam = this_thr->th.th_serial_team;
|
|
kmp_team_t *team = this_thr->th.th_team;
|
|
|
|
__kmp_printf(
|
|
"__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
|
|
"ptask=%p\n",
|
|
gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
|
|
team->t.t_implicit_task_taskdata[tid].td_parent);
|
|
}
|
|
#endif // KMP_DEBUG
|
|
|
|
/* TODO optimize with one big memclr, take out what isn't needed, split
|
|
responsibility to workers as much as possible, and delay initialization of
|
|
features as much as possible */
|
|
static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
|
|
int tid, int gtid) {
|
|
/* this_thr->th.th_info.ds.ds_gtid is setup in
|
|
kmp_allocate_thread/create_worker.
|
|
this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
|
|
KMP_DEBUG_ASSERT(this_thr != NULL);
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(team->t.t_threads);
|
|
KMP_DEBUG_ASSERT(team->t.t_dispatch);
|
|
kmp_info_t *master = team->t.t_threads[0];
|
|
KMP_DEBUG_ASSERT(master);
|
|
KMP_DEBUG_ASSERT(master->th.th_root);
|
|
|
|
KMP_MB();
|
|
|
|
TCW_SYNC_PTR(this_thr->th.th_team, team);
|
|
|
|
this_thr->th.th_info.ds.ds_tid = tid;
|
|
this_thr->th.th_set_nproc = 0;
|
|
if (__kmp_tasking_mode != tskm_immediate_exec)
|
|
// When tasking is possible, threads are not safe to reap until they are
|
|
// done tasking; this will be set when tasking code is exited in wait
|
|
this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
|
|
else // no tasking --> always safe to reap
|
|
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
|
|
this_thr->th.th_set_proc_bind = proc_bind_default;
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
this_thr->th.th_new_place = this_thr->th.th_current_place;
|
|
#endif
|
|
this_thr->th.th_root = master->th.th_root;
|
|
|
|
/* setup the thread's cache of the team structure */
|
|
this_thr->th.th_team_nproc = team->t.t_nproc;
|
|
this_thr->th.th_team_master = master;
|
|
this_thr->th.th_team_serialized = team->t.t_serialized;
|
|
|
|
KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);
|
|
|
|
KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
|
|
tid, gtid, this_thr, this_thr->th.th_current_task));
|
|
|
|
__kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
|
|
team, tid, TRUE);
|
|
|
|
KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
|
|
tid, gtid, this_thr, this_thr->th.th_current_task));
|
|
// TODO: Initialize ICVs from parent; GEH - isn't that already done in
|
|
// __kmp_initialize_team()?
|
|
|
|
/* TODO no worksharing in speculative threads */
|
|
this_thr->th.th_dispatch = &team->t.t_dispatch[tid];
|
|
|
|
this_thr->th.th_local.this_construct = 0;
|
|
|
|
if (!this_thr->th.th_pri_common) {
|
|
this_thr->th.th_pri_common =
|
|
(struct common_table *)__kmp_allocate(sizeof(struct common_table));
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_storage_map_gtid(
|
|
gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
|
|
sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
|
|
}
|
|
this_thr->th.th_pri_head = NULL;
|
|
}
|
|
|
|
if (this_thr != master && // Primary thread's CG root is initialized elsewhere
|
|
this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
|
|
// Make new thread's CG root same as primary thread's
|
|
KMP_DEBUG_ASSERT(master->th.th_cg_roots);
|
|
kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
|
|
if (tmp) {
|
|
// worker changes CG, need to check if old CG should be freed
|
|
int i = tmp->cg_nthreads--;
|
|
KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
|
|
" on node %p of thread %p to %d\n",
|
|
this_thr, tmp, tmp->cg_root, tmp->cg_nthreads));
|
|
if (i == 1) {
|
|
__kmp_free(tmp); // last thread left CG --> free it
|
|
}
|
|
}
|
|
this_thr->th.th_cg_roots = master->th.th_cg_roots;
|
|
// Increment new thread's CG root's counter to add the new thread
|
|
this_thr->th.th_cg_roots->cg_nthreads++;
|
|
KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
|
|
" node %p of thread %p to %d\n",
|
|
this_thr, this_thr->th.th_cg_roots,
|
|
this_thr->th.th_cg_roots->cg_root,
|
|
this_thr->th.th_cg_roots->cg_nthreads));
|
|
this_thr->th.th_current_task->td_icvs.thread_limit =
|
|
this_thr->th.th_cg_roots->cg_thread_limit;
|
|
}
|
|
|
|
/* Initialize dynamic dispatch */
|
|
{
|
|
volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
|
|
// Use team max_nproc since this will never change for the team.
|
|
size_t disp_size =
|
|
sizeof(dispatch_private_info_t) *
|
|
(team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
|
|
KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
|
|
team->t.t_max_nproc));
|
|
KMP_ASSERT(dispatch);
|
|
KMP_DEBUG_ASSERT(team->t.t_dispatch);
|
|
KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);
|
|
|
|
dispatch->th_disp_index = 0;
|
|
dispatch->th_doacross_buf_idx = 0;
|
|
if (!dispatch->th_disp_buffer) {
|
|
dispatch->th_disp_buffer =
|
|
(dispatch_private_info_t *)__kmp_allocate(disp_size);
|
|
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_storage_map_gtid(
|
|
gtid, &dispatch->th_disp_buffer[0],
|
|
&dispatch->th_disp_buffer[team->t.t_max_nproc == 1
|
|
? 1
|
|
: __kmp_dispatch_num_buffers],
|
|
disp_size,
|
|
"th_%d.th_dispatch.th_disp_buffer "
|
|
"(team_%d.t_dispatch[%d].th_disp_buffer)",
|
|
gtid, team->t.t_id, gtid);
|
|
}
|
|
} else {
|
|
memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
|
|
}
|
|
|
|
dispatch->th_dispatch_pr_current = 0;
|
|
dispatch->th_dispatch_sh_current = 0;
|
|
|
|
dispatch->th_deo_fcn = 0; /* ORDERED */
|
|
dispatch->th_dxo_fcn = 0; /* END ORDERED */
|
|
}
|
|
|
|
this_thr->th.th_next_pool = NULL;
|
|
|
|
if (!this_thr->th.th_task_state_memo_stack) {
|
|
size_t i;
|
|
this_thr->th.th_task_state_memo_stack =
|
|
(kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
|
|
this_thr->th.th_task_state_top = 0;
|
|
this_thr->th.th_task_state_stack_sz = 4;
|
|
for (i = 0; i < this_thr->th.th_task_state_stack_sz;
|
|
++i) // zero init the stack
|
|
this_thr->th.th_task_state_memo_stack[i] = 0;
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
|
|
|
|
KMP_MB();
|
|
}
|
|
|
|
/* allocate a new thread for the requesting team. this is only called from
|
|
within a forkjoin critical section. we will first try to get an available
|
|
thread from the thread pool. if none is available, we will fork a new one
|
|
assuming we are able to create a new one. this should be assured, as the
|
|
caller should check on this first. */
|
|
kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
|
|
int new_tid) {
|
|
kmp_team_t *serial_team;
|
|
kmp_info_t *new_thr;
|
|
int new_gtid;
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
|
|
KMP_DEBUG_ASSERT(root && team);
|
|
#if !KMP_NESTED_HOT_TEAMS
|
|
KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
|
|
#endif
|
|
KMP_MB();
|
|
|
|
/* first, try to get one from the thread pool */
|
|
if (__kmp_thread_pool) {
|
|
new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
|
|
__kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
|
|
if (new_thr == __kmp_thread_pool_insert_pt) {
|
|
__kmp_thread_pool_insert_pt = NULL;
|
|
}
|
|
TCW_4(new_thr->th.th_in_pool, FALSE);
|
|
__kmp_suspend_initialize_thread(new_thr);
|
|
__kmp_lock_suspend_mx(new_thr);
|
|
if (new_thr->th.th_active_in_pool == TRUE) {
|
|
KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
|
|
KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
|
|
new_thr->th.th_active_in_pool = FALSE;
|
|
}
|
|
__kmp_unlock_suspend_mx(new_thr);
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
|
|
__kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
|
|
KMP_ASSERT(!new_thr->th.th_team);
|
|
KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);
|
|
|
|
/* setup the thread structure */
|
|
__kmp_initialize_info(new_thr, team, new_tid,
|
|
new_thr->th.th_info.ds.ds_gtid);
|
|
KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);
|
|
|
|
TCW_4(__kmp_nth, __kmp_nth + 1);
|
|
|
|
new_thr->th.th_task_state = 0;
|
|
new_thr->th.th_task_state_top = 0;
|
|
new_thr->th.th_task_state_stack_sz = 4;
|
|
|
|
if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
// Make sure pool thread has transitioned to waiting on own thread struct
|
|
KMP_DEBUG_ASSERT(new_thr->th.th_used_in_team.load() == 0);
|
|
// Thread activated in __kmp_allocate_team when increasing team size
|
|
}
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime back to zero if necessary */
|
|
/* Middle initialization might not have occurred yet */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
if (__kmp_nth > __kmp_avail_proc) {
|
|
__kmp_zero_bt = TRUE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
#if KMP_DEBUG
|
|
// If thread entered pool via __kmp_free_thread, wait_flag should !=
|
|
// KMP_BARRIER_PARENT_FLAG.
|
|
int b;
|
|
kmp_balign_t *balign = new_thr->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b)
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
|
|
#endif
|
|
|
|
KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
|
|
__kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));
|
|
|
|
KMP_MB();
|
|
return new_thr;
|
|
}
|
|
|
|
/* no, well fork a new one */
|
|
KMP_ASSERT(__kmp_nth == __kmp_all_nth);
|
|
KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);
|
|
|
|
#if KMP_USE_MONITOR
|
|
// If this is the first worker thread the RTL is creating, then also
|
|
// launch the monitor thread. We try to do this as early as possible.
|
|
if (!TCR_4(__kmp_init_monitor)) {
|
|
__kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
|
|
if (!TCR_4(__kmp_init_monitor)) {
|
|
KF_TRACE(10, ("before __kmp_create_monitor\n"));
|
|
TCW_4(__kmp_init_monitor, 1);
|
|
__kmp_create_monitor(&__kmp_monitor);
|
|
KF_TRACE(10, ("after __kmp_create_monitor\n"));
|
|
#if KMP_OS_WINDOWS
|
|
// AC: wait until monitor has started. This is a fix for CQ232808.
|
|
// The reason is that if the library is loaded/unloaded in a loop with
|
|
// small (parallel) work in between, then there is high probability that
|
|
// monitor thread started after the library shutdown. At shutdown it is
|
|
// too late to cope with the problem, because when the primary thread is
|
|
// in DllMain (process detach) the monitor has no chances to start (it is
|
|
// blocked), and primary thread has no means to inform the monitor that
|
|
// the library has gone, because all the memory which the monitor can
|
|
// access is going to be released/reset.
|
|
while (TCR_4(__kmp_init_monitor) < 2) {
|
|
KMP_YIELD(TRUE);
|
|
}
|
|
KF_TRACE(10, ("after monitor thread has started\n"));
|
|
#endif
|
|
}
|
|
__kmp_release_bootstrap_lock(&__kmp_monitor_lock);
|
|
}
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
{
|
|
int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads)
|
|
? 1
|
|
: __kmp_hidden_helper_threads_num + 1;
|
|
|
|
for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL;
|
|
++new_gtid) {
|
|
KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
|
|
}
|
|
|
|
if (TCR_4(__kmp_init_hidden_helper_threads)) {
|
|
KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num);
|
|
}
|
|
}
|
|
|
|
/* allocate space for it. */
|
|
new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
|
|
|
|
TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);
|
|
|
|
#if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
|
|
// suppress race conditions detection on synchronization flags in debug mode
|
|
// this helps to analyze library internals eliminating false positives
|
|
__itt_suppress_mark_range(
|
|
__itt_suppress_range, __itt_suppress_threading_errors,
|
|
&new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc));
|
|
__itt_suppress_mark_range(
|
|
__itt_suppress_range, __itt_suppress_threading_errors,
|
|
&new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state));
|
|
#if KMP_OS_WINDOWS
|
|
__itt_suppress_mark_range(
|
|
__itt_suppress_range, __itt_suppress_threading_errors,
|
|
&new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init));
|
|
#else
|
|
__itt_suppress_mark_range(__itt_suppress_range,
|
|
__itt_suppress_threading_errors,
|
|
&new_thr->th.th_suspend_init_count,
|
|
sizeof(new_thr->th.th_suspend_init_count));
|
|
#endif
|
|
// TODO: check if we need to also suppress b_arrived flags
|
|
__itt_suppress_mark_range(__itt_suppress_range,
|
|
__itt_suppress_threading_errors,
|
|
CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go),
|
|
sizeof(new_thr->th.th_bar[0].bb.b_go));
|
|
__itt_suppress_mark_range(__itt_suppress_range,
|
|
__itt_suppress_threading_errors,
|
|
CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go),
|
|
sizeof(new_thr->th.th_bar[1].bb.b_go));
|
|
__itt_suppress_mark_range(__itt_suppress_range,
|
|
__itt_suppress_threading_errors,
|
|
CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go),
|
|
sizeof(new_thr->th.th_bar[2].bb.b_go));
|
|
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_thread_storage_map(new_thr, new_gtid);
|
|
}
|
|
|
|
// add the reserve serialized team, initialized from the team's primary thread
|
|
{
|
|
kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
|
|
KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
|
|
new_thr->th.th_serial_team = serial_team =
|
|
(kmp_team_t *)__kmp_allocate_team(root, 1, 1,
|
|
#if OMPT_SUPPORT
|
|
ompt_data_none, // root parallel id
|
|
#endif
|
|
proc_bind_default, &r_icvs,
|
|
0 USE_NESTED_HOT_ARG(NULL));
|
|
}
|
|
KMP_ASSERT(serial_team);
|
|
serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
|
|
// execution (it is unused for now).
|
|
serial_team->t.t_threads[0] = new_thr;
|
|
KF_TRACE(10,
|
|
("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
|
|
new_thr));
|
|
|
|
/* setup the thread structures */
|
|
__kmp_initialize_info(new_thr, team, new_tid, new_gtid);
|
|
|
|
#if USE_FAST_MEMORY
|
|
__kmp_initialize_fast_memory(new_thr);
|
|
#endif /* USE_FAST_MEMORY */
|
|
|
|
#if KMP_USE_BGET
|
|
KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
|
|
__kmp_initialize_bget(new_thr);
|
|
#endif
|
|
|
|
__kmp_init_random(new_thr); // Initialize random number generator
|
|
|
|
/* Initialize these only once when thread is grabbed for a team allocation */
|
|
KA_TRACE(20,
|
|
("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
|
|
__kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
|
|
|
|
int b;
|
|
kmp_balign_t *balign = new_thr->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
|
|
balign[b].bb.team = NULL;
|
|
balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
|
|
balign[b].bb.use_oncore_barrier = 0;
|
|
}
|
|
|
|
TCW_PTR(new_thr->th.th_sleep_loc, NULL);
|
|
new_thr->th.th_sleep_loc_type = flag_unset;
|
|
|
|
new_thr->th.th_spin_here = FALSE;
|
|
new_thr->th.th_next_waiting = 0;
|
|
#if KMP_OS_UNIX
|
|
new_thr->th.th_blocking = false;
|
|
#endif
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
|
|
new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
|
|
new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
|
|
new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
|
|
#endif
|
|
new_thr->th.th_def_allocator = __kmp_def_allocator;
|
|
new_thr->th.th_prev_level = 0;
|
|
new_thr->th.th_prev_num_threads = 1;
|
|
|
|
TCW_4(new_thr->th.th_in_pool, FALSE);
|
|
new_thr->th.th_active_in_pool = FALSE;
|
|
TCW_4(new_thr->th.th_active, TRUE);
|
|
|
|
/* adjust the global counters */
|
|
__kmp_all_nth++;
|
|
__kmp_nth++;
|
|
|
|
// if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
|
|
// numbers of procs, and method #2 (keyed API call) for higher numbers.
|
|
if (__kmp_adjust_gtid_mode) {
|
|
if (__kmp_all_nth >= __kmp_tls_gtid_min) {
|
|
if (TCR_4(__kmp_gtid_mode) != 2) {
|
|
TCW_4(__kmp_gtid_mode, 2);
|
|
}
|
|
} else {
|
|
if (TCR_4(__kmp_gtid_mode) != 1) {
|
|
TCW_4(__kmp_gtid_mode, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime back to zero if necessary */
|
|
/* Middle initialization might not have occurred yet */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
if (__kmp_nth > __kmp_avail_proc) {
|
|
__kmp_zero_bt = TRUE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// Set the affinity and topology information for new thread
|
|
__kmp_affinity_set_init_mask(new_gtid, /*isa_root=*/FALSE);
|
|
#endif
|
|
|
|
/* actually fork it and create the new worker thread */
|
|
KF_TRACE(
|
|
10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
|
|
__kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
|
|
KF_TRACE(10,
|
|
("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
|
|
new_gtid));
|
|
KMP_MB();
|
|
return new_thr;
|
|
}
|
|
|
|
/* Reinitialize team for reuse.
|
|
The hot team code calls this case at every fork barrier, so EPCC barrier
|
|
test are extremely sensitive to changes in it, esp. writes to the team
|
|
struct, which cause a cache invalidation in all threads.
|
|
IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
|
|
static void __kmp_reinitialize_team(kmp_team_t *team,
|
|
kmp_internal_control_t *new_icvs,
|
|
ident_t *loc) {
|
|
KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
|
|
team->t.t_threads[0], team));
|
|
KMP_DEBUG_ASSERT(team && new_icvs);
|
|
KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
|
|
KMP_CHECK_UPDATE(team->t.t_ident, loc);
|
|
|
|
KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
|
|
// Copy ICVs to the primary thread's implicit taskdata
|
|
__kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
|
|
copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);
|
|
|
|
KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
|
|
team->t.t_threads[0], team));
|
|
}
|
|
|
|
/* Initialize the team data structure.
|
|
This assumes the t_threads and t_max_nproc are already set.
|
|
Also, we don't touch the arguments */
|
|
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
|
|
kmp_internal_control_t *new_icvs,
|
|
ident_t *loc) {
|
|
KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));
|
|
|
|
/* verify */
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
|
|
KMP_DEBUG_ASSERT(team->t.t_threads);
|
|
KMP_MB();
|
|
|
|
team->t.t_master_tid = 0; /* not needed */
|
|
/* team->t.t_master_bar; not needed */
|
|
team->t.t_serialized = new_nproc > 1 ? 0 : 1;
|
|
team->t.t_nproc = new_nproc;
|
|
|
|
/* team->t.t_parent = NULL; TODO not needed & would mess up hot team */
|
|
team->t.t_next_pool = NULL;
|
|
/* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
|
|
* up hot team */
|
|
|
|
TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
|
|
team->t.t_invoke = NULL; /* not needed */
|
|
|
|
// TODO???: team->t.t_max_active_levels = new_max_active_levels;
|
|
team->t.t_sched.sched = new_icvs->sched.sched;
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
team->t.t_fp_control_saved = FALSE; /* not needed */
|
|
team->t.t_x87_fpu_control_word = 0; /* not needed */
|
|
team->t.t_mxcsr = 0; /* not needed */
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
team->t.t_construct = 0;
|
|
|
|
team->t.t_ordered.dt.t_value = 0;
|
|
team->t.t_master_active = FALSE;
|
|
|
|
#ifdef KMP_DEBUG
|
|
team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
|
|
#endif
|
|
#if KMP_OS_WINDOWS
|
|
team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
|
|
#endif
|
|
|
|
team->t.t_control_stack_top = NULL;
|
|
|
|
__kmp_reinitialize_team(team, new_icvs, loc);
|
|
|
|
KMP_MB();
|
|
KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
static inline void __kmp_set_thread_place(kmp_team_t *team, kmp_info_t *th,
|
|
int first, int last, int newp) {
|
|
th->th.th_first_place = first;
|
|
th->th.th_last_place = last;
|
|
th->th.th_new_place = newp;
|
|
if (newp != th->th.th_current_place) {
|
|
if (__kmp_display_affinity && team->t.t_display_affinity != 1)
|
|
team->t.t_display_affinity = 1;
|
|
// Copy topology information associated with the new place
|
|
th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place];
|
|
th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place];
|
|
}
|
|
}
|
|
|
|
// __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
|
|
// It calculates the worker + primary thread's partition based upon the parent
|
|
// thread's partition, and binds each worker to a thread in their partition.
|
|
// The primary thread's partition should already include its current binding.
|
|
static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
|
|
// Do not partition places for the hidden helper team
|
|
if (KMP_HIDDEN_HELPER_TEAM(team))
|
|
return;
|
|
// Copy the primary thread's place partition to the team struct
|
|
kmp_info_t *master_th = team->t.t_threads[0];
|
|
KMP_DEBUG_ASSERT(master_th != NULL);
|
|
kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
|
|
int first_place = master_th->th.th_first_place;
|
|
int last_place = master_th->th.th_last_place;
|
|
int masters_place = master_th->th.th_current_place;
|
|
int num_masks = __kmp_affinity.num_masks;
|
|
team->t.t_first_place = first_place;
|
|
team->t.t_last_place = last_place;
|
|
|
|
KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
|
|
"bound to place %d partition = [%d,%d]\n",
|
|
proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
|
|
team->t.t_id, masters_place, first_place, last_place));
|
|
|
|
switch (proc_bind) {
|
|
|
|
case proc_bind_default:
|
|
// Serial teams might have the proc_bind policy set to proc_bind_default.
|
|
// Not an issue -- we don't rebind primary thread for any proc_bind policy.
|
|
KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
|
|
break;
|
|
|
|
case proc_bind_primary: {
|
|
int f;
|
|
int n_th = team->t.t_nproc;
|
|
for (f = 1; f < n_th; f++) {
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th != NULL);
|
|
__kmp_set_thread_place(team, th, first_place, last_place, masters_place);
|
|
|
|
KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d]\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
|
|
f, masters_place, first_place, last_place));
|
|
}
|
|
} break;
|
|
|
|
case proc_bind_close: {
|
|
int f;
|
|
int n_th = team->t.t_nproc;
|
|
int n_places;
|
|
if (first_place <= last_place) {
|
|
n_places = last_place - first_place + 1;
|
|
} else {
|
|
n_places = num_masks - first_place + last_place + 1;
|
|
}
|
|
if (n_th <= n_places) {
|
|
int place = masters_place;
|
|
for (f = 1; f < n_th; f++) {
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th != NULL);
|
|
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
__kmp_set_thread_place(team, th, first_place, last_place, place);
|
|
|
|
KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d]\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]),
|
|
team->t.t_id, f, place, first_place, last_place));
|
|
}
|
|
} else {
|
|
int S, rem, gap, s_count;
|
|
S = n_th / n_places;
|
|
s_count = 0;
|
|
rem = n_th - (S * n_places);
|
|
gap = rem > 0 ? n_places / rem : n_places;
|
|
int place = masters_place;
|
|
int gap_ct = gap;
|
|
for (f = 0; f < n_th; f++) {
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th != NULL);
|
|
|
|
__kmp_set_thread_place(team, th, first_place, last_place, place);
|
|
s_count++;
|
|
|
|
if ((s_count == S) && rem && (gap_ct == gap)) {
|
|
// do nothing, add an extra thread to place on next iteration
|
|
} else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
|
|
// we added an extra thread to this place; move to next place
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
s_count = 0;
|
|
gap_ct = 1;
|
|
rem--;
|
|
} else if (s_count == S) { // place full; don't add extra
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
gap_ct++;
|
|
s_count = 0;
|
|
}
|
|
|
|
KA_TRACE(100,
|
|
("__kmp_partition_places: close: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d]\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
|
|
th->th.th_new_place, first_place, last_place));
|
|
}
|
|
KMP_DEBUG_ASSERT(place == masters_place);
|
|
}
|
|
} break;
|
|
|
|
case proc_bind_spread: {
|
|
int f;
|
|
int n_th = team->t.t_nproc;
|
|
int n_places;
|
|
int thidx;
|
|
if (first_place <= last_place) {
|
|
n_places = last_place - first_place + 1;
|
|
} else {
|
|
n_places = num_masks - first_place + last_place + 1;
|
|
}
|
|
if (n_th <= n_places) {
|
|
int place = -1;
|
|
|
|
if (n_places != num_masks) {
|
|
int S = n_places / n_th;
|
|
int s_count, rem, gap, gap_ct;
|
|
|
|
place = masters_place;
|
|
rem = n_places - n_th * S;
|
|
gap = rem ? n_th / rem : 1;
|
|
gap_ct = gap;
|
|
thidx = n_th;
|
|
if (update_master_only == 1)
|
|
thidx = 1;
|
|
for (f = 0; f < thidx; f++) {
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th != NULL);
|
|
|
|
int fplace = place, nplace = place;
|
|
s_count = 1;
|
|
while (s_count < S) {
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
s_count++;
|
|
}
|
|
if (rem && (gap_ct == gap)) {
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
rem--;
|
|
gap_ct = 0;
|
|
}
|
|
__kmp_set_thread_place(team, th, fplace, place, nplace);
|
|
gap_ct++;
|
|
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
|
|
KA_TRACE(100,
|
|
("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d], num_masks: %u\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
|
|
f, th->th.th_new_place, th->th.th_first_place,
|
|
th->th.th_last_place, num_masks));
|
|
}
|
|
} else {
|
|
/* Having uniform space of available computation places I can create
|
|
T partitions of round(P/T) size and put threads into the first
|
|
place of each partition. */
|
|
double current = static_cast<double>(masters_place);
|
|
double spacing =
|
|
(static_cast<double>(n_places + 1) / static_cast<double>(n_th));
|
|
int first, last;
|
|
kmp_info_t *th;
|
|
|
|
thidx = n_th + 1;
|
|
if (update_master_only == 1)
|
|
thidx = 1;
|
|
for (f = 0; f < thidx; f++) {
|
|
first = static_cast<int>(current);
|
|
last = static_cast<int>(current + spacing) - 1;
|
|
KMP_DEBUG_ASSERT(last >= first);
|
|
if (first >= n_places) {
|
|
if (masters_place) {
|
|
first -= n_places;
|
|
last -= n_places;
|
|
if (first == (masters_place + 1)) {
|
|
KMP_DEBUG_ASSERT(f == n_th);
|
|
first--;
|
|
}
|
|
if (last == masters_place) {
|
|
KMP_DEBUG_ASSERT(f == (n_th - 1));
|
|
last--;
|
|
}
|
|
} else {
|
|
KMP_DEBUG_ASSERT(f == n_th);
|
|
first = 0;
|
|
last = 0;
|
|
}
|
|
}
|
|
if (last >= n_places) {
|
|
last = (n_places - 1);
|
|
}
|
|
place = first;
|
|
current += spacing;
|
|
if (f < n_th) {
|
|
KMP_DEBUG_ASSERT(0 <= first);
|
|
KMP_DEBUG_ASSERT(n_places > first);
|
|
KMP_DEBUG_ASSERT(0 <= last);
|
|
KMP_DEBUG_ASSERT(n_places > last);
|
|
KMP_DEBUG_ASSERT(last_place >= first_place);
|
|
th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th);
|
|
__kmp_set_thread_place(team, th, first, last, place);
|
|
KA_TRACE(100,
|
|
("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d], spacing = %.4f\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]),
|
|
team->t.t_id, f, th->th.th_new_place,
|
|
th->th.th_first_place, th->th.th_last_place, spacing));
|
|
}
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
|
|
} else {
|
|
int S, rem, gap, s_count;
|
|
S = n_th / n_places;
|
|
s_count = 0;
|
|
rem = n_th - (S * n_places);
|
|
gap = rem > 0 ? n_places / rem : n_places;
|
|
int place = masters_place;
|
|
int gap_ct = gap;
|
|
thidx = n_th;
|
|
if (update_master_only == 1)
|
|
thidx = 1;
|
|
for (f = 0; f < thidx; f++) {
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(th != NULL);
|
|
|
|
__kmp_set_thread_place(team, th, place, place, place);
|
|
s_count++;
|
|
|
|
if ((s_count == S) && rem && (gap_ct == gap)) {
|
|
// do nothing, add an extra thread to place on next iteration
|
|
} else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
|
|
// we added an extra thread to this place; move on to next place
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
s_count = 0;
|
|
gap_ct = 1;
|
|
rem--;
|
|
} else if (s_count == S) { // place is full; don't add extra thread
|
|
if (place == last_place) {
|
|
place = first_place;
|
|
} else if (place == (num_masks - 1)) {
|
|
place = 0;
|
|
} else {
|
|
place++;
|
|
}
|
|
gap_ct++;
|
|
s_count = 0;
|
|
}
|
|
|
|
KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
|
|
"partition = [%d,%d]\n",
|
|
__kmp_gtid_from_thread(team->t.t_threads[f]),
|
|
team->t.t_id, f, th->th.th_new_place,
|
|
th->th.th_first_place, th->th.th_last_place));
|
|
}
|
|
KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
|
|
}
|
|
} break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
|
|
}
|
|
|
|
#endif // KMP_AFFINITY_SUPPORTED
|
|
|
|
/* allocate a new team data structure to use. take one off of the free pool if
|
|
available */
|
|
kmp_team_t *
|
|
__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t ompt_parallel_data,
|
|
#endif
|
|
kmp_proc_bind_t new_proc_bind,
|
|
kmp_internal_control_t *new_icvs,
|
|
int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
|
|
int f;
|
|
kmp_team_t *team;
|
|
int use_hot_team = !root->r.r_active;
|
|
int level = 0;
|
|
int do_place_partition = 1;
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: called\n"));
|
|
KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
|
|
KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
|
|
KMP_MB();
|
|
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
kmp_hot_team_ptr_t *hot_teams;
|
|
if (master) {
|
|
team = master->th.th_team;
|
|
level = team->t.t_active_level;
|
|
if (master->th.th_teams_microtask) { // in teams construct?
|
|
if (master->th.th_teams_size.nteams > 1 &&
|
|
( // #teams > 1
|
|
team->t.t_pkfn ==
|
|
(microtask_t)__kmp_teams_master || // inner fork of the teams
|
|
master->th.th_teams_level <
|
|
team->t.t_level)) { // or nested parallel inside the teams
|
|
++level; // not increment if #teams==1, or for outer fork of the teams;
|
|
// increment otherwise
|
|
}
|
|
// Do not perform the place partition if inner fork of the teams
|
|
// Wait until nested parallel region encountered inside teams construct
|
|
if ((master->th.th_teams_size.nteams == 1 &&
|
|
master->th.th_teams_level >= team->t.t_level) ||
|
|
(team->t.t_pkfn == (microtask_t)__kmp_teams_master))
|
|
do_place_partition = 0;
|
|
}
|
|
hot_teams = master->th.th_hot_teams;
|
|
if (level < __kmp_hot_teams_max_level && hot_teams &&
|
|
hot_teams[level].hot_team) {
|
|
// hot team has already been allocated for given level
|
|
use_hot_team = 1;
|
|
} else {
|
|
use_hot_team = 0;
|
|
}
|
|
} else {
|
|
// check we won't access uninitialized hot_teams, just in case
|
|
KMP_DEBUG_ASSERT(new_nproc == 1);
|
|
}
|
|
#endif
|
|
// Optimization to use a "hot" team
|
|
if (use_hot_team && new_nproc > 1) {
|
|
KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
team = hot_teams[level].hot_team;
|
|
#else
|
|
team = root->r.r_hot_team;
|
|
#endif
|
|
#if KMP_DEBUG
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
|
|
"task_team[1] = %p before reinit\n",
|
|
team->t.t_task_team[0], team->t.t_task_team[1]));
|
|
}
|
|
#endif
|
|
|
|
if (team->t.t_nproc != new_nproc &&
|
|
__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
// Distributed barrier may need a resize
|
|
int old_nthr = team->t.t_nproc;
|
|
__kmp_resize_dist_barrier(team, old_nthr, new_nproc);
|
|
}
|
|
|
|
// If not doing the place partition, then reset the team's proc bind
|
|
// to indicate that partitioning of all threads still needs to take place
|
|
if (do_place_partition == 0)
|
|
team->t.t_proc_bind = proc_bind_default;
|
|
// Has the number of threads changed?
|
|
/* Let's assume the most common case is that the number of threads is
|
|
unchanged, and put that case first. */
|
|
if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
|
|
KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
|
|
// This case can mean that omp_set_num_threads() was called and the hot
|
|
// team size was already reduced, so we check the special flag
|
|
if (team->t.t_size_changed == -1) {
|
|
team->t.t_size_changed = 1;
|
|
} else {
|
|
KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
|
|
}
|
|
|
|
// TODO???: team->t.t_max_active_levels = new_max_active_levels;
|
|
kmp_r_sched_t new_sched = new_icvs->sched;
|
|
// set primary thread's schedule as new run-time schedule
|
|
KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
|
|
|
|
__kmp_reinitialize_team(team, new_icvs,
|
|
root->r.r_uber_thread->th.th_ident);
|
|
|
|
KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
|
|
team->t.t_threads[0], team));
|
|
__kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
if ((team->t.t_size_changed == 0) &&
|
|
(team->t.t_proc_bind == new_proc_bind)) {
|
|
if (new_proc_bind == proc_bind_spread) {
|
|
if (do_place_partition) {
|
|
// add flag to update only master for spread
|
|
__kmp_partition_places(team, 1);
|
|
}
|
|
}
|
|
KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
|
|
"proc_bind = %d, partition = [%d,%d]\n",
|
|
team->t.t_id, new_proc_bind, team->t.t_first_place,
|
|
team->t.t_last_place));
|
|
} else {
|
|
if (do_place_partition) {
|
|
KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
|
|
__kmp_partition_places(team);
|
|
}
|
|
}
|
|
#else
|
|
KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
} else if (team->t.t_nproc > new_nproc) {
|
|
KA_TRACE(20,
|
|
("__kmp_allocate_team: decreasing hot team thread count to %d\n",
|
|
new_nproc));
|
|
|
|
team->t.t_size_changed = 1;
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
// Barrier size already reduced earlier in this function
|
|
// Activate team threads via th_used_in_team
|
|
__kmp_add_threads_to_team(team, new_nproc);
|
|
}
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
if (__kmp_hot_teams_mode == 0) {
|
|
// AC: saved number of threads should correspond to team's value in this
|
|
// mode, can be bigger in mode 1, when hot team has threads in reserve
|
|
KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
|
|
hot_teams[level].hot_team_nth = new_nproc;
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
/* release the extra threads we don't need any more */
|
|
for (f = new_nproc; f < team->t.t_nproc; f++) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
// When decreasing team size, threads no longer in the team should
|
|
// unref task team.
|
|
team->t.t_threads[f]->th.th_task_team = NULL;
|
|
}
|
|
__kmp_free_thread(team->t.t_threads[f]);
|
|
team->t.t_threads[f] = NULL;
|
|
}
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
} // (__kmp_hot_teams_mode == 0)
|
|
else {
|
|
// When keeping extra threads in team, switch threads to wait on own
|
|
// b_go flag
|
|
for (f = new_nproc; f < team->t.t_nproc; ++f) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
|
|
for (int b = 0; b < bs_last_barrier; ++b) {
|
|
if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
|
|
balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
|
|
}
|
|
KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
|
|
}
|
|
}
|
|
}
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
team->t.t_nproc = new_nproc;
|
|
// TODO???: team->t.t_max_active_levels = new_max_active_levels;
|
|
KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
|
|
__kmp_reinitialize_team(team, new_icvs,
|
|
root->r.r_uber_thread->th.th_ident);
|
|
|
|
// Update remaining threads
|
|
for (f = 0; f < new_nproc; ++f) {
|
|
team->t.t_threads[f]->th.th_team_nproc = new_nproc;
|
|
}
|
|
|
|
// restore the current task state of the primary thread: should be the
|
|
// implicit task
|
|
KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
|
|
team->t.t_threads[0], team));
|
|
|
|
__kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
|
|
|
|
#ifdef KMP_DEBUG
|
|
for (f = 0; f < team->t.t_nproc; f++) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
|
|
team->t.t_threads[f]->th.th_team_nproc ==
|
|
team->t.t_nproc);
|
|
}
|
|
#endif
|
|
|
|
if (do_place_partition) {
|
|
KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_partition_places(team);
|
|
#endif
|
|
}
|
|
} else { // team->t.t_nproc < new_nproc
|
|
|
|
KA_TRACE(20,
|
|
("__kmp_allocate_team: increasing hot team thread count to %d\n",
|
|
new_nproc));
|
|
int old_nproc = team->t.t_nproc; // save old value and use to update only
|
|
team->t.t_size_changed = 1;
|
|
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
int avail_threads = hot_teams[level].hot_team_nth;
|
|
if (new_nproc < avail_threads)
|
|
avail_threads = new_nproc;
|
|
kmp_info_t **other_threads = team->t.t_threads;
|
|
for (f = team->t.t_nproc; f < avail_threads; ++f) {
|
|
// Adjust barrier data of reserved threads (if any) of the team
|
|
// Other data will be set in __kmp_initialize_info() below.
|
|
int b;
|
|
kmp_balign_t *balign = other_threads[f]->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
|
|
#if USE_DEBUGGER
|
|
balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
|
|
#endif
|
|
}
|
|
}
|
|
if (hot_teams[level].hot_team_nth >= new_nproc) {
|
|
// we have all needed threads in reserve, no need to allocate any
|
|
// this only possible in mode 1, cannot have reserved threads in mode 0
|
|
KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
|
|
team->t.t_nproc = new_nproc; // just get reserved threads involved
|
|
} else {
|
|
// We may have some threads in reserve, but not enough;
|
|
// get reserved threads involved if any.
|
|
team->t.t_nproc = hot_teams[level].hot_team_nth;
|
|
hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
if (team->t.t_max_nproc < new_nproc) {
|
|
/* reallocate larger arrays */
|
|
__kmp_reallocate_team_arrays(team, new_nproc);
|
|
__kmp_reinitialize_team(team, new_icvs, NULL);
|
|
}
|
|
|
|
#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
|
|
/* Temporarily set full mask for primary thread before creation of
|
|
workers. The reason is that workers inherit the affinity from the
|
|
primary thread, so if a lot of workers are created on the single
|
|
core quickly, they don't get a chance to set their own affinity for
|
|
a long time. */
|
|
kmp_affinity_raii_t new_temp_affinity{__kmp_affin_fullMask};
|
|
#endif
|
|
|
|
/* allocate new threads for the hot team */
|
|
for (f = team->t.t_nproc; f < new_nproc; f++) {
|
|
kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
|
|
KMP_DEBUG_ASSERT(new_worker);
|
|
team->t.t_threads[f] = new_worker;
|
|
|
|
KA_TRACE(20,
|
|
("__kmp_allocate_team: team %d init T#%d arrived: "
|
|
"join=%llu, plain=%llu\n",
|
|
team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
|
|
team->t.t_bar[bs_forkjoin_barrier].b_arrived,
|
|
team->t.t_bar[bs_plain_barrier].b_arrived));
|
|
|
|
{ // Initialize barrier data for new threads.
|
|
int b;
|
|
kmp_balign_t *balign = new_worker->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
|
|
KMP_BARRIER_PARENT_FLAG);
|
|
#if USE_DEBUGGER
|
|
balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
|
|
/* Restore initial primary thread's affinity mask */
|
|
new_temp_affinity.restore();
|
|
#endif
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
} // end of check of t_nproc vs. new_nproc vs. hot_team_nth
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
// Barrier size already increased earlier in this function
|
|
// Activate team threads via th_used_in_team
|
|
__kmp_add_threads_to_team(team, new_nproc);
|
|
}
|
|
/* make sure everyone is syncronized */
|
|
// new threads below
|
|
__kmp_initialize_team(team, new_nproc, new_icvs,
|
|
root->r.r_uber_thread->th.th_ident);
|
|
|
|
/* reinitialize the threads */
|
|
KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
|
|
for (f = 0; f < team->t.t_nproc; ++f)
|
|
__kmp_initialize_info(team->t.t_threads[f], team, f,
|
|
__kmp_gtid_from_tid(f, team));
|
|
|
|
// set th_task_state for new threads in hot team with older thread's state
|
|
kmp_uint8 old_state = team->t.t_threads[old_nproc - 1]->th.th_task_state;
|
|
for (f = old_nproc; f < team->t.t_nproc; ++f)
|
|
team->t.t_threads[f]->th.th_task_state = old_state;
|
|
|
|
#ifdef KMP_DEBUG
|
|
for (f = 0; f < team->t.t_nproc; ++f) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
|
|
team->t.t_threads[f]->th.th_team_nproc ==
|
|
team->t.t_nproc);
|
|
}
|
|
#endif
|
|
|
|
if (do_place_partition) {
|
|
KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_partition_places(team);
|
|
#endif
|
|
}
|
|
} // Check changes in number of threads
|
|
|
|
kmp_info_t *master = team->t.t_threads[0];
|
|
if (master->th.th_teams_microtask) {
|
|
for (f = 1; f < new_nproc; ++f) {
|
|
// propagate teams construct specific info to workers
|
|
kmp_info_t *thr = team->t.t_threads[f];
|
|
thr->th.th_teams_microtask = master->th.th_teams_microtask;
|
|
thr->th.th_teams_level = master->th.th_teams_level;
|
|
thr->th.th_teams_size = master->th.th_teams_size;
|
|
}
|
|
}
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
if (level) {
|
|
// Sync barrier state for nested hot teams, not needed for outermost hot
|
|
// team.
|
|
for (f = 1; f < new_nproc; ++f) {
|
|
kmp_info_t *thr = team->t.t_threads[f];
|
|
int b;
|
|
kmp_balign_t *balign = thr->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
|
|
KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
|
|
#if USE_DEBUGGER
|
|
balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
|
|
/* reallocate space for arguments if necessary */
|
|
__kmp_alloc_argv_entries(argc, team, TRUE);
|
|
KMP_CHECK_UPDATE(team->t.t_argc, argc);
|
|
// The hot team re-uses the previous task team,
|
|
// if untouched during the previous release->gather phase.
|
|
|
|
KF_TRACE(10, (" hot_team = %p\n", team));
|
|
|
|
#if KMP_DEBUG
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
|
|
"task_team[1] = %p after reinit\n",
|
|
team->t.t_task_team[0], team->t.t_task_team[1]));
|
|
}
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
__ompt_team_assign_id(team, ompt_parallel_data);
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
return team;
|
|
}
|
|
|
|
/* next, let's try to take one from the team pool */
|
|
KMP_MB();
|
|
for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
|
|
/* TODO: consider resizing undersized teams instead of reaping them, now
|
|
that we have a resizing mechanism */
|
|
if (team->t.t_max_nproc >= max_nproc) {
|
|
/* take this team from the team pool */
|
|
__kmp_team_pool = team->t.t_next_pool;
|
|
|
|
if (max_nproc > 1 &&
|
|
__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
if (!team->t.b) { // Allocate barrier structure
|
|
team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
|
|
}
|
|
}
|
|
|
|
/* setup the team for fresh use */
|
|
__kmp_initialize_team(team, new_nproc, new_icvs, NULL);
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
|
|
"task_team[1] %p to NULL\n",
|
|
&team->t.t_task_team[0], &team->t.t_task_team[1]));
|
|
team->t.t_task_team[0] = NULL;
|
|
team->t.t_task_team[1] = NULL;
|
|
|
|
/* reallocate space for arguments if necessary */
|
|
__kmp_alloc_argv_entries(argc, team, TRUE);
|
|
KMP_CHECK_UPDATE(team->t.t_argc, argc);
|
|
|
|
KA_TRACE(
|
|
20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
|
|
team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
|
|
{ // Initialize barrier data.
|
|
int b;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
|
|
#if USE_DEBUGGER
|
|
team->t.t_bar[b].b_master_arrived = 0;
|
|
team->t.t_bar[b].b_team_arrived = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
team->t.t_proc_bind = new_proc_bind;
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
|
|
team->t.t_id));
|
|
|
|
#if OMPT_SUPPORT
|
|
__ompt_team_assign_id(team, ompt_parallel_data);
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
return team;
|
|
}
|
|
|
|
/* reap team if it is too small, then loop back and check the next one */
|
|
// not sure if this is wise, but, will be redone during the hot-teams
|
|
// rewrite.
|
|
/* TODO: Use technique to find the right size hot-team, don't reap them */
|
|
team = __kmp_reap_team(team);
|
|
__kmp_team_pool = team;
|
|
}
|
|
|
|
/* nothing available in the pool, no matter, make a new team! */
|
|
KMP_MB();
|
|
team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));
|
|
|
|
/* and set it up */
|
|
team->t.t_max_nproc = max_nproc;
|
|
if (max_nproc > 1 &&
|
|
__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
// Allocate barrier structure
|
|
team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
|
|
}
|
|
|
|
/* NOTE well, for some reason allocating one big buffer and dividing it up
|
|
seems to really hurt performance a lot on the P4, so, let's not use this */
|
|
__kmp_allocate_team_arrays(team, max_nproc);
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
|
|
__kmp_initialize_team(team, new_nproc, new_icvs, NULL);
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
|
|
"%p to NULL\n",
|
|
&team->t.t_task_team[0], &team->t.t_task_team[1]));
|
|
team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
|
|
// memory, no need to duplicate
|
|
team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
|
|
// memory, no need to duplicate
|
|
|
|
if (__kmp_storage_map) {
|
|
__kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
|
|
}
|
|
|
|
/* allocate space for arguments */
|
|
__kmp_alloc_argv_entries(argc, team, FALSE);
|
|
team->t.t_argc = argc;
|
|
|
|
KA_TRACE(20,
|
|
("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
|
|
team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
|
|
{ // Initialize barrier data.
|
|
int b;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
|
|
#if USE_DEBUGGER
|
|
team->t.t_bar[b].b_master_arrived = 0;
|
|
team->t.t_bar[b].b_team_arrived = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
team->t.t_proc_bind = new_proc_bind;
|
|
|
|
#if OMPT_SUPPORT
|
|
__ompt_team_assign_id(team, ompt_parallel_data);
|
|
team->t.ompt_serialized_team_info = NULL;
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
|
|
team->t.t_id));
|
|
|
|
return team;
|
|
}
|
|
|
|
/* TODO implement hot-teams at all levels */
|
|
/* TODO implement lazy thread release on demand (disband request) */
|
|
|
|
/* free the team. return it to the team pool. release all the threads
|
|
* associated with it */
|
|
void __kmp_free_team(kmp_root_t *root,
|
|
kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
|
|
int f;
|
|
KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
|
|
team->t.t_id));
|
|
|
|
/* verify state */
|
|
KMP_DEBUG_ASSERT(root);
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
|
|
KMP_DEBUG_ASSERT(team->t.t_threads);
|
|
|
|
int use_hot_team = team == root->r.r_hot_team;
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
int level;
|
|
if (master) {
|
|
level = team->t.t_active_level - 1;
|
|
if (master->th.th_teams_microtask) { // in teams construct?
|
|
if (master->th.th_teams_size.nteams > 1) {
|
|
++level; // level was not increased in teams construct for
|
|
// team_of_masters
|
|
}
|
|
if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
|
|
master->th.th_teams_level == team->t.t_level) {
|
|
++level; // level was not increased in teams construct for
|
|
// team_of_workers before the parallel
|
|
} // team->t.t_level will be increased inside parallel
|
|
}
|
|
#if KMP_DEBUG
|
|
kmp_hot_team_ptr_t *hot_teams = master->th.th_hot_teams;
|
|
#endif
|
|
if (level < __kmp_hot_teams_max_level) {
|
|
KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
|
|
use_hot_team = 1;
|
|
}
|
|
}
|
|
#endif // KMP_NESTED_HOT_TEAMS
|
|
|
|
/* team is done working */
|
|
TCW_SYNC_PTR(team->t.t_pkfn,
|
|
NULL); // Important for Debugging Support Library.
|
|
#if KMP_OS_WINDOWS
|
|
team->t.t_copyin_counter = 0; // init counter for possible reuse
|
|
#endif
|
|
// Do not reset pointer to parent team to NULL for hot teams.
|
|
|
|
/* if we are non-hot team, release our threads */
|
|
if (!use_hot_team) {
|
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
|
// Wait for threads to reach reapable state
|
|
for (f = 1; f < team->t.t_nproc; ++f) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
kmp_info_t *th = team->t.t_threads[f];
|
|
volatile kmp_uint32 *state = &th->th.th_reap_state;
|
|
while (*state != KMP_SAFE_TO_REAP) {
|
|
#if KMP_OS_WINDOWS
|
|
// On Windows a thread can be killed at any time, check this
|
|
DWORD ecode;
|
|
if (!__kmp_is_thread_alive(th, &ecode)) {
|
|
*state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
|
|
break;
|
|
}
|
|
#endif
|
|
// first check if thread is sleeping
|
|
kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
|
|
if (fl.is_sleeping())
|
|
fl.resume(__kmp_gtid_from_thread(th));
|
|
KMP_CPU_PAUSE();
|
|
}
|
|
}
|
|
|
|
// Delete task teams
|
|
int tt_idx;
|
|
for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
|
|
kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
|
|
if (task_team != NULL) {
|
|
for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
team->t.t_threads[f]->th.th_task_team = NULL;
|
|
}
|
|
KA_TRACE(
|
|
20,
|
|
("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
|
|
__kmp_get_gtid(), task_team, team->t.t_id));
|
|
#if KMP_NESTED_HOT_TEAMS
|
|
__kmp_free_task_team(master, task_team);
|
|
#endif
|
|
team->t.t_task_team[tt_idx] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset pointer to parent team only for non-hot teams.
|
|
team->t.t_parent = NULL;
|
|
team->t.t_level = 0;
|
|
team->t.t_active_level = 0;
|
|
|
|
/* free the worker threads */
|
|
for (f = 1; f < team->t.t_nproc; ++f) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team),
|
|
1, 2);
|
|
}
|
|
__kmp_free_thread(team->t.t_threads[f]);
|
|
}
|
|
|
|
if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
if (team->t.b) {
|
|
// wake up thread at old location
|
|
team->t.b->go_release();
|
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
|
|
for (f = 1; f < team->t.t_nproc; ++f) {
|
|
if (team->t.b->sleep[f].sleep) {
|
|
__kmp_atomic_resume_64(
|
|
team->t.t_threads[f]->th.th_info.ds.ds_gtid,
|
|
(kmp_atomic_flag_64<> *)NULL);
|
|
}
|
|
}
|
|
}
|
|
// Wait for threads to be removed from team
|
|
for (int f = 1; f < team->t.t_nproc; ++f) {
|
|
while (team->t.t_threads[f]->th.th_used_in_team.load() != 0)
|
|
KMP_CPU_PAUSE();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (f = 1; f < team->t.t_nproc; ++f) {
|
|
team->t.t_threads[f] = NULL;
|
|
}
|
|
|
|
if (team->t.t_max_nproc > 1 &&
|
|
__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
distributedBarrier::deallocate(team->t.b);
|
|
team->t.b = NULL;
|
|
}
|
|
/* put the team back in the team pool */
|
|
/* TODO limit size of team pool, call reap_team if pool too large */
|
|
team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
|
|
__kmp_team_pool = (volatile kmp_team_t *)team;
|
|
} else { // Check if team was created for primary threads in teams construct
|
|
// See if first worker is a CG root
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
|
|
team->t.t_threads[1]->th.th_cg_roots);
|
|
if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
|
|
// Clean up the CG root nodes on workers so that this team can be re-used
|
|
for (f = 1; f < team->t.t_nproc; ++f) {
|
|
kmp_info_t *thr = team->t.t_threads[f];
|
|
KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
|
|
thr->th.th_cg_roots->cg_root == thr);
|
|
// Pop current CG root off list
|
|
kmp_cg_root_t *tmp = thr->th.th_cg_roots;
|
|
thr->th.th_cg_roots = tmp->up;
|
|
KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
|
|
" up to node %p. cg_nthreads was %d\n",
|
|
thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
|
|
int i = tmp->cg_nthreads--;
|
|
if (i == 1) {
|
|
__kmp_free(tmp); // free CG if we are the last thread in it
|
|
}
|
|
// Restore current task's thread_limit from CG root
|
|
if (thr->th.th_cg_roots)
|
|
thr->th.th_current_task->td_icvs.thread_limit =
|
|
thr->th.th_cg_roots->cg_thread_limit;
|
|
}
|
|
}
|
|
}
|
|
|
|
KMP_MB();
|
|
}
|
|
|
|
/* reap the team. destroy it, reclaim all its resources and free its memory */
|
|
kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
|
|
kmp_team_t *next_pool = team->t.t_next_pool;
|
|
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(team->t.t_dispatch);
|
|
KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
|
|
KMP_DEBUG_ASSERT(team->t.t_threads);
|
|
KMP_DEBUG_ASSERT(team->t.t_argv);
|
|
|
|
/* TODO clean the threads that are a part of this? */
|
|
|
|
/* free stuff */
|
|
__kmp_free_team_arrays(team);
|
|
if (team->t.t_argv != &team->t.t_inline_argv[0])
|
|
__kmp_free((void *)team->t.t_argv);
|
|
__kmp_free(team);
|
|
|
|
KMP_MB();
|
|
return next_pool;
|
|
}
|
|
|
|
// Free the thread. Don't reap it, just place it on the pool of available
|
|
// threads.
|
|
//
|
|
// Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
|
|
// binding for the affinity mechanism to be useful.
|
|
//
|
|
// Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
|
|
// However, we want to avoid a potential performance problem by always
|
|
// scanning through the list to find the correct point at which to insert
|
|
// the thread (potential N**2 behavior). To do this we keep track of the
|
|
// last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
|
|
// With single-level parallelism, threads will always be added to the tail
|
|
// of the list, kept track of by __kmp_thread_pool_insert_pt. With nested
|
|
// parallelism, all bets are off and we may need to scan through the entire
|
|
// free list.
|
|
//
|
|
// This change also has a potentially large performance benefit, for some
|
|
// applications. Previously, as threads were freed from the hot team, they
|
|
// would be placed back on the free list in inverse order. If the hot team
|
|
// grew back to it's original size, then the freed thread would be placed
|
|
// back on the hot team in reverse order. This could cause bad cache
|
|
// locality problems on programs where the size of the hot team regularly
|
|
// grew and shrunk.
|
|
//
|
|
// Now, for single-level parallelism, the OMP tid is always == gtid.
|
|
void __kmp_free_thread(kmp_info_t *this_th) {
|
|
int gtid;
|
|
kmp_info_t **scan;
|
|
|
|
KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
|
|
__kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));
|
|
|
|
KMP_DEBUG_ASSERT(this_th);
|
|
|
|
// When moving thread to pool, switch thread to wait on own b_go flag, and
|
|
// uninitialized (NULL team).
|
|
int b;
|
|
kmp_balign_t *balign = this_th->th.th_bar;
|
|
for (b = 0; b < bs_last_barrier; ++b) {
|
|
if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
|
|
balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
|
|
balign[b].bb.team = NULL;
|
|
balign[b].bb.leaf_kids = 0;
|
|
}
|
|
this_th->th.th_task_state = 0;
|
|
this_th->th.th_reap_state = KMP_SAFE_TO_REAP;
|
|
|
|
/* put thread back on the free pool */
|
|
TCW_PTR(this_th->th.th_team, NULL);
|
|
TCW_PTR(this_th->th.th_root, NULL);
|
|
TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */
|
|
|
|
while (this_th->th.th_cg_roots) {
|
|
this_th->th.th_cg_roots->cg_nthreads--;
|
|
KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
|
|
" %p of thread %p to %d\n",
|
|
this_th, this_th->th.th_cg_roots,
|
|
this_th->th.th_cg_roots->cg_root,
|
|
this_th->th.th_cg_roots->cg_nthreads));
|
|
kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
|
|
if (tmp->cg_root == this_th) { // Thread is a cg_root
|
|
KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
|
|
KA_TRACE(
|
|
5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
|
|
this_th->th.th_cg_roots = tmp->up;
|
|
__kmp_free(tmp);
|
|
} else { // Worker thread
|
|
if (tmp->cg_nthreads == 0) { // last thread leaves contention group
|
|
__kmp_free(tmp);
|
|
}
|
|
this_th->th.th_cg_roots = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the implicit task assigned to this thread can be used by other threads
|
|
* -> multiple threads can share the data and try to free the task at
|
|
* __kmp_reap_thread at exit. This duplicate use of the task data can happen
|
|
* with higher probability when hot team is disabled but can occurs even when
|
|
* the hot team is enabled */
|
|
__kmp_free_implicit_task(this_th);
|
|
this_th->th.th_current_task = NULL;
|
|
|
|
// If the __kmp_thread_pool_insert_pt is already past the new insert
|
|
// point, then we need to re-scan the entire list.
|
|
gtid = this_th->th.th_info.ds.ds_gtid;
|
|
if (__kmp_thread_pool_insert_pt != NULL) {
|
|
KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
|
|
if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
|
|
__kmp_thread_pool_insert_pt = NULL;
|
|
}
|
|
}
|
|
|
|
// Scan down the list to find the place to insert the thread.
|
|
// scan is the address of a link in the list, possibly the address of
|
|
// __kmp_thread_pool itself.
|
|
//
|
|
// In the absence of nested parallelism, the for loop will have 0 iterations.
|
|
if (__kmp_thread_pool_insert_pt != NULL) {
|
|
scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
|
|
} else {
|
|
scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
|
|
}
|
|
for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
|
|
scan = &((*scan)->th.th_next_pool))
|
|
;
|
|
|
|
// Insert the new element on the list, and set __kmp_thread_pool_insert_pt
|
|
// to its address.
|
|
TCW_PTR(this_th->th.th_next_pool, *scan);
|
|
__kmp_thread_pool_insert_pt = *scan = this_th;
|
|
KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
|
|
(this_th->th.th_info.ds.ds_gtid <
|
|
this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
|
|
TCW_4(this_th->th.th_in_pool, TRUE);
|
|
__kmp_suspend_initialize_thread(this_th);
|
|
__kmp_lock_suspend_mx(this_th);
|
|
if (this_th->th.th_active == TRUE) {
|
|
KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
|
|
this_th->th.th_active_in_pool = TRUE;
|
|
}
|
|
#if KMP_DEBUG
|
|
else {
|
|
KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
|
|
}
|
|
#endif
|
|
__kmp_unlock_suspend_mx(this_th);
|
|
|
|
TCW_4(__kmp_nth, __kmp_nth - 1);
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime back to user setting or default if necessary */
|
|
/* Middle initialization might never have occurred */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
|
|
if (__kmp_nth <= __kmp_avail_proc) {
|
|
__kmp_zero_bt = FALSE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
KMP_MB();
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
void *__kmp_launch_thread(kmp_info_t *this_thr) {
|
|
#if OMP_PROFILING_SUPPORT
|
|
ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE");
|
|
// TODO: add a configuration option for time granularity
|
|
if (ProfileTraceFile)
|
|
llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget");
|
|
#endif
|
|
|
|
int gtid = this_thr->th.th_info.ds.ds_gtid;
|
|
/* void *stack_data;*/
|
|
kmp_team_t **volatile pteam;
|
|
|
|
KMP_MB();
|
|
KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
|
|
}
|
|
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_thread_begin();
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_data_t *thread_data = nullptr;
|
|
if (ompt_enabled.enabled) {
|
|
thread_data = &(this_thr->th.ompt_thread_info.thread_data);
|
|
*thread_data = ompt_data_none;
|
|
|
|
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
|
|
this_thr->th.ompt_thread_info.wait_id = 0;
|
|
this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
|
|
this_thr->th.ompt_thread_info.parallel_flags = 0;
|
|
if (ompt_enabled.ompt_callback_thread_begin) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
|
|
ompt_thread_worker, thread_data);
|
|
}
|
|
this_thr->th.ompt_thread_info.state = ompt_state_idle;
|
|
}
|
|
#endif
|
|
|
|
/* This is the place where threads wait for work */
|
|
while (!TCR_4(__kmp_global.g.g_done)) {
|
|
KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
|
|
KMP_MB();
|
|
|
|
/* wait for work to do */
|
|
KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));
|
|
|
|
/* No tid yet since not part of a team */
|
|
__kmp_fork_barrier(gtid, KMP_GTID_DNE);
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
|
|
pteam = &this_thr->th.th_team;
|
|
|
|
/* have we been allocated? */
|
|
if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
|
|
/* we were just woken up, so run our new task */
|
|
if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
|
|
int rc;
|
|
KA_TRACE(20,
|
|
("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
|
|
gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
|
|
(*pteam)->t.t_pkfn));
|
|
|
|
updateHWFPControl(*pteam);
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
|
|
}
|
|
#endif
|
|
|
|
rc = (*pteam)->t.t_invoke(gtid);
|
|
KMP_ASSERT(rc);
|
|
|
|
KMP_MB();
|
|
KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
|
|
gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
|
|
(*pteam)->t.t_pkfn));
|
|
}
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled) {
|
|
/* no frame set while outside task */
|
|
__ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;
|
|
|
|
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
|
|
}
|
|
#endif
|
|
/* join barrier after parallel region */
|
|
__kmp_join_barrier(gtid);
|
|
}
|
|
}
|
|
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state & OMPD_ENABLE_BP)
|
|
ompd_bp_thread_end();
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.ompt_callback_thread_end) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
|
|
}
|
|
#endif
|
|
|
|
this_thr->th.th_task_team = NULL;
|
|
/* run the destructors for the threadprivate data for this thread */
|
|
__kmp_common_destroy_gtid(gtid);
|
|
|
|
KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
|
|
KMP_MB();
|
|
|
|
#if OMP_PROFILING_SUPPORT
|
|
llvm::timeTraceProfilerFinishThread();
|
|
#endif
|
|
return this_thr;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
void __kmp_internal_end_dest(void *specific_gtid) {
|
|
// Make sure no significant bits are lost
|
|
int gtid;
|
|
__kmp_type_convert((kmp_intptr_t)specific_gtid - 1, >id);
|
|
|
|
KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
|
|
/* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
|
|
* this is because 0 is reserved for the nothing-stored case */
|
|
|
|
__kmp_internal_end_thread(gtid);
|
|
}
|
|
|
|
#if KMP_OS_UNIX && KMP_DYNAMIC_LIB
|
|
|
|
__attribute__((destructor)) void __kmp_internal_end_dtor(void) {
|
|
__kmp_internal_end_atexit();
|
|
}
|
|
|
|
#endif
|
|
|
|
/* [Windows] josh: when the atexit handler is called, there may still be more
|
|
than one thread alive */
|
|
void __kmp_internal_end_atexit(void) {
|
|
KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
|
|
/* [Windows]
|
|
josh: ideally, we want to completely shutdown the library in this atexit
|
|
handler, but stat code that depends on thread specific data for gtid fails
|
|
because that data becomes unavailable at some point during the shutdown, so
|
|
we call __kmp_internal_end_thread instead. We should eventually remove the
|
|
dependency on __kmp_get_specific_gtid in the stat code and use
|
|
__kmp_internal_end_library to cleanly shutdown the library.
|
|
|
|
// TODO: Can some of this comment about GVS be removed?
|
|
I suspect that the offending stat code is executed when the calling thread
|
|
tries to clean up a dead root thread's data structures, resulting in GVS
|
|
code trying to close the GVS structures for that thread, but since the stat
|
|
code uses __kmp_get_specific_gtid to get the gtid with the assumption that
|
|
the calling thread is cleaning up itself instead of another thread, it get
|
|
confused. This happens because allowing a thread to unregister and cleanup
|
|
another thread is a recent modification for addressing an issue.
|
|
Based on the current design (20050722), a thread may end up
|
|
trying to unregister another thread only if thread death does not trigger
|
|
the calling of __kmp_internal_end_thread. For Linux* OS, there is the
|
|
thread specific data destructor function to detect thread death. For
|
|
Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
|
|
is nothing. Thus, the workaround is applicable only for Windows static
|
|
stat library. */
|
|
__kmp_internal_end_library(-1);
|
|
#if KMP_OS_WINDOWS
|
|
__kmp_close_console();
|
|
#endif
|
|
}
|
|
|
|
static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
|
|
// It is assumed __kmp_forkjoin_lock is acquired.
|
|
|
|
int gtid;
|
|
|
|
KMP_DEBUG_ASSERT(thread != NULL);
|
|
|
|
gtid = thread->th.th_info.ds.ds_gtid;
|
|
|
|
if (!is_root) {
|
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
|
|
/* Assume the threads are at the fork barrier here */
|
|
KA_TRACE(
|
|
20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
|
|
gtid));
|
|
if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
|
|
while (
|
|
!KMP_COMPARE_AND_STORE_ACQ32(&(thread->th.th_used_in_team), 0, 3))
|
|
KMP_CPU_PAUSE();
|
|
__kmp_resume_32(gtid, (kmp_flag_32<false, false> *)NULL);
|
|
} else {
|
|
/* Need release fence here to prevent seg faults for tree forkjoin
|
|
barrier (GEH) */
|
|
kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
|
|
thread);
|
|
__kmp_release_64(&flag);
|
|
}
|
|
}
|
|
|
|
// Terminate OS thread.
|
|
__kmp_reap_worker(thread);
|
|
|
|
// The thread was killed asynchronously. If it was actively
|
|
// spinning in the thread pool, decrement the global count.
|
|
//
|
|
// There is a small timing hole here - if the worker thread was just waking
|
|
// up after sleeping in the pool, had reset it's th_active_in_pool flag but
|
|
// not decremented the global counter __kmp_thread_pool_active_nth yet, then
|
|
// the global counter might not get updated.
|
|
//
|
|
// Currently, this can only happen as the library is unloaded,
|
|
// so there are no harmful side effects.
|
|
if (thread->th.th_active_in_pool) {
|
|
thread->th.th_active_in_pool = FALSE;
|
|
KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
|
|
KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
|
|
}
|
|
}
|
|
|
|
__kmp_free_implicit_task(thread);
|
|
|
|
// Free the fast memory for tasking
|
|
#if USE_FAST_MEMORY
|
|
__kmp_free_fast_memory(thread);
|
|
#endif /* USE_FAST_MEMORY */
|
|
|
|
__kmp_suspend_uninitialize_thread(thread);
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
|
|
TCW_SYNC_PTR(__kmp_threads[gtid], NULL);
|
|
|
|
--__kmp_all_nth;
|
|
// __kmp_nth was decremented when thread is added to the pool.
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime back to user setting or default if necessary */
|
|
/* Middle initialization might never have occurred */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
|
|
if (__kmp_nth <= __kmp_avail_proc) {
|
|
__kmp_zero_bt = FALSE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
/* free the memory being used */
|
|
if (__kmp_env_consistency_check) {
|
|
if (thread->th.th_cons) {
|
|
__kmp_free_cons_stack(thread->th.th_cons);
|
|
thread->th.th_cons = NULL;
|
|
}
|
|
}
|
|
|
|
if (thread->th.th_pri_common != NULL) {
|
|
__kmp_free(thread->th.th_pri_common);
|
|
thread->th.th_pri_common = NULL;
|
|
}
|
|
|
|
if (thread->th.th_task_state_memo_stack != NULL) {
|
|
__kmp_free(thread->th.th_task_state_memo_stack);
|
|
thread->th.th_task_state_memo_stack = NULL;
|
|
}
|
|
|
|
#if KMP_USE_BGET
|
|
if (thread->th.th_local.bget_data != NULL) {
|
|
__kmp_finalize_bget(thread);
|
|
}
|
|
#endif
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
if (thread->th.th_affin_mask != NULL) {
|
|
KMP_CPU_FREE(thread->th.th_affin_mask);
|
|
thread->th.th_affin_mask = NULL;
|
|
}
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
if (thread->th.th_hier_bar_data != NULL) {
|
|
__kmp_free(thread->th.th_hier_bar_data);
|
|
thread->th.th_hier_bar_data = NULL;
|
|
}
|
|
#endif
|
|
|
|
__kmp_reap_team(thread->th.th_serial_team);
|
|
thread->th.th_serial_team = NULL;
|
|
__kmp_free(thread);
|
|
|
|
KMP_MB();
|
|
|
|
} // __kmp_reap_thread
|
|
|
|
static void __kmp_itthash_clean(kmp_info_t *th) {
|
|
#if USE_ITT_NOTIFY
|
|
if (__kmp_itt_region_domains.count > 0) {
|
|
for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
|
|
kmp_itthash_entry_t *bucket = __kmp_itt_region_domains.buckets[i];
|
|
while (bucket) {
|
|
kmp_itthash_entry_t *next = bucket->next_in_bucket;
|
|
__kmp_thread_free(th, bucket);
|
|
bucket = next;
|
|
}
|
|
}
|
|
}
|
|
if (__kmp_itt_barrier_domains.count > 0) {
|
|
for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
|
|
kmp_itthash_entry_t *bucket = __kmp_itt_barrier_domains.buckets[i];
|
|
while (bucket) {
|
|
kmp_itthash_entry_t *next = bucket->next_in_bucket;
|
|
__kmp_thread_free(th, bucket);
|
|
bucket = next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __kmp_internal_end(void) {
|
|
int i;
|
|
|
|
/* First, unregister the library */
|
|
__kmp_unregister_library();
|
|
|
|
#if KMP_OS_WINDOWS
|
|
/* In Win static library, we can't tell when a root actually dies, so we
|
|
reclaim the data structures for any root threads that have died but not
|
|
unregistered themselves, in order to shut down cleanly.
|
|
In Win dynamic library we also can't tell when a thread dies. */
|
|
__kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
|
|
// dead roots
|
|
#endif
|
|
|
|
for (i = 0; i < __kmp_threads_capacity; i++)
|
|
if (__kmp_root[i])
|
|
if (__kmp_root[i]->r.r_active)
|
|
break;
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
|
|
|
|
if (i < __kmp_threads_capacity) {
|
|
#if KMP_USE_MONITOR
|
|
// 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
// Need to check that monitor was initialized before reaping it. If we are
|
|
// called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
|
|
// __kmp_monitor will appear to contain valid data, but it is only valid in
|
|
// the parent process, not the child.
|
|
// New behavior (201008): instead of keying off of the flag
|
|
// __kmp_init_parallel, the monitor thread creation is keyed off
|
|
// of the new flag __kmp_init_monitor.
|
|
__kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
|
|
if (TCR_4(__kmp_init_monitor)) {
|
|
__kmp_reap_monitor(&__kmp_monitor);
|
|
TCW_4(__kmp_init_monitor, 0);
|
|
}
|
|
__kmp_release_bootstrap_lock(&__kmp_monitor_lock);
|
|
KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
|
|
#endif // KMP_USE_MONITOR
|
|
} else {
|
|
/* TODO move this to cleanup code */
|
|
#ifdef KMP_DEBUG
|
|
/* make sure that everything has properly ended */
|
|
for (i = 0; i < __kmp_threads_capacity; i++) {
|
|
if (__kmp_root[i]) {
|
|
// KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC:
|
|
// there can be uber threads alive here
|
|
KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
|
|
}
|
|
}
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
// Reap the worker threads.
|
|
// This is valid for now, but be careful if threads are reaped sooner.
|
|
while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
|
|
// Get the next thread from the pool.
|
|
kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
|
|
__kmp_thread_pool = thread->th.th_next_pool;
|
|
// Reap it.
|
|
KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
|
|
thread->th.th_next_pool = NULL;
|
|
thread->th.th_in_pool = FALSE;
|
|
__kmp_reap_thread(thread, 0);
|
|
}
|
|
__kmp_thread_pool_insert_pt = NULL;
|
|
|
|
// Reap teams.
|
|
while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
|
|
// Get the next team from the pool.
|
|
kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
|
|
__kmp_team_pool = team->t.t_next_pool;
|
|
// Reap it.
|
|
team->t.t_next_pool = NULL;
|
|
__kmp_reap_team(team);
|
|
}
|
|
|
|
__kmp_reap_task_teams();
|
|
|
|
#if KMP_OS_UNIX
|
|
// Threads that are not reaped should not access any resources since they
|
|
// are going to be deallocated soon, so the shutdown sequence should wait
|
|
// until all threads either exit the final spin-waiting loop or begin
|
|
// sleeping after the given blocktime.
|
|
for (i = 0; i < __kmp_threads_capacity; i++) {
|
|
kmp_info_t *thr = __kmp_threads[i];
|
|
while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
|
|
KMP_CPU_PAUSE();
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < __kmp_threads_capacity; ++i) {
|
|
// TBD: Add some checking...
|
|
// Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
|
|
}
|
|
|
|
/* Make sure all threadprivate destructors get run by joining with all
|
|
worker threads before resetting this flag */
|
|
TCW_SYNC_4(__kmp_init_common, FALSE);
|
|
|
|
KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
|
|
KMP_MB();
|
|
|
|
#if KMP_USE_MONITOR
|
|
// See note above: One of the possible fixes for CQ138434 / CQ140126
|
|
//
|
|
// FIXME: push both code fragments down and CSE them?
|
|
// push them into __kmp_cleanup() ?
|
|
__kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
|
|
if (TCR_4(__kmp_init_monitor)) {
|
|
__kmp_reap_monitor(&__kmp_monitor);
|
|
TCW_4(__kmp_init_monitor, 0);
|
|
}
|
|
__kmp_release_bootstrap_lock(&__kmp_monitor_lock);
|
|
KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
|
|
#endif
|
|
} /* else !__kmp_global.t_active */
|
|
TCW_4(__kmp_init_gtid, FALSE);
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
__kmp_cleanup();
|
|
#if OMPT_SUPPORT
|
|
ompt_fini();
|
|
#endif
|
|
}
|
|
|
|
void __kmp_internal_end_library(int gtid_req) {
|
|
/* if we have already cleaned up, don't try again, it wouldn't be pretty */
|
|
/* this shouldn't be a race condition because __kmp_internal_end() is the
|
|
only place to clear __kmp_serial_init */
|
|
/* we'll check this later too, after we get the lock */
|
|
// 2009-09-06: We do not set g_abort without setting g_done. This check looks
|
|
// redundant, because the next check will work in any case.
|
|
if (__kmp_global.g.g_abort) {
|
|
KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
|
|
/* TODO abort? */
|
|
return;
|
|
}
|
|
if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
|
|
KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
|
|
return;
|
|
}
|
|
|
|
// If hidden helper team has been initialized, we need to deinit it
|
|
if (TCR_4(__kmp_init_hidden_helper) &&
|
|
!TCR_4(__kmp_hidden_helper_team_done)) {
|
|
TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
|
|
// First release the main thread to let it continue its work
|
|
__kmp_hidden_helper_main_thread_release();
|
|
// Wait until the hidden helper team has been destroyed
|
|
__kmp_hidden_helper_threads_deinitz_wait();
|
|
}
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
/* find out who we are and what we should do */
|
|
{
|
|
int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
|
|
KA_TRACE(
|
|
10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req));
|
|
if (gtid == KMP_GTID_SHUTDOWN) {
|
|
KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
|
|
"already shutdown\n"));
|
|
return;
|
|
} else if (gtid == KMP_GTID_MONITOR) {
|
|
KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
|
|
"registered, or system shutdown\n"));
|
|
return;
|
|
} else if (gtid == KMP_GTID_DNE) {
|
|
KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
|
|
"shutdown\n"));
|
|
/* we don't know who we are, but we may still shutdown the library */
|
|
} else if (KMP_UBER_GTID(gtid)) {
|
|
/* unregister ourselves as an uber thread. gtid is no longer valid */
|
|
if (__kmp_root[gtid]->r.r_active) {
|
|
__kmp_global.g.g_abort = -1;
|
|
TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
|
|
__kmp_unregister_library();
|
|
KA_TRACE(10,
|
|
("__kmp_internal_end_library: root still active, abort T#%d\n",
|
|
gtid));
|
|
return;
|
|
} else {
|
|
__kmp_itthash_clean(__kmp_threads[gtid]);
|
|
KA_TRACE(
|
|
10,
|
|
("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
|
|
__kmp_unregister_root_current_thread(gtid);
|
|
}
|
|
} else {
|
|
/* worker threads may call this function through the atexit handler, if they
|
|
* call exit() */
|
|
/* For now, skip the usual subsequent processing and just dump the debug buffer.
|
|
TODO: do a thorough shutdown instead */
|
|
#ifdef DUMP_DEBUG_ON_EXIT
|
|
if (__kmp_debug_buf)
|
|
__kmp_dump_debug_buffer();
|
|
#endif
|
|
// added unregister library call here when we switch to shm linux
|
|
// if we don't, it will leave lots of files in /dev/shm
|
|
// cleanup shared memory file before exiting.
|
|
__kmp_unregister_library();
|
|
return;
|
|
}
|
|
}
|
|
/* synchronize the termination process */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
|
|
/* have we already finished */
|
|
if (__kmp_global.g.g_abort) {
|
|
KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
|
|
/* TODO abort? */
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
|
|
/* We need this lock to enforce mutex between this reading of
|
|
__kmp_threads_capacity and the writing by __kmp_register_root.
|
|
Alternatively, we can use a counter of roots that is atomically updated by
|
|
__kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
|
|
__kmp_internal_end_*. */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
/* now we can safely conduct the actual termination */
|
|
__kmp_internal_end();
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
|
|
KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));
|
|
|
|
#ifdef DUMP_DEBUG_ON_EXIT
|
|
if (__kmp_debug_buf)
|
|
__kmp_dump_debug_buffer();
|
|
#endif
|
|
|
|
#if KMP_OS_WINDOWS
|
|
__kmp_close_console();
|
|
#endif
|
|
|
|
__kmp_fini_allocator();
|
|
|
|
} // __kmp_internal_end_library
|
|
|
|
void __kmp_internal_end_thread(int gtid_req) {
|
|
int i;
|
|
|
|
/* if we have already cleaned up, don't try again, it wouldn't be pretty */
|
|
/* this shouldn't be a race condition because __kmp_internal_end() is the
|
|
* only place to clear __kmp_serial_init */
|
|
/* we'll check this later too, after we get the lock */
|
|
// 2009-09-06: We do not set g_abort without setting g_done. This check looks
|
|
// redundant, because the next check will work in any case.
|
|
if (__kmp_global.g.g_abort) {
|
|
KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
|
|
/* TODO abort? */
|
|
return;
|
|
}
|
|
if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
|
|
return;
|
|
}
|
|
|
|
// If hidden helper team has been initialized, we need to deinit it
|
|
if (TCR_4(__kmp_init_hidden_helper) &&
|
|
!TCR_4(__kmp_hidden_helper_team_done)) {
|
|
TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
|
|
// First release the main thread to let it continue its work
|
|
__kmp_hidden_helper_main_thread_release();
|
|
// Wait until the hidden helper team has been destroyed
|
|
__kmp_hidden_helper_threads_deinitz_wait();
|
|
}
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* find out who we are and what we should do */
|
|
{
|
|
int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
|
|
KA_TRACE(10,
|
|
("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req));
|
|
if (gtid == KMP_GTID_SHUTDOWN) {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
|
|
"already shutdown\n"));
|
|
return;
|
|
} else if (gtid == KMP_GTID_MONITOR) {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
|
|
"registered, or system shutdown\n"));
|
|
return;
|
|
} else if (gtid == KMP_GTID_DNE) {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
|
|
"shutdown\n"));
|
|
return;
|
|
/* we don't know who we are */
|
|
} else if (KMP_UBER_GTID(gtid)) {
|
|
/* unregister ourselves as an uber thread. gtid is no longer valid */
|
|
if (__kmp_root[gtid]->r.r_active) {
|
|
__kmp_global.g.g_abort = -1;
|
|
TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
|
|
KA_TRACE(10,
|
|
("__kmp_internal_end_thread: root still active, abort T#%d\n",
|
|
gtid));
|
|
return;
|
|
} else {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
|
|
gtid));
|
|
__kmp_unregister_root_current_thread(gtid);
|
|
}
|
|
} else {
|
|
/* just a worker thread, let's leave */
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));
|
|
|
|
if (gtid >= 0) {
|
|
__kmp_threads[gtid]->th.th_task_team = NULL;
|
|
}
|
|
|
|
KA_TRACE(10,
|
|
("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
|
|
gtid));
|
|
return;
|
|
}
|
|
}
|
|
#if KMP_DYNAMIC_LIB
|
|
if (__kmp_pause_status != kmp_hard_paused)
|
|
// AC: lets not shutdown the dynamic library at the exit of uber thread,
|
|
// because we will better shutdown later in the library destructor.
|
|
{
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
|
|
return;
|
|
}
|
|
#endif
|
|
/* synchronize the termination process */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
|
|
/* have we already finished */
|
|
if (__kmp_global.g.g_abort) {
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
|
|
/* TODO abort? */
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
|
|
/* We need this lock to enforce mutex between this reading of
|
|
__kmp_threads_capacity and the writing by __kmp_register_root.
|
|
Alternatively, we can use a counter of roots that is atomically updated by
|
|
__kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
|
|
__kmp_internal_end_*. */
|
|
|
|
/* should we finish the run-time? are all siblings done? */
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
|
|
for (i = 0; i < __kmp_threads_capacity; ++i) {
|
|
if (KMP_UBER_GTID(i)) {
|
|
KA_TRACE(
|
|
10,
|
|
("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* now we can safely conduct the actual termination */
|
|
|
|
__kmp_internal_end();
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
|
|
KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));
|
|
|
|
#ifdef DUMP_DEBUG_ON_EXIT
|
|
if (__kmp_debug_buf)
|
|
__kmp_dump_debug_buffer();
|
|
#endif
|
|
} // __kmp_internal_end_thread
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Library registration stuff.
|
|
|
|
#ifndef __COSMOPOLITAN__
|
|
static long __kmp_registration_flag = 0;
|
|
// Random value used to indicate library initialization.
|
|
static char *__kmp_registration_str = NULL;
|
|
// Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.
|
|
#endif // __COSMOPOLITAN__
|
|
|
|
static inline char *__kmp_reg_status_name() {
|
|
/* On RHEL 3u5 if linked statically, getpid() returns different values in
|
|
each thread. If registration and unregistration go in different threads
|
|
(omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
|
|
env var can not be found, because the name will contain different pid. */
|
|
// macOS* complains about name being too long with additional getuid()
|
|
#if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB
|
|
return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(),
|
|
(int)getuid());
|
|
#else
|
|
return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
|
|
#endif
|
|
} // __kmp_reg_status_get
|
|
|
|
#if defined(KMP_USE_SHM)
|
|
bool __kmp_shm_available = false;
|
|
bool __kmp_tmp_available = false;
|
|
// If /dev/shm is not accessible, we will create a temporary file under /tmp.
|
|
char *temp_reg_status_file_name = nullptr;
|
|
#endif
|
|
|
|
void __kmp_register_library_startup(void) {
|
|
#ifndef __COSMOPOLITAN__
|
|
|
|
char *name = __kmp_reg_status_name(); // Name of the environment variable.
|
|
int done = 0;
|
|
union {
|
|
double dtime;
|
|
long ltime;
|
|
} time;
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
__kmp_initialize_system_tick();
|
|
#endif
|
|
__kmp_read_system_time(&time.dtime);
|
|
__kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
|
|
__kmp_registration_str =
|
|
__kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
|
|
__kmp_registration_flag, KMP_LIBRARY_FILE);
|
|
|
|
KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
|
|
__kmp_registration_str));
|
|
|
|
while (!done) {
|
|
|
|
char *value = NULL; // Actual value of the environment variable.
|
|
|
|
#if defined(KMP_USE_SHM)
|
|
char *shm_name = nullptr;
|
|
char *data1 = nullptr;
|
|
__kmp_shm_available = __kmp_detect_shm();
|
|
if (__kmp_shm_available) {
|
|
int fd1 = -1;
|
|
shm_name = __kmp_str_format("/%s", name);
|
|
int shm_preexist = 0;
|
|
fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666);
|
|
if ((fd1 == -1) && (errno == EEXIST)) {
|
|
// file didn't open because it already exists.
|
|
// try opening existing file
|
|
fd1 = shm_open(shm_name, O_RDWR, 0666);
|
|
if (fd1 == -1) { // file didn't open
|
|
KMP_WARNING(FunctionError, "Can't open SHM");
|
|
__kmp_shm_available = false;
|
|
} else { // able to open existing file
|
|
shm_preexist = 1;
|
|
}
|
|
}
|
|
if (__kmp_shm_available && shm_preexist == 0) { // SHM created, set size
|
|
if (ftruncate(fd1, SHM_SIZE) == -1) { // error occured setting size;
|
|
KMP_WARNING(FunctionError, "Can't set size of SHM");
|
|
__kmp_shm_available = false;
|
|
}
|
|
}
|
|
if (__kmp_shm_available) { // SHM exists, now map it
|
|
data1 = (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
fd1, 0);
|
|
if (data1 == MAP_FAILED) { // failed to map shared memory
|
|
KMP_WARNING(FunctionError, "Can't map SHM");
|
|
__kmp_shm_available = false;
|
|
}
|
|
}
|
|
if (__kmp_shm_available) { // SHM mapped
|
|
if (shm_preexist == 0) { // set data to SHM, set value
|
|
KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str);
|
|
}
|
|
// Read value from either what we just wrote or existing file.
|
|
value = __kmp_str_format("%s", data1); // read value from SHM
|
|
munmap(data1, SHM_SIZE);
|
|
}
|
|
if (fd1 != -1)
|
|
close(fd1);
|
|
}
|
|
if (!__kmp_shm_available)
|
|
__kmp_tmp_available = __kmp_detect_tmp();
|
|
if (!__kmp_shm_available && __kmp_tmp_available) {
|
|
// SHM failed to work due to an error other than that the file already
|
|
// exists. Try to create a temp file under /tmp.
|
|
// If /tmp isn't accessible, fall back to using environment variable.
|
|
// TODO: /tmp might not always be the temporary directory. For now we will
|
|
// not consider TMPDIR.
|
|
int fd1 = -1;
|
|
temp_reg_status_file_name = __kmp_str_format("/tmp/%s", name);
|
|
int tmp_preexist = 0;
|
|
fd1 = open(temp_reg_status_file_name, O_CREAT | O_EXCL | O_RDWR, 0666);
|
|
if ((fd1 == -1) && (errno == EEXIST)) {
|
|
// file didn't open because it already exists.
|
|
// try opening existing file
|
|
fd1 = open(temp_reg_status_file_name, O_RDWR, 0666);
|
|
if (fd1 == -1) { // file didn't open if (fd1 == -1) {
|
|
KMP_WARNING(FunctionError, "Can't open TEMP");
|
|
__kmp_tmp_available = false;
|
|
} else {
|
|
tmp_preexist = 1;
|
|
}
|
|
}
|
|
if (__kmp_tmp_available && tmp_preexist == 0) {
|
|
// we created /tmp file now set size
|
|
if (ftruncate(fd1, SHM_SIZE) == -1) { // error occured setting size;
|
|
KMP_WARNING(FunctionError, "Can't set size of /tmp file");
|
|
__kmp_tmp_available = false;
|
|
}
|
|
}
|
|
if (__kmp_tmp_available) {
|
|
data1 = (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
fd1, 0);
|
|
if (data1 == MAP_FAILED) { // failed to map /tmp
|
|
KMP_WARNING(FunctionError, "Can't map /tmp");
|
|
__kmp_tmp_available = false;
|
|
}
|
|
}
|
|
if (__kmp_tmp_available) {
|
|
if (tmp_preexist == 0) { // set data to TMP, set value
|
|
KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str);
|
|
}
|
|
// Read value from either what we just wrote or existing file.
|
|
value = __kmp_str_format("%s", data1); // read value from SHM
|
|
munmap(data1, SHM_SIZE);
|
|
}
|
|
if (fd1 != -1)
|
|
close(fd1);
|
|
}
|
|
if (!__kmp_shm_available && !__kmp_tmp_available) {
|
|
// no /dev/shm and no /tmp -- fall back to environment variable
|
|
// Set environment variable, but do not overwrite if it exists.
|
|
__kmp_env_set(name, __kmp_registration_str, 0);
|
|
// read value to see if it got set
|
|
value = __kmp_env_get(name);
|
|
}
|
|
#else // Windows and unix with static library
|
|
// Set environment variable, but do not overwrite if it exists.
|
|
__kmp_env_set(name, __kmp_registration_str, 0);
|
|
// read value to see if it got set
|
|
value = __kmp_env_get(name);
|
|
#endif
|
|
|
|
if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
|
|
done = 1; // Ok, environment variable set successfully, exit the loop.
|
|
} else {
|
|
// Oops. Write failed. Another copy of OpenMP RTL is in memory.
|
|
// Check whether it alive or dead.
|
|
int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
|
|
char *tail = value;
|
|
char *flag_addr_str = NULL;
|
|
char *flag_val_str = NULL;
|
|
char const *file_name = NULL;
|
|
__kmp_str_split(tail, '-', &flag_addr_str, &tail);
|
|
__kmp_str_split(tail, '-', &flag_val_str, &tail);
|
|
file_name = tail;
|
|
if (tail != NULL) {
|
|
unsigned long *flag_addr = 0;
|
|
unsigned long flag_val = 0;
|
|
KMP_SSCANF(flag_addr_str, "%p", RCAST(void **, &flag_addr));
|
|
KMP_SSCANF(flag_val_str, "%lx", &flag_val);
|
|
if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
|
|
// First, check whether environment-encoded address is mapped into
|
|
// addr space.
|
|
// If so, dereference it to see if it still has the right value.
|
|
if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
|
|
neighbor = 1;
|
|
} else {
|
|
// If not, then we know the other copy of the library is no longer
|
|
// running.
|
|
neighbor = 2;
|
|
}
|
|
}
|
|
}
|
|
switch (neighbor) {
|
|
case 0: // Cannot parse environment variable -- neighbor status unknown.
|
|
// Assume it is the incompatible format of future version of the
|
|
// library. Assume the other library is alive.
|
|
// WARN( ... ); // TODO: Issue a warning.
|
|
file_name = "unknown library";
|
|
KMP_FALLTHROUGH();
|
|
// Attention! Falling to the next case. That's intentional.
|
|
case 1: { // Neighbor is alive.
|
|
// Check it is allowed.
|
|
char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
|
|
if (!__kmp_str_match_true(duplicate_ok)) {
|
|
// That's not allowed. Issue fatal error.
|
|
__kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
|
|
KMP_HNT(DuplicateLibrary), __kmp_msg_null);
|
|
}
|
|
KMP_INTERNAL_FREE(duplicate_ok);
|
|
__kmp_duplicate_library_ok = 1;
|
|
done = 1; // Exit the loop.
|
|
} break;
|
|
case 2: { // Neighbor is dead.
|
|
|
|
#if defined(KMP_USE_SHM)
|
|
if (__kmp_shm_available) { // close shared memory.
|
|
shm_unlink(shm_name); // this removes file in /dev/shm
|
|
} else if (__kmp_tmp_available) {
|
|
unlink(temp_reg_status_file_name); // this removes the temp file
|
|
} else {
|
|
// Clear the variable and try to register library again.
|
|
__kmp_env_unset(name);
|
|
}
|
|
#else
|
|
// Clear the variable and try to register library again.
|
|
__kmp_env_unset(name);
|
|
#endif
|
|
} break;
|
|
default: {
|
|
KMP_DEBUG_ASSERT(0);
|
|
} break;
|
|
}
|
|
}
|
|
KMP_INTERNAL_FREE((void *)value);
|
|
#if defined(KMP_USE_SHM)
|
|
if (shm_name)
|
|
KMP_INTERNAL_FREE((void *)shm_name);
|
|
#endif
|
|
} // while
|
|
KMP_INTERNAL_FREE((void *)name);
|
|
|
|
#endif // __COSMOPOLITAN__
|
|
} // func __kmp_register_library_startup
|
|
|
|
void __kmp_unregister_library(void) {
|
|
#ifndef __COSMOPOLITAN__
|
|
|
|
char *name = __kmp_reg_status_name();
|
|
char *value = NULL;
|
|
|
|
#if defined(KMP_USE_SHM)
|
|
char *shm_name = nullptr;
|
|
int fd1;
|
|
if (__kmp_shm_available) {
|
|
shm_name = __kmp_str_format("/%s", name);
|
|
fd1 = shm_open(shm_name, O_RDONLY, 0666);
|
|
if (fd1 != -1) { // File opened successfully
|
|
char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0);
|
|
if (data1 != MAP_FAILED) {
|
|
value = __kmp_str_format("%s", data1); // read value from SHM
|
|
munmap(data1, SHM_SIZE);
|
|
}
|
|
close(fd1);
|
|
}
|
|
} else if (__kmp_tmp_available) { // try /tmp
|
|
fd1 = open(temp_reg_status_file_name, O_RDONLY);
|
|
if (fd1 != -1) { // File opened successfully
|
|
char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0);
|
|
if (data1 != MAP_FAILED) {
|
|
value = __kmp_str_format("%s", data1); // read value from /tmp
|
|
munmap(data1, SHM_SIZE);
|
|
}
|
|
close(fd1);
|
|
}
|
|
} else { // fall back to envirable
|
|
value = __kmp_env_get(name);
|
|
}
|
|
#else
|
|
value = __kmp_env_get(name);
|
|
#endif
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
|
|
KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
|
|
if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
|
|
// Ok, this is our variable. Delete it.
|
|
#if defined(KMP_USE_SHM)
|
|
if (__kmp_shm_available) {
|
|
shm_unlink(shm_name); // this removes file in /dev/shm
|
|
} else if (__kmp_tmp_available) {
|
|
unlink(temp_reg_status_file_name); // this removes the temp file
|
|
} else {
|
|
__kmp_env_unset(name);
|
|
}
|
|
#else
|
|
__kmp_env_unset(name);
|
|
#endif
|
|
}
|
|
|
|
#if defined(KMP_USE_SHM)
|
|
if (shm_name)
|
|
KMP_INTERNAL_FREE(shm_name);
|
|
if (temp_reg_status_file_name)
|
|
KMP_INTERNAL_FREE(temp_reg_status_file_name);
|
|
#endif
|
|
|
|
KMP_INTERNAL_FREE(__kmp_registration_str);
|
|
KMP_INTERNAL_FREE(value);
|
|
KMP_INTERNAL_FREE(name);
|
|
|
|
__kmp_registration_flag = 0;
|
|
__kmp_registration_str = NULL;
|
|
|
|
#endif // __COSMOPOLITAN__
|
|
} // __kmp_unregister_library
|
|
|
|
// End of Library registration stuff.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#if KMP_MIC_SUPPORTED
|
|
|
|
static void __kmp_check_mic_type() {
|
|
kmp_cpuid_t cpuid_state = {0};
|
|
kmp_cpuid_t *cs_p = &cpuid_state;
|
|
__kmp_x86_cpuid(1, 0, cs_p);
|
|
// We don't support mic1 at the moment
|
|
if ((cs_p->eax & 0xff0) == 0xB10) {
|
|
__kmp_mic_type = mic2;
|
|
} else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
|
|
__kmp_mic_type = mic3;
|
|
} else {
|
|
__kmp_mic_type = non_mic;
|
|
}
|
|
}
|
|
|
|
#endif /* KMP_MIC_SUPPORTED */
|
|
|
|
#if KMP_HAVE_UMWAIT
|
|
static void __kmp_user_level_mwait_init() {
|
|
struct kmp_cpuid buf;
|
|
__kmp_x86_cpuid(7, 0, &buf);
|
|
__kmp_waitpkg_enabled = ((buf.ecx >> 5) & 1);
|
|
__kmp_umwait_enabled = __kmp_waitpkg_enabled && __kmp_user_level_mwait;
|
|
__kmp_tpause_enabled = __kmp_waitpkg_enabled && (__kmp_tpause_state > 0);
|
|
KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n",
|
|
__kmp_umwait_enabled));
|
|
}
|
|
#elif KMP_HAVE_MWAIT
|
|
#ifndef AT_INTELPHIUSERMWAIT
|
|
// Spurious, non-existent value that should always fail to return anything.
|
|
// Will be replaced with the correct value when we know that.
|
|
#define AT_INTELPHIUSERMWAIT 10000
|
|
#endif
|
|
// getauxval() function is available in RHEL7 and SLES12. If a system with an
|
|
// earlier OS is used to build the RTL, we'll use the following internal
|
|
// function when the entry is not found.
|
|
// unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL;
|
|
// unsigned long getauxval(unsigned long) { return 0; }
|
|
|
|
static void __kmp_user_level_mwait_init() {
|
|
// When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available
|
|
// use them to find if the user-level mwait is enabled. Otherwise, forcibly
|
|
// set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable
|
|
// KMP_USER_LEVEL_MWAIT was set to TRUE.
|
|
if (__kmp_mic_type == mic3) {
|
|
unsigned long res = getauxval(AT_INTELPHIUSERMWAIT);
|
|
if ((res & 0x1) || __kmp_user_level_mwait) {
|
|
__kmp_mwait_enabled = TRUE;
|
|
if (__kmp_user_level_mwait) {
|
|
KMP_INFORM(EnvMwaitWarn);
|
|
}
|
|
} else {
|
|
__kmp_mwait_enabled = FALSE;
|
|
}
|
|
}
|
|
KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, "
|
|
"__kmp_mwait_enabled = %d\n",
|
|
__kmp_mic_type, __kmp_mwait_enabled));
|
|
}
|
|
#endif /* KMP_HAVE_UMWAIT */
|
|
|
|
static void __kmp_do_serial_initialize(void) {
|
|
int i, gtid;
|
|
size_t size;
|
|
|
|
KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));
|
|
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_pre_init();
|
|
#endif
|
|
#if OMPD_SUPPORT
|
|
__kmp_env_dump();
|
|
ompd_init();
|
|
#endif
|
|
|
|
__kmp_validate_locks();
|
|
|
|
#if ENABLE_LIBOMPTARGET
|
|
/* Initialize functions from libomptarget */
|
|
__kmp_init_omptarget();
|
|
#endif
|
|
|
|
/* Initialize internal memory allocator */
|
|
__kmp_init_allocator();
|
|
|
|
/* Register the library startup via an environment variable or via mapped
|
|
shared memory file and check to see whether another copy of the library is
|
|
already registered. Since forked child process is often terminated, we
|
|
postpone the registration till middle initialization in the child */
|
|
if (__kmp_need_register_serial)
|
|
__kmp_register_library_startup();
|
|
|
|
/* TODO reinitialization of library */
|
|
if (TCR_4(__kmp_global.g.g_done)) {
|
|
KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
|
|
}
|
|
|
|
__kmp_global.g.g_abort = 0;
|
|
TCW_SYNC_4(__kmp_global.g.g_done, FALSE);
|
|
|
|
/* initialize the locks */
|
|
#if KMP_USE_ADAPTIVE_LOCKS
|
|
#if KMP_DEBUG_ADAPTIVE_LOCKS
|
|
__kmp_init_speculative_stats();
|
|
#endif
|
|
#endif
|
|
#if KMP_STATS_ENABLED
|
|
__kmp_stats_init();
|
|
#endif
|
|
__kmp_init_lock(&__kmp_global_lock);
|
|
__kmp_init_queuing_lock(&__kmp_dispatch_lock);
|
|
__kmp_init_lock(&__kmp_debug_lock);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
|
|
__kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
|
|
__kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_init_bootstrap_lock(&__kmp_exit_lock);
|
|
#if KMP_USE_MONITOR
|
|
__kmp_init_bootstrap_lock(&__kmp_monitor_lock);
|
|
#endif
|
|
__kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);
|
|
|
|
/* conduct initialization and initial setup of configuration */
|
|
|
|
__kmp_runtime_initialize();
|
|
|
|
#if KMP_MIC_SUPPORTED
|
|
__kmp_check_mic_type();
|
|
#endif
|
|
|
|
// Some global variable initialization moved here from kmp_env_initialize()
|
|
#ifdef KMP_DEBUG
|
|
kmp_diag = 0;
|
|
#endif
|
|
__kmp_abort_delay = 0;
|
|
|
|
// From __kmp_init_dflt_team_nth()
|
|
/* assume the entire machine will be used */
|
|
__kmp_dflt_team_nth_ub = __kmp_xproc;
|
|
if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
|
|
__kmp_dflt_team_nth_ub = KMP_MIN_NTH;
|
|
}
|
|
if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
|
|
__kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
|
|
}
|
|
__kmp_max_nth = __kmp_sys_max_nth;
|
|
__kmp_cg_max_nth = __kmp_sys_max_nth;
|
|
__kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
|
|
if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
|
|
__kmp_teams_max_nth = __kmp_sys_max_nth;
|
|
}
|
|
|
|
// Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
|
|
// part
|
|
__kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
|
|
#if KMP_USE_MONITOR
|
|
__kmp_monitor_wakeups =
|
|
KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
|
|
__kmp_bt_intervals =
|
|
KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
|
|
#endif
|
|
// From "KMP_LIBRARY" part of __kmp_env_initialize()
|
|
__kmp_library = library_throughput;
|
|
// From KMP_SCHEDULE initialization
|
|
__kmp_static = kmp_sch_static_balanced;
|
|
// AC: do not use analytical here, because it is non-monotonous
|
|
//__kmp_guided = kmp_sch_guided_iterative_chunked;
|
|
//__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
|
|
// need to repeat assignment
|
|
// Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
|
|
// bit control and barrier method control parts
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
#define kmp_reduction_barrier_gather_bb ((int)1)
|
|
#define kmp_reduction_barrier_release_bb ((int)1)
|
|
#define kmp_reduction_barrier_gather_pat __kmp_barrier_gather_pat_dflt
|
|
#define kmp_reduction_barrier_release_pat __kmp_barrier_release_pat_dflt
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
|
|
__kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
|
|
__kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
|
|
__kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
|
|
__kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
|
|
// lin_64 ): hyper,1
|
|
__kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
|
|
__kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
|
|
__kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
|
|
__kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
|
|
}
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
}
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
#undef kmp_reduction_barrier_release_pat
|
|
#undef kmp_reduction_barrier_gather_pat
|
|
#undef kmp_reduction_barrier_release_bb
|
|
#undef kmp_reduction_barrier_gather_bb
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
#if KMP_MIC_SUPPORTED
|
|
if (__kmp_mic_type == mic2) { // KNC
|
|
// AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
|
|
__kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
|
|
__kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
|
|
1; // forkjoin release
|
|
__kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
|
|
__kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
|
|
}
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
if (__kmp_mic_type == mic2) { // KNC
|
|
__kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
|
|
__kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
|
|
}
|
|
#endif // KMP_FAST_REDUCTION_BARRIER
|
|
#endif // KMP_MIC_SUPPORTED
|
|
|
|
// From KMP_CHECKS initialization
|
|
#ifdef KMP_DEBUG
|
|
__kmp_env_checks = TRUE; /* development versions have the extra checks */
|
|
#else
|
|
__kmp_env_checks = FALSE; /* port versions do not have the extra checks */
|
|
#endif
|
|
|
|
// From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
|
|
__kmp_foreign_tp = TRUE;
|
|
|
|
__kmp_global.g.g_dynamic = FALSE;
|
|
__kmp_global.g.g_dynamic_mode = dynamic_default;
|
|
|
|
__kmp_init_nesting_mode();
|
|
|
|
__kmp_env_initialize(NULL);
|
|
|
|
#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
|
|
__kmp_user_level_mwait_init();
|
|
#endif
|
|
// Print all messages in message catalog for testing purposes.
|
|
#ifdef KMP_DEBUG
|
|
char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
|
|
if (__kmp_str_match_true(val)) {
|
|
kmp_str_buf_t buffer;
|
|
__kmp_str_buf_init(&buffer);
|
|
__kmp_i18n_dump_catalog(&buffer);
|
|
__kmp_printf("%s", buffer.str);
|
|
__kmp_str_buf_free(&buffer);
|
|
}
|
|
__kmp_env_free(&val);
|
|
#endif
|
|
|
|
__kmp_threads_capacity =
|
|
__kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
|
|
// Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
|
|
__kmp_tp_capacity = __kmp_default_tp_capacity(
|
|
__kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);
|
|
|
|
// If the library is shut down properly, both pools must be NULL. Just in
|
|
// case, set them to NULL -- some memory may leak, but subsequent code will
|
|
// work even if pools are not freed.
|
|
KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
|
|
KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
|
|
KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
|
|
__kmp_thread_pool = NULL;
|
|
__kmp_thread_pool_insert_pt = NULL;
|
|
__kmp_team_pool = NULL;
|
|
|
|
/* Allocate all of the variable sized records */
|
|
/* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
|
|
* expandable */
|
|
/* Since allocation is cache-aligned, just add extra padding at the end */
|
|
size =
|
|
(sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
|
|
CACHE_LINE;
|
|
__kmp_threads = (kmp_info_t **)__kmp_allocate(size);
|
|
__kmp_root = (kmp_root_t **)((char *)__kmp_threads +
|
|
sizeof(kmp_info_t *) * __kmp_threads_capacity);
|
|
|
|
/* init thread counts */
|
|
KMP_DEBUG_ASSERT(__kmp_all_nth ==
|
|
0); // Asserts fail if the library is reinitializing and
|
|
KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
|
|
__kmp_all_nth = 0;
|
|
__kmp_nth = 0;
|
|
|
|
/* setup the uber master thread and hierarchy */
|
|
gtid = __kmp_register_root(TRUE);
|
|
KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid));
|
|
KMP_ASSERT(KMP_UBER_GTID(gtid));
|
|
KMP_ASSERT(KMP_INITIAL_GTID(gtid));
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
__kmp_common_initialize();
|
|
|
|
#if KMP_OS_UNIX
|
|
/* invoke the child fork handler */
|
|
__kmp_register_atfork();
|
|
#endif
|
|
|
|
#if !KMP_DYNAMIC_LIB || \
|
|
((KMP_COMPILER_ICC || KMP_COMPILER_ICX) && KMP_OS_DARWIN)
|
|
{
|
|
/* Invoke the exit handler when the program finishes, only for static
|
|
library and macOS* dynamic. For other dynamic libraries, we already
|
|
have _fini and DllMain. */
|
|
int rc = atexit(__kmp_internal_end_atexit);
|
|
if (rc != 0) {
|
|
__kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
|
|
__kmp_msg_null);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if KMP_HANDLE_SIGNALS
|
|
#if KMP_OS_UNIX
|
|
/* NOTE: make sure that this is called before the user installs their own
|
|
signal handlers so that the user handlers are called first. this way they
|
|
can return false, not call our handler, avoid terminating the library, and
|
|
continue execution where they left off. */
|
|
__kmp_install_signals(FALSE);
|
|
#endif /* KMP_OS_UNIX */
|
|
#if KMP_OS_WINDOWS
|
|
__kmp_install_signals(TRUE);
|
|
#endif /* KMP_OS_WINDOWS */
|
|
#endif
|
|
|
|
/* we have finished the serial initialization */
|
|
__kmp_init_counter++;
|
|
|
|
__kmp_init_serial = TRUE;
|
|
|
|
if (__kmp_version) {
|
|
__kmp_print_version_1();
|
|
}
|
|
|
|
if (__kmp_settings) {
|
|
__kmp_env_print();
|
|
}
|
|
|
|
if (__kmp_display_env || __kmp_display_env_verbose) {
|
|
__kmp_env_print_2();
|
|
}
|
|
|
|
#if OMPT_SUPPORT
|
|
ompt_post_init();
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
|
|
}
|
|
|
|
void __kmp_serial_initialize(void) {
|
|
if (__kmp_init_serial) {
|
|
return;
|
|
}
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (__kmp_init_serial) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
__kmp_do_serial_initialize();
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
static void __kmp_do_middle_initialize(void) {
|
|
int i, j;
|
|
int prev_dflt_team_nth;
|
|
|
|
if (!__kmp_init_serial) {
|
|
__kmp_do_serial_initialize();
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));
|
|
|
|
if (UNLIKELY(!__kmp_need_register_serial)) {
|
|
// We are in a forked child process. The registration was skipped during
|
|
// serial initialization in __kmp_atfork_child handler. Do it here.
|
|
__kmp_register_library_startup();
|
|
}
|
|
|
|
// Save the previous value for the __kmp_dflt_team_nth so that
|
|
// we can avoid some reinitialization if it hasn't changed.
|
|
prev_dflt_team_nth = __kmp_dflt_team_nth;
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// __kmp_affinity_initialize() will try to set __kmp_ncores to the
|
|
// number of cores on the machine.
|
|
__kmp_affinity_initialize(__kmp_affinity);
|
|
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
|
|
KMP_ASSERT(__kmp_xproc > 0);
|
|
if (__kmp_avail_proc == 0) {
|
|
__kmp_avail_proc = __kmp_xproc;
|
|
}
|
|
|
|
// If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
|
|
// correct them now
|
|
j = 0;
|
|
while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
|
|
__kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
|
|
__kmp_avail_proc;
|
|
j++;
|
|
}
|
|
|
|
if (__kmp_dflt_team_nth == 0) {
|
|
#ifdef KMP_DFLT_NTH_CORES
|
|
// Default #threads = #cores
|
|
__kmp_dflt_team_nth = __kmp_ncores;
|
|
KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
|
|
"__kmp_ncores (%d)\n",
|
|
__kmp_dflt_team_nth));
|
|
#else
|
|
// Default #threads = #available OS procs
|
|
__kmp_dflt_team_nth = __kmp_avail_proc;
|
|
KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
|
|
"__kmp_avail_proc(%d)\n",
|
|
__kmp_dflt_team_nth));
|
|
#endif /* KMP_DFLT_NTH_CORES */
|
|
}
|
|
|
|
if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
|
|
__kmp_dflt_team_nth = KMP_MIN_NTH;
|
|
}
|
|
if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
|
|
__kmp_dflt_team_nth = __kmp_sys_max_nth;
|
|
}
|
|
|
|
if (__kmp_nesting_mode > 0)
|
|
__kmp_set_nesting_mode_threads();
|
|
|
|
// There's no harm in continuing if the following check fails,
|
|
// but it indicates an error in the previous logic.
|
|
KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);
|
|
|
|
if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
|
|
// Run through the __kmp_threads array and set the num threads icv for each
|
|
// root thread that is currently registered with the RTL (which has not
|
|
// already explicitly set its nthreads-var with a call to
|
|
// omp_set_num_threads()).
|
|
for (i = 0; i < __kmp_threads_capacity; i++) {
|
|
kmp_info_t *thread = __kmp_threads[i];
|
|
if (thread == NULL)
|
|
continue;
|
|
if (thread->th.th_current_task->td_icvs.nproc != 0)
|
|
continue;
|
|
|
|
set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
|
|
}
|
|
}
|
|
KA_TRACE(
|
|
20,
|
|
("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
|
|
__kmp_dflt_team_nth));
|
|
|
|
#ifdef KMP_ADJUST_BLOCKTIME
|
|
/* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */
|
|
if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
|
|
KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
|
|
if (__kmp_nth > __kmp_avail_proc) {
|
|
__kmp_zero_bt = TRUE;
|
|
}
|
|
}
|
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
|
|
|
/* we have finished middle initialization */
|
|
TCW_SYNC_4(__kmp_init_middle, TRUE);
|
|
|
|
KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
|
|
}
|
|
|
|
void __kmp_middle_initialize(void) {
|
|
if (__kmp_init_middle) {
|
|
return;
|
|
}
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (__kmp_init_middle) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
__kmp_do_middle_initialize();
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
void __kmp_parallel_initialize(void) {
|
|
int gtid = __kmp_entry_gtid(); // this might be a new root
|
|
|
|
/* synchronize parallel initialization (for sibling) */
|
|
if (TCR_4(__kmp_init_parallel))
|
|
return;
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (TCR_4(__kmp_init_parallel)) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
|
|
/* TODO reinitialization after we have already shut down */
|
|
if (TCR_4(__kmp_global.g.g_done)) {
|
|
KA_TRACE(
|
|
10,
|
|
("__kmp_parallel_initialize: attempt to init while shutting down\n"));
|
|
__kmp_infinite_loop();
|
|
}
|
|
|
|
/* jc: The lock __kmp_initz_lock is already held, so calling
|
|
__kmp_serial_initialize would cause a deadlock. So we call
|
|
__kmp_do_serial_initialize directly. */
|
|
if (!__kmp_init_middle) {
|
|
__kmp_do_middle_initialize();
|
|
}
|
|
__kmp_assign_root_init_mask();
|
|
__kmp_resume_if_hard_paused();
|
|
|
|
/* begin initialization */
|
|
KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
|
|
KMP_ASSERT(KMP_UBER_GTID(gtid));
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
// Save the FP control regs.
|
|
// Worker threads will set theirs to these values at thread startup.
|
|
__kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
|
|
__kmp_store_mxcsr(&__kmp_init_mxcsr);
|
|
__kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#if KMP_OS_UNIX
|
|
#if KMP_HANDLE_SIGNALS
|
|
/* must be after __kmp_serial_initialize */
|
|
__kmp_install_signals(TRUE);
|
|
#endif
|
|
#endif
|
|
|
|
__kmp_suspend_initialize();
|
|
|
|
#if defined(USE_LOAD_BALANCE)
|
|
if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
|
|
__kmp_global.g.g_dynamic_mode = dynamic_load_balance;
|
|
}
|
|
#else
|
|
if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
|
|
__kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
|
|
}
|
|
#endif
|
|
|
|
if (__kmp_version) {
|
|
__kmp_print_version_2();
|
|
}
|
|
|
|
/* we have finished parallel initialization */
|
|
TCW_SYNC_4(__kmp_init_parallel, TRUE);
|
|
|
|
KMP_MB();
|
|
KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
void __kmp_hidden_helper_initialize() {
|
|
if (TCR_4(__kmp_init_hidden_helper))
|
|
return;
|
|
|
|
// __kmp_parallel_initialize is required before we initialize hidden helper
|
|
if (!TCR_4(__kmp_init_parallel))
|
|
__kmp_parallel_initialize();
|
|
|
|
// Double check. Note that this double check should not be placed before
|
|
// __kmp_parallel_initialize as it will cause dead lock.
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (TCR_4(__kmp_init_hidden_helper)) {
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
return;
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// Initialize hidden helper affinity settings.
|
|
// The above __kmp_parallel_initialize() will initialize
|
|
// regular affinity (and topology) if not already done.
|
|
if (!__kmp_hh_affinity.flags.initialized)
|
|
__kmp_affinity_initialize(__kmp_hh_affinity);
|
|
#endif
|
|
|
|
// Set the count of hidden helper tasks to be executed to zero
|
|
KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0);
|
|
|
|
// Set the global variable indicating that we're initializing hidden helper
|
|
// team/threads
|
|
TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE);
|
|
|
|
// Platform independent initialization
|
|
__kmp_do_initialize_hidden_helper_threads();
|
|
|
|
// Wait here for the finish of initialization of hidden helper teams
|
|
__kmp_hidden_helper_threads_initz_wait();
|
|
|
|
// We have finished hidden helper initialization
|
|
TCW_SYNC_4(__kmp_init_hidden_helper, TRUE);
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
|
|
kmp_team_t *team) {
|
|
kmp_disp_t *dispatch;
|
|
|
|
KMP_MB();
|
|
|
|
/* none of the threads have encountered any constructs, yet. */
|
|
this_thr->th.th_local.this_construct = 0;
|
|
#if KMP_CACHE_MANAGE
|
|
KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
|
|
#endif /* KMP_CACHE_MANAGE */
|
|
dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
|
|
KMP_DEBUG_ASSERT(dispatch);
|
|
KMP_DEBUG_ASSERT(team->t.t_dispatch);
|
|
// KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
|
|
// this_thr->th.th_info.ds.ds_tid ] );
|
|
|
|
dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
|
|
dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_push_parallel(gtid, team->t.t_ident);
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
|
|
void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
|
|
kmp_team_t *team) {
|
|
if (__kmp_env_consistency_check)
|
|
__kmp_pop_parallel(gtid, team->t.t_ident);
|
|
|
|
__kmp_finish_implicit_task(this_thr);
|
|
}
|
|
|
|
int __kmp_invoke_task_func(int gtid) {
|
|
int rc;
|
|
int tid = __kmp_tid_from_gtid(gtid);
|
|
kmp_info_t *this_thr = __kmp_threads[gtid];
|
|
kmp_team_t *team = this_thr->th.th_team;
|
|
|
|
__kmp_run_before_invoked_task(gtid, tid, this_thr, team);
|
|
#if USE_ITT_BUILD
|
|
if (__itt_stack_caller_create_ptr) {
|
|
// inform ittnotify about entering user's code
|
|
if (team->t.t_stack_id != NULL) {
|
|
__kmp_itt_stack_callee_enter((__itt_caller)team->t.t_stack_id);
|
|
} else {
|
|
KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
|
|
__kmp_itt_stack_callee_enter(
|
|
(__itt_caller)team->t.t_parent->t.t_stack_id);
|
|
}
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
#if INCLUDE_SSC_MARKS
|
|
SSC_MARK_INVOKING();
|
|
#endif
|
|
|
|
#if OMPT_SUPPORT
|
|
void *dummy;
|
|
void **exit_frame_p;
|
|
ompt_data_t *my_task_data;
|
|
ompt_data_t *my_parallel_data;
|
|
int ompt_team_size;
|
|
|
|
if (ompt_enabled.enabled) {
|
|
exit_frame_p = &(team->t.t_implicit_task_taskdata[tid]
|
|
.ompt_task_info.frame.exit_frame.ptr);
|
|
} else {
|
|
exit_frame_p = &dummy;
|
|
}
|
|
|
|
my_task_data =
|
|
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
|
|
my_parallel_data = &(team->t.ompt_team_info.parallel_data);
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_team_size = team->t.t_nproc;
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
|
|
__kmp_tid_from_gtid(gtid), ompt_task_implicit);
|
|
OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
|
|
}
|
|
#endif
|
|
|
|
#if KMP_STATS_ENABLED
|
|
stats_state_e previous_state = KMP_GET_THREAD_STATE();
|
|
if (previous_state == stats_state_e::TEAMS_REGION) {
|
|
KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
|
|
} else {
|
|
KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
|
|
}
|
|
KMP_SET_THREAD_STATE(IMPLICIT_TASK);
|
|
#endif
|
|
|
|
rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
|
|
tid, (int)team->t.t_argc, (void **)team->t.t_argv
|
|
#if OMPT_SUPPORT
|
|
,
|
|
exit_frame_p
|
|
#endif
|
|
);
|
|
#if OMPT_SUPPORT
|
|
*exit_frame_p = NULL;
|
|
this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team;
|
|
#endif
|
|
|
|
#if KMP_STATS_ENABLED
|
|
if (previous_state == stats_state_e::TEAMS_REGION) {
|
|
KMP_SET_THREAD_STATE(previous_state);
|
|
}
|
|
KMP_POP_PARTITIONED_TIMER();
|
|
#endif
|
|
|
|
#if USE_ITT_BUILD
|
|
if (__itt_stack_caller_create_ptr) {
|
|
// inform ittnotify about leaving user's code
|
|
if (team->t.t_stack_id != NULL) {
|
|
__kmp_itt_stack_callee_leave((__itt_caller)team->t.t_stack_id);
|
|
} else {
|
|
KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
|
|
__kmp_itt_stack_callee_leave(
|
|
(__itt_caller)team->t.t_parent->t.t_stack_id);
|
|
}
|
|
}
|
|
#endif /* USE_ITT_BUILD */
|
|
__kmp_run_after_invoked_task(gtid, tid, this_thr, team);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void __kmp_teams_master(int gtid) {
|
|
// This routine is called by all primary threads in teams construct
|
|
kmp_info_t *thr = __kmp_threads[gtid];
|
|
kmp_team_t *team = thr->th.th_team;
|
|
ident_t *loc = team->t.t_ident;
|
|
thr->th.th_set_nproc = thr->th.th_teams_size.nth;
|
|
KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
|
|
KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
|
|
KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
|
|
__kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));
|
|
|
|
// This thread is a new CG root. Set up the proper variables.
|
|
kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
|
|
tmp->cg_root = thr; // Make thr the CG root
|
|
// Init to thread limit stored when league primary threads were forked
|
|
tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
|
|
tmp->cg_nthreads = 1; // Init counter to one active thread, this one
|
|
KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
|
|
" cg_nthreads to 1\n",
|
|
thr, tmp));
|
|
tmp->up = thr->th.th_cg_roots;
|
|
thr->th.th_cg_roots = tmp;
|
|
|
|
// Launch league of teams now, but not let workers execute
|
|
// (they hang on fork barrier until next parallel)
|
|
#if INCLUDE_SSC_MARKS
|
|
SSC_MARK_FORKING();
|
|
#endif
|
|
__kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
|
|
(microtask_t)thr->th.th_teams_microtask, // "wrapped" task
|
|
VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
|
|
#if INCLUDE_SSC_MARKS
|
|
SSC_MARK_JOINING();
|
|
#endif
|
|
// If the team size was reduced from the limit, set it to the new size
|
|
if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
|
|
thr->th.th_teams_size.nth = thr->th.th_team_nproc;
|
|
// AC: last parameter "1" eliminates join barrier which won't work because
|
|
// worker threads are in a fork barrier waiting for more parallel regions
|
|
__kmp_join_call(loc, gtid
|
|
#if OMPT_SUPPORT
|
|
,
|
|
fork_context_intel
|
|
#endif
|
|
,
|
|
1);
|
|
}
|
|
|
|
int __kmp_invoke_teams_master(int gtid) {
|
|
kmp_info_t *this_thr = __kmp_threads[gtid];
|
|
kmp_team_t *team = this_thr->th.th_team;
|
|
#if KMP_DEBUG
|
|
if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
|
|
KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
|
|
(void *)__kmp_teams_master);
|
|
#endif
|
|
__kmp_run_before_invoked_task(gtid, 0, this_thr, team);
|
|
#if OMPT_SUPPORT
|
|
int tid = __kmp_tid_from_gtid(gtid);
|
|
ompt_data_t *task_data =
|
|
&team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data;
|
|
ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data;
|
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid,
|
|
ompt_task_initial);
|
|
OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid;
|
|
}
|
|
#endif
|
|
__kmp_teams_master(gtid);
|
|
#if OMPT_SUPPORT
|
|
this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league;
|
|
#endif
|
|
__kmp_run_after_invoked_task(gtid, 0, this_thr, team);
|
|
return 1;
|
|
}
|
|
|
|
/* this sets the requested number of threads for the next parallel region
|
|
encountered by this team. since this should be enclosed in the forkjoin
|
|
critical section it should avoid race conditions with asymmetrical nested
|
|
parallelism */
|
|
|
|
void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
|
|
kmp_info_t *thr = __kmp_threads[gtid];
|
|
|
|
if (num_threads > 0)
|
|
thr->th.th_set_nproc = num_threads;
|
|
}
|
|
|
|
static void __kmp_push_thread_limit(kmp_info_t *thr, int num_teams,
|
|
int num_threads) {
|
|
KMP_DEBUG_ASSERT(thr);
|
|
// Remember the number of threads for inner parallel regions
|
|
if (!TCR_4(__kmp_init_middle))
|
|
__kmp_middle_initialize(); // get internal globals calculated
|
|
__kmp_assign_root_init_mask();
|
|
KMP_DEBUG_ASSERT(__kmp_avail_proc);
|
|
KMP_DEBUG_ASSERT(__kmp_dflt_team_nth);
|
|
|
|
if (num_threads == 0) {
|
|
if (__kmp_teams_thread_limit > 0) {
|
|
num_threads = __kmp_teams_thread_limit;
|
|
} else {
|
|
num_threads = __kmp_avail_proc / num_teams;
|
|
}
|
|
// adjust num_threads w/o warning as it is not user setting
|
|
// num_threads = min(num_threads, nthreads-var, thread-limit-var)
|
|
// no thread_limit clause specified - do not change thread-limit-var ICV
|
|
if (num_threads > __kmp_dflt_team_nth) {
|
|
num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
|
|
}
|
|
if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) {
|
|
num_threads = thr->th.th_current_task->td_icvs.thread_limit;
|
|
} // prevent team size to exceed thread-limit-var
|
|
if (num_teams * num_threads > __kmp_teams_max_nth) {
|
|
num_threads = __kmp_teams_max_nth / num_teams;
|
|
}
|
|
if (num_threads == 0) {
|
|
num_threads = 1;
|
|
}
|
|
} else {
|
|
if (num_threads < 0) {
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(CantFormThrTeam, num_threads, 1),
|
|
__kmp_msg_null);
|
|
num_threads = 1;
|
|
}
|
|
// This thread will be the primary thread of the league primary threads
|
|
// Store new thread limit; old limit is saved in th_cg_roots list
|
|
thr->th.th_current_task->td_icvs.thread_limit = num_threads;
|
|
// num_threads = min(num_threads, nthreads-var)
|
|
if (num_threads > __kmp_dflt_team_nth) {
|
|
num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
|
|
}
|
|
if (num_teams * num_threads > __kmp_teams_max_nth) {
|
|
int new_threads = __kmp_teams_max_nth / num_teams;
|
|
if (new_threads == 0) {
|
|
new_threads = 1;
|
|
}
|
|
if (new_threads != num_threads) {
|
|
if (!__kmp_reserve_warn) { // user asked for too many threads
|
|
__kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, num_threads, new_threads),
|
|
KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
|
|
}
|
|
}
|
|
num_threads = new_threads;
|
|
}
|
|
}
|
|
thr->th.th_teams_size.nth = num_threads;
|
|
}
|
|
|
|
/* this sets the requested number of teams for the teams region and/or
|
|
the number of threads for the next parallel region encountered */
|
|
void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
|
|
int num_threads) {
|
|
kmp_info_t *thr = __kmp_threads[gtid];
|
|
if (num_teams < 0) {
|
|
// OpenMP specification requires requested values to be positive,
|
|
// but people can send us any value, so we'd better check
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(NumTeamsNotPositive, num_teams, 1),
|
|
__kmp_msg_null);
|
|
num_teams = 1;
|
|
}
|
|
if (num_teams == 0) {
|
|
if (__kmp_nteams > 0) {
|
|
num_teams = __kmp_nteams;
|
|
} else {
|
|
num_teams = 1; // default number of teams is 1.
|
|
}
|
|
}
|
|
if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
|
|
if (!__kmp_reserve_warn) {
|
|
__kmp_reserve_warn = 1;
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
|
|
KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
|
|
}
|
|
num_teams = __kmp_teams_max_nth;
|
|
}
|
|
// Set number of teams (number of threads in the outer "parallel" of the
|
|
// teams)
|
|
thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
|
|
|
|
__kmp_push_thread_limit(thr, num_teams, num_threads);
|
|
}
|
|
|
|
/* This sets the requested number of teams for the teams region and/or
|
|
the number of threads for the next parallel region encountered */
|
|
void __kmp_push_num_teams_51(ident_t *id, int gtid, int num_teams_lb,
|
|
int num_teams_ub, int num_threads) {
|
|
kmp_info_t *thr = __kmp_threads[gtid];
|
|
KMP_DEBUG_ASSERT(num_teams_lb >= 0 && num_teams_ub >= 0);
|
|
KMP_DEBUG_ASSERT(num_teams_ub >= num_teams_lb);
|
|
KMP_DEBUG_ASSERT(num_threads >= 0);
|
|
|
|
if (num_teams_lb > num_teams_ub) {
|
|
__kmp_fatal(KMP_MSG(FailedToCreateTeam, num_teams_lb, num_teams_ub),
|
|
KMP_HNT(SetNewBound, __kmp_teams_max_nth), __kmp_msg_null);
|
|
}
|
|
|
|
int num_teams = 1; // defalt number of teams is 1.
|
|
|
|
if (num_teams_lb == 0 && num_teams_ub > 0)
|
|
num_teams_lb = num_teams_ub;
|
|
|
|
if (num_teams_lb == 0 && num_teams_ub == 0) { // no num_teams clause
|
|
num_teams = (__kmp_nteams > 0) ? __kmp_nteams : num_teams;
|
|
if (num_teams > __kmp_teams_max_nth) {
|
|
if (!__kmp_reserve_warn) {
|
|
__kmp_reserve_warn = 1;
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
|
|
KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
|
|
}
|
|
num_teams = __kmp_teams_max_nth;
|
|
}
|
|
} else if (num_teams_lb == num_teams_ub) { // requires exact number of teams
|
|
num_teams = num_teams_ub;
|
|
} else { // num_teams_lb <= num_teams <= num_teams_ub
|
|
if (num_threads <= 0) {
|
|
if (num_teams_ub > __kmp_teams_max_nth) {
|
|
num_teams = num_teams_lb;
|
|
} else {
|
|
num_teams = num_teams_ub;
|
|
}
|
|
} else {
|
|
num_teams = (num_threads > __kmp_teams_max_nth)
|
|
? num_teams
|
|
: __kmp_teams_max_nth / num_threads;
|
|
if (num_teams < num_teams_lb) {
|
|
num_teams = num_teams_lb;
|
|
} else if (num_teams > num_teams_ub) {
|
|
num_teams = num_teams_ub;
|
|
}
|
|
}
|
|
}
|
|
// Set number of teams (number of threads in the outer "parallel" of the
|
|
// teams)
|
|
thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
|
|
|
|
__kmp_push_thread_limit(thr, num_teams, num_threads);
|
|
}
|
|
|
|
// Set the proc_bind var to use in the following parallel region.
|
|
void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
|
|
kmp_info_t *thr = __kmp_threads[gtid];
|
|
thr->th.th_set_proc_bind = proc_bind;
|
|
}
|
|
|
|
/* Launch the worker threads into the microtask. */
|
|
|
|
void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
|
|
kmp_info_t *this_thr = __kmp_threads[gtid];
|
|
|
|
#ifdef KMP_DEBUG
|
|
int f;
|
|
#endif /* KMP_DEBUG */
|
|
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
|
|
KMP_ASSERT(KMP_MASTER_GTID(gtid));
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
team->t.t_construct = 0; /* no single directives seen yet */
|
|
team->t.t_ordered.dt.t_value =
|
|
0; /* thread 0 enters the ordered section first */
|
|
|
|
/* Reset the identifiers on the dispatch buffer */
|
|
KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
|
|
if (team->t.t_max_nproc > 1) {
|
|
int i;
|
|
for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
|
|
team->t.t_disp_buffer[i].buffer_index = i;
|
|
team->t.t_disp_buffer[i].doacross_buf_idx = i;
|
|
}
|
|
} else {
|
|
team->t.t_disp_buffer[0].buffer_index = 0;
|
|
team->t.t_disp_buffer[0].doacross_buf_idx = 0;
|
|
}
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
KMP_ASSERT(this_thr->th.th_team == team);
|
|
|
|
#ifdef KMP_DEBUG
|
|
for (f = 0; f < team->t.t_nproc; f++) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
|
|
team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
|
|
}
|
|
#endif /* KMP_DEBUG */
|
|
|
|
/* release the worker threads so they may begin working */
|
|
__kmp_fork_barrier(gtid, 0);
|
|
}
|
|
|
|
void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
|
|
kmp_info_t *this_thr = __kmp_threads[gtid];
|
|
|
|
KMP_DEBUG_ASSERT(team);
|
|
KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
|
|
KMP_ASSERT(KMP_MASTER_GTID(gtid));
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* Join barrier after fork */
|
|
|
|
#ifdef KMP_DEBUG
|
|
if (__kmp_threads[gtid] &&
|
|
__kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
|
|
__kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
|
|
__kmp_threads[gtid]);
|
|
__kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
|
|
"team->t.t_nproc=%d\n",
|
|
gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
|
|
team->t.t_nproc);
|
|
__kmp_print_structure();
|
|
}
|
|
KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
|
|
__kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
|
|
#endif /* KMP_DEBUG */
|
|
|
|
__kmp_join_barrier(gtid); /* wait for everyone */
|
|
#if OMPT_SUPPORT
|
|
if (ompt_enabled.enabled &&
|
|
this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
|
|
int ds_tid = this_thr->th.th_info.ds.ds_tid;
|
|
ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
|
|
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
|
|
#if OMPT_OPTIONAL
|
|
void *codeptr = NULL;
|
|
if (KMP_MASTER_TID(ds_tid) &&
|
|
(ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
|
|
ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
|
|
codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;
|
|
|
|
if (ompt_enabled.ompt_callback_sync_region_wait) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
|
|
ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
|
|
codeptr);
|
|
}
|
|
if (ompt_enabled.ompt_callback_sync_region) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
|
|
ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
|
|
codeptr);
|
|
}
|
|
#endif
|
|
if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
|
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
|
ompt_scope_end, NULL, task_data, 0, ds_tid,
|
|
ompt_task_implicit); // TODO: Can this be ompt_task_initial?
|
|
}
|
|
}
|
|
#endif
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
KMP_ASSERT(this_thr->th.th_team == team);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
#ifdef USE_LOAD_BALANCE
|
|
|
|
// Return the worker threads actively spinning in the hot team, if we
|
|
// are at the outermost level of parallelism. Otherwise, return 0.
|
|
static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
|
|
int i;
|
|
int retval;
|
|
kmp_team_t *hot_team;
|
|
|
|
if (root->r.r_active) {
|
|
return 0;
|
|
}
|
|
hot_team = root->r.r_hot_team;
|
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
|
|
return hot_team->t.t_nproc - 1; // Don't count primary thread
|
|
}
|
|
|
|
// Skip the primary thread - it is accounted for elsewhere.
|
|
retval = 0;
|
|
for (i = 1; i < hot_team->t.t_nproc; i++) {
|
|
if (hot_team->t.t_threads[i]->th.th_active) {
|
|
retval++;
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Perform an automatic adjustment to the number of
|
|
// threads used by the next parallel region.
|
|
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
|
|
int retval;
|
|
int pool_active;
|
|
int hot_team_active;
|
|
int team_curr_active;
|
|
int system_active;
|
|
|
|
KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
|
|
set_nproc));
|
|
KMP_DEBUG_ASSERT(root);
|
|
KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
|
|
->th.th_current_task->td_icvs.dynamic == TRUE);
|
|
KMP_DEBUG_ASSERT(set_nproc > 1);
|
|
|
|
if (set_nproc == 1) {
|
|
KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
|
|
return 1;
|
|
}
|
|
|
|
// Threads that are active in the thread pool, active in the hot team for this
|
|
// particular root (if we are at the outer par level), and the currently
|
|
// executing thread (to become the primary thread) are available to add to the
|
|
// new team, but are currently contributing to the system load, and must be
|
|
// accounted for.
|
|
pool_active = __kmp_thread_pool_active_nth;
|
|
hot_team_active = __kmp_active_hot_team_nproc(root);
|
|
team_curr_active = pool_active + hot_team_active + 1;
|
|
|
|
// Check the system load.
|
|
system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
|
|
KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
|
|
"hot team active = %d\n",
|
|
system_active, pool_active, hot_team_active));
|
|
|
|
if (system_active < 0) {
|
|
// There was an error reading the necessary info from /proc, so use the
|
|
// thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
|
|
// = dynamic_thread_limit, we shouldn't wind up getting back here.
|
|
__kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
|
|
KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");
|
|
|
|
// Make this call behave like the thread limit algorithm.
|
|
retval = __kmp_avail_proc - __kmp_nth +
|
|
(root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
|
|
if (retval > set_nproc) {
|
|
retval = set_nproc;
|
|
}
|
|
if (retval < KMP_MIN_NTH) {
|
|
retval = KMP_MIN_NTH;
|
|
}
|
|
|
|
KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
|
|
retval));
|
|
return retval;
|
|
}
|
|
|
|
// There is a slight delay in the load balance algorithm in detecting new
|
|
// running procs. The real system load at this instant should be at least as
|
|
// large as the #active omp thread that are available to add to the team.
|
|
if (system_active < team_curr_active) {
|
|
system_active = team_curr_active;
|
|
}
|
|
retval = __kmp_avail_proc - system_active + team_curr_active;
|
|
if (retval > set_nproc) {
|
|
retval = set_nproc;
|
|
}
|
|
if (retval < KMP_MIN_NTH) {
|
|
retval = KMP_MIN_NTH;
|
|
}
|
|
|
|
KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
|
|
return retval;
|
|
} // __kmp_load_balance_nproc()
|
|
|
|
#endif /* USE_LOAD_BALANCE */
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
/* NOTE: this is called with the __kmp_init_lock held */
|
|
void __kmp_cleanup(void) {
|
|
int f;
|
|
|
|
KA_TRACE(10, ("__kmp_cleanup: enter\n"));
|
|
|
|
if (TCR_4(__kmp_init_parallel)) {
|
|
#if KMP_HANDLE_SIGNALS
|
|
__kmp_remove_signals();
|
|
#endif
|
|
TCW_4(__kmp_init_parallel, FALSE);
|
|
}
|
|
|
|
if (TCR_4(__kmp_init_middle)) {
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_affinity_uninitialize();
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
__kmp_cleanup_hierarchy();
|
|
TCW_4(__kmp_init_middle, FALSE);
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));
|
|
|
|
if (__kmp_init_serial) {
|
|
__kmp_runtime_destroy();
|
|
__kmp_init_serial = FALSE;
|
|
}
|
|
|
|
__kmp_cleanup_threadprivate_caches();
|
|
|
|
for (f = 0; f < __kmp_threads_capacity; f++) {
|
|
if (__kmp_root[f] != NULL) {
|
|
__kmp_free(__kmp_root[f]);
|
|
__kmp_root[f] = NULL;
|
|
}
|
|
}
|
|
__kmp_free(__kmp_threads);
|
|
// __kmp_threads and __kmp_root were allocated at once, as single block, so
|
|
// there is no need in freeing __kmp_root.
|
|
__kmp_threads = NULL;
|
|
__kmp_root = NULL;
|
|
__kmp_threads_capacity = 0;
|
|
|
|
// Free old __kmp_threads arrays if they exist.
|
|
kmp_old_threads_list_t *ptr = __kmp_old_threads_list;
|
|
while (ptr) {
|
|
kmp_old_threads_list_t *next = ptr->next;
|
|
__kmp_free(ptr->threads);
|
|
__kmp_free(ptr);
|
|
ptr = next;
|
|
}
|
|
|
|
#if KMP_USE_DYNAMIC_LOCK
|
|
__kmp_cleanup_indirect_user_locks();
|
|
#else
|
|
__kmp_cleanup_user_locks();
|
|
#endif
|
|
#if OMPD_SUPPORT
|
|
if (ompd_state) {
|
|
__kmp_free(ompd_env_block);
|
|
ompd_env_block = NULL;
|
|
ompd_env_block_size = 0;
|
|
}
|
|
#endif
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
|
|
__kmp_cpuinfo_file = NULL;
|
|
#endif /* KMP_AFFINITY_SUPPORTED */
|
|
|
|
#if KMP_USE_ADAPTIVE_LOCKS
|
|
#if KMP_DEBUG_ADAPTIVE_LOCKS
|
|
__kmp_print_speculative_stats();
|
|
#endif
|
|
#endif
|
|
KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
|
|
__kmp_nested_nth.nth = NULL;
|
|
__kmp_nested_nth.size = 0;
|
|
__kmp_nested_nth.used = 0;
|
|
KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
|
|
__kmp_nested_proc_bind.bind_types = NULL;
|
|
__kmp_nested_proc_bind.size = 0;
|
|
__kmp_nested_proc_bind.used = 0;
|
|
if (__kmp_affinity_format) {
|
|
KMP_INTERNAL_FREE(__kmp_affinity_format);
|
|
__kmp_affinity_format = NULL;
|
|
}
|
|
|
|
__kmp_i18n_catclose();
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
__kmp_hier_scheds.deallocate();
|
|
#endif
|
|
|
|
#if KMP_STATS_ENABLED
|
|
__kmp_stats_fini();
|
|
#endif
|
|
|
|
KA_TRACE(10, ("__kmp_cleanup: exit\n"));
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
int __kmp_ignore_mppbeg(void) {
|
|
char *env;
|
|
|
|
if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
|
|
if (__kmp_str_match_false(env))
|
|
return FALSE;
|
|
}
|
|
// By default __kmpc_begin() is no-op.
|
|
return TRUE;
|
|
}
|
|
|
|
int __kmp_ignore_mppend(void) {
|
|
char *env;
|
|
|
|
if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
|
|
if (__kmp_str_match_false(env))
|
|
return FALSE;
|
|
}
|
|
// By default __kmpc_end() is no-op.
|
|
return TRUE;
|
|
}
|
|
|
|
void __kmp_internal_begin(void) {
|
|
int gtid;
|
|
kmp_root_t *root;
|
|
|
|
/* this is a very important step as it will register new sibling threads
|
|
and assign these new uber threads a new gtid */
|
|
gtid = __kmp_entry_gtid();
|
|
root = __kmp_threads[gtid]->th.th_root;
|
|
KMP_ASSERT(KMP_UBER_GTID(gtid));
|
|
|
|
if (root->r.r_begin)
|
|
return;
|
|
__kmp_acquire_lock(&root->r.r_begin_lock, gtid);
|
|
if (root->r.r_begin) {
|
|
__kmp_release_lock(&root->r.r_begin_lock, gtid);
|
|
return;
|
|
}
|
|
|
|
root->r.r_begin = TRUE;
|
|
|
|
__kmp_release_lock(&root->r.r_begin_lock, gtid);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
void __kmp_user_set_library(enum library_type arg) {
|
|
int gtid;
|
|
kmp_root_t *root;
|
|
kmp_info_t *thread;
|
|
|
|
/* first, make sure we are initialized so we can get our gtid */
|
|
|
|
gtid = __kmp_entry_gtid();
|
|
thread = __kmp_threads[gtid];
|
|
|
|
root = thread->th.th_root;
|
|
|
|
KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
|
|
library_serial));
|
|
if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
|
|
thread */
|
|
KMP_WARNING(SetLibraryIncorrectCall);
|
|
return;
|
|
}
|
|
|
|
switch (arg) {
|
|
case library_serial:
|
|
thread->th.th_set_nproc = 0;
|
|
set__nproc(thread, 1);
|
|
break;
|
|
case library_turnaround:
|
|
thread->th.th_set_nproc = 0;
|
|
set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
|
|
: __kmp_dflt_team_nth_ub);
|
|
break;
|
|
case library_throughput:
|
|
thread->th.th_set_nproc = 0;
|
|
set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
|
|
: __kmp_dflt_team_nth_ub);
|
|
break;
|
|
default:
|
|
KMP_FATAL(UnknownLibraryType, arg);
|
|
}
|
|
|
|
__kmp_aux_set_library(arg);
|
|
}
|
|
|
|
void __kmp_aux_set_stacksize(size_t arg) {
|
|
if (!__kmp_init_serial)
|
|
__kmp_serial_initialize();
|
|
|
|
#if KMP_OS_DARWIN
|
|
if (arg & (0x1000 - 1)) {
|
|
arg &= ~(0x1000 - 1);
|
|
if (arg + 0x1000) /* check for overflow if we round up */
|
|
arg += 0x1000;
|
|
}
|
|
#endif
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
|
|
/* only change the default stacksize before the first parallel region */
|
|
if (!TCR_4(__kmp_init_parallel)) {
|
|
size_t value = arg; /* argument is in bytes */
|
|
|
|
if (value < __kmp_sys_min_stksize)
|
|
value = __kmp_sys_min_stksize;
|
|
else if (value > KMP_MAX_STKSIZE)
|
|
value = KMP_MAX_STKSIZE;
|
|
|
|
__kmp_stksize = value;
|
|
|
|
__kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
|
|
}
|
|
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
/* set the behaviour of the runtime library */
|
|
/* TODO this can cause some odd behaviour with sibling parallelism... */
|
|
void __kmp_aux_set_library(enum library_type arg) {
|
|
__kmp_library = arg;
|
|
|
|
switch (__kmp_library) {
|
|
case library_serial: {
|
|
KMP_INFORM(LibraryIsSerial);
|
|
} break;
|
|
case library_turnaround:
|
|
if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
|
|
__kmp_use_yield = 2; // only yield when oversubscribed
|
|
break;
|
|
case library_throughput:
|
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
|
|
__kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
|
|
break;
|
|
default:
|
|
KMP_FATAL(UnknownLibraryType, arg);
|
|
}
|
|
}
|
|
|
|
/* Getting team information common for all team API */
|
|
// Returns NULL if not in teams construct
|
|
static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
|
|
kmp_info_t *thr = __kmp_entry_thread();
|
|
teams_serialized = 0;
|
|
if (thr->th.th_teams_microtask) {
|
|
kmp_team_t *team = thr->th.th_team;
|
|
int tlevel = thr->th.th_teams_level; // the level of the teams construct
|
|
int ii = team->t.t_level;
|
|
teams_serialized = team->t.t_serialized;
|
|
int level = tlevel + 1;
|
|
KMP_DEBUG_ASSERT(ii >= tlevel);
|
|
while (ii > level) {
|
|
for (teams_serialized = team->t.t_serialized;
|
|
(teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
|
|
}
|
|
if (team->t.t_serialized && (!teams_serialized)) {
|
|
team = team->t.t_parent;
|
|
continue;
|
|
}
|
|
if (ii > level) {
|
|
team = team->t.t_parent;
|
|
ii--;
|
|
}
|
|
}
|
|
return team;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int __kmp_aux_get_team_num() {
|
|
int serialized;
|
|
kmp_team_t *team = __kmp_aux_get_team_info(serialized);
|
|
if (team) {
|
|
if (serialized > 1) {
|
|
return 0; // teams region is serialized ( 1 team of 1 thread ).
|
|
} else {
|
|
return team->t.t_master_tid;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kmp_aux_get_num_teams() {
|
|
int serialized;
|
|
kmp_team_t *team = __kmp_aux_get_team_info(serialized);
|
|
if (team) {
|
|
if (serialized > 1) {
|
|
return 1;
|
|
} else {
|
|
return team->t.t_parent->t.t_nproc;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
/*
|
|
* Affinity Format Parser
|
|
*
|
|
* Field is in form of: %[[[0].]size]type
|
|
* % and type are required (%% means print a literal '%')
|
|
* type is either single char or long name surrounded by {},
|
|
* e.g., N or {num_threads}
|
|
* 0 => leading zeros
|
|
* . => right justified when size is specified
|
|
* by default output is left justified
|
|
* size is the *minimum* field length
|
|
* All other characters are printed as is
|
|
*
|
|
* Available field types:
|
|
* L {thread_level} - omp_get_level()
|
|
* n {thread_num} - omp_get_thread_num()
|
|
* h {host} - name of host machine
|
|
* P {process_id} - process id (integer)
|
|
* T {thread_identifier} - native thread identifier (integer)
|
|
* N {num_threads} - omp_get_num_threads()
|
|
* A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1)
|
|
* a {thread_affinity} - comma separated list of integers or integer ranges
|
|
* (values of affinity mask)
|
|
*
|
|
* Implementation-specific field types can be added
|
|
* If a type is unknown, print "undefined"
|
|
*/
|
|
|
|
// Structure holding the short name, long name, and corresponding data type
|
|
// for snprintf. A table of these will represent the entire valid keyword
|
|
// field types.
|
|
typedef struct kmp_affinity_format_field_t {
|
|
char short_name; // from spec e.g., L -> thread level
|
|
const char *long_name; // from spec thread_level -> thread level
|
|
char field_format; // data type for snprintf (typically 'd' or 's'
|
|
// for integer or string)
|
|
} kmp_affinity_format_field_t;
|
|
|
|
static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
{'A', "thread_affinity", 's'},
|
|
#endif
|
|
{'t', "team_num", 'd'},
|
|
{'T', "num_teams", 'd'},
|
|
{'L', "nesting_level", 'd'},
|
|
{'n', "thread_num", 'd'},
|
|
{'N', "num_threads", 'd'},
|
|
{'a', "ancestor_tnum", 'd'},
|
|
{'H', "host", 's'},
|
|
{'P', "process_id", 'd'},
|
|
{'i', "native_thread_id", 'd'}};
|
|
|
|
// Return the number of characters it takes to hold field
|
|
static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
|
|
const char **ptr,
|
|
kmp_str_buf_t *field_buffer) {
|
|
int rc, format_index, field_value;
|
|
const char *width_left, *width_right;
|
|
bool pad_zeros, right_justify, parse_long_name, found_valid_name;
|
|
static const int FORMAT_SIZE = 20;
|
|
char format[FORMAT_SIZE] = {0};
|
|
char absolute_short_name = 0;
|
|
|
|
KMP_DEBUG_ASSERT(gtid >= 0);
|
|
KMP_DEBUG_ASSERT(th);
|
|
KMP_DEBUG_ASSERT(**ptr == '%');
|
|
KMP_DEBUG_ASSERT(field_buffer);
|
|
|
|
__kmp_str_buf_clear(field_buffer);
|
|
|
|
// Skip the initial %
|
|
(*ptr)++;
|
|
|
|
// Check for %% first
|
|
if (**ptr == '%') {
|
|
__kmp_str_buf_cat(field_buffer, "%", 1);
|
|
(*ptr)++; // skip over the second %
|
|
return 1;
|
|
}
|
|
|
|
// Parse field modifiers if they are present
|
|
pad_zeros = false;
|
|
if (**ptr == '0') {
|
|
pad_zeros = true;
|
|
(*ptr)++; // skip over 0
|
|
}
|
|
right_justify = false;
|
|
if (**ptr == '.') {
|
|
right_justify = true;
|
|
(*ptr)++; // skip over .
|
|
}
|
|
// Parse width of field: [width_left, width_right)
|
|
width_left = width_right = NULL;
|
|
if (**ptr >= '0' && **ptr <= '9') {
|
|
width_left = *ptr;
|
|
SKIP_DIGITS(*ptr);
|
|
width_right = *ptr;
|
|
}
|
|
|
|
// Create the format for KMP_SNPRINTF based on flags parsed above
|
|
format_index = 0;
|
|
format[format_index++] = '%';
|
|
if (!right_justify)
|
|
format[format_index++] = '-';
|
|
if (pad_zeros)
|
|
format[format_index++] = '0';
|
|
if (width_left && width_right) {
|
|
int i = 0;
|
|
// Only allow 8 digit number widths.
|
|
// This also prevents overflowing format variable
|
|
while (i < 8 && width_left < width_right) {
|
|
format[format_index++] = *width_left;
|
|
width_left++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// Parse a name (long or short)
|
|
// Canonicalize the name into absolute_short_name
|
|
found_valid_name = false;
|
|
parse_long_name = (**ptr == '{');
|
|
if (parse_long_name)
|
|
(*ptr)++; // skip initial left brace
|
|
for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
|
|
sizeof(__kmp_affinity_format_table[0]);
|
|
++i) {
|
|
char short_name = __kmp_affinity_format_table[i].short_name;
|
|
const char *long_name = __kmp_affinity_format_table[i].long_name;
|
|
char field_format = __kmp_affinity_format_table[i].field_format;
|
|
if (parse_long_name) {
|
|
size_t length = KMP_STRLEN(long_name);
|
|
if (strncmp(*ptr, long_name, length) == 0) {
|
|
found_valid_name = true;
|
|
(*ptr) += length; // skip the long name
|
|
}
|
|
} else if (**ptr == short_name) {
|
|
found_valid_name = true;
|
|
(*ptr)++; // skip the short name
|
|
}
|
|
if (found_valid_name) {
|
|
format[format_index++] = field_format;
|
|
format[format_index++] = '\0';
|
|
absolute_short_name = short_name;
|
|
break;
|
|
}
|
|
}
|
|
if (parse_long_name) {
|
|
if (**ptr != '}') {
|
|
absolute_short_name = 0;
|
|
} else {
|
|
(*ptr)++; // skip over the right brace
|
|
}
|
|
}
|
|
|
|
// Attempt to fill the buffer with the requested
|
|
// value using snprintf within __kmp_str_buf_print()
|
|
switch (absolute_short_name) {
|
|
case 't':
|
|
rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
|
|
break;
|
|
case 'T':
|
|
rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
|
|
break;
|
|
case 'L':
|
|
rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
|
|
break;
|
|
case 'n':
|
|
rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
|
|
break;
|
|
case 'H': {
|
|
static const int BUFFER_SIZE = 256;
|
|
char buf[BUFFER_SIZE];
|
|
__kmp_expand_host_name(buf, BUFFER_SIZE);
|
|
rc = __kmp_str_buf_print(field_buffer, format, buf);
|
|
} break;
|
|
case 'P':
|
|
rc = __kmp_str_buf_print(field_buffer, format, getpid());
|
|
break;
|
|
case 'i':
|
|
rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
|
|
break;
|
|
case 'N':
|
|
rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
|
|
break;
|
|
case 'a':
|
|
field_value =
|
|
__kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
|
|
rc = __kmp_str_buf_print(field_buffer, format, field_value);
|
|
break;
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
case 'A': {
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
|
|
rc = __kmp_str_buf_print(field_buffer, format, buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
} break;
|
|
#endif
|
|
default:
|
|
// According to spec, If an implementation does not have info for field
|
|
// type, then "undefined" is printed
|
|
rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
|
|
// Skip the field
|
|
if (parse_long_name) {
|
|
SKIP_TOKEN(*ptr);
|
|
if (**ptr == '}')
|
|
(*ptr)++;
|
|
} else {
|
|
(*ptr)++;
|
|
}
|
|
}
|
|
|
|
KMP_ASSERT(format_index <= FORMAT_SIZE);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Return number of characters needed to hold the affinity string
|
|
* (not including null byte character)
|
|
* The resultant string is printed to buffer, which the caller can then
|
|
* handle afterwards
|
|
*/
|
|
size_t __kmp_aux_capture_affinity(int gtid, const char *format,
|
|
kmp_str_buf_t *buffer) {
|
|
const char *parse_ptr;
|
|
size_t retval;
|
|
const kmp_info_t *th;
|
|
kmp_str_buf_t field;
|
|
|
|
KMP_DEBUG_ASSERT(buffer);
|
|
KMP_DEBUG_ASSERT(gtid >= 0);
|
|
|
|
__kmp_str_buf_init(&field);
|
|
__kmp_str_buf_clear(buffer);
|
|
|
|
th = __kmp_threads[gtid];
|
|
retval = 0;
|
|
|
|
// If format is NULL or zero-length string, then we use
|
|
// affinity-format-var ICV
|
|
parse_ptr = format;
|
|
if (parse_ptr == NULL || *parse_ptr == '\0') {
|
|
parse_ptr = __kmp_affinity_format;
|
|
}
|
|
KMP_DEBUG_ASSERT(parse_ptr);
|
|
|
|
while (*parse_ptr != '\0') {
|
|
// Parse a field
|
|
if (*parse_ptr == '%') {
|
|
// Put field in the buffer
|
|
int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
|
|
__kmp_str_buf_catbuf(buffer, &field);
|
|
retval += rc;
|
|
} else {
|
|
// Put literal character in buffer
|
|
__kmp_str_buf_cat(buffer, parse_ptr, 1);
|
|
retval++;
|
|
parse_ptr++;
|
|
}
|
|
}
|
|
__kmp_str_buf_free(&field);
|
|
return retval;
|
|
}
|
|
|
|
// Displays the affinity string to stdout
|
|
void __kmp_aux_display_affinity(int gtid, const char *format) {
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_aux_capture_affinity(gtid, format, &buf);
|
|
__kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
|
|
int blocktime = arg; /* argument is in microseconds */
|
|
#if KMP_USE_MONITOR
|
|
int bt_intervals;
|
|
#endif
|
|
kmp_int8 bt_set;
|
|
|
|
__kmp_save_internal_controls(thread);
|
|
|
|
/* Normalize and set blocktime for the teams */
|
|
if (blocktime < KMP_MIN_BLOCKTIME)
|
|
blocktime = KMP_MIN_BLOCKTIME;
|
|
else if (blocktime > KMP_MAX_BLOCKTIME)
|
|
blocktime = KMP_MAX_BLOCKTIME;
|
|
|
|
set__blocktime_team(thread->th.th_team, tid, blocktime);
|
|
set__blocktime_team(thread->th.th_serial_team, 0, blocktime);
|
|
|
|
#if KMP_USE_MONITOR
|
|
/* Calculate and set blocktime intervals for the teams */
|
|
bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);
|
|
|
|
set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
|
|
set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
|
|
#endif
|
|
|
|
/* Set whether blocktime has been set to "TRUE" */
|
|
bt_set = TRUE;
|
|
|
|
set__bt_set_team(thread->th.th_team, tid, bt_set);
|
|
set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
|
|
#if KMP_USE_MONITOR
|
|
KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
|
|
"bt_intervals=%d, monitor_updates=%d\n",
|
|
__kmp_gtid_from_tid(tid, thread->th.th_team),
|
|
thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
|
|
__kmp_monitor_wakeups));
|
|
#else
|
|
KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
|
|
__kmp_gtid_from_tid(tid, thread->th.th_team),
|
|
thread->th.th_team->t.t_id, tid, blocktime));
|
|
#endif
|
|
}
|
|
|
|
void __kmp_aux_set_defaults(char const *str, size_t len) {
|
|
if (!__kmp_init_serial) {
|
|
__kmp_serial_initialize();
|
|
}
|
|
__kmp_env_initialize(str);
|
|
|
|
if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) {
|
|
__kmp_env_print();
|
|
}
|
|
} // __kmp_aux_set_defaults
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
/* internal fast reduction routines */
|
|
|
|
PACKED_REDUCTION_METHOD_T
|
|
__kmp_determine_reduction_method(
|
|
ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
|
|
void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
|
|
kmp_critical_name *lck) {
|
|
|
|
// Default reduction method: critical construct ( lck != NULL, like in current
|
|
// PAROPT )
|
|
// If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
|
|
// can be selected by RTL
|
|
// If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
|
|
// can be selected by RTL
|
|
// Finally, it's up to OpenMP RTL to make a decision on which method to select
|
|
// among generated by PAROPT.
|
|
|
|
PACKED_REDUCTION_METHOD_T retval;
|
|
|
|
int team_size;
|
|
|
|
KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )
|
|
|
|
#define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \
|
|
(loc && \
|
|
((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)))
|
|
#define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))
|
|
|
|
retval = critical_reduce_block;
|
|
|
|
// another choice of getting a team size (with 1 dynamic deference) is slower
|
|
team_size = __kmp_get_team_num_threads(global_tid);
|
|
if (team_size == 1) {
|
|
|
|
retval = empty_reduce_block;
|
|
|
|
} else {
|
|
|
|
int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
|
|
|
|
#if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \
|
|
KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
|
|
KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_WASM
|
|
|
|
#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD || \
|
|
KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
|
|
|
|
int teamsize_cutoff = 4;
|
|
|
|
#if KMP_MIC_SUPPORTED
|
|
if (__kmp_mic_type != non_mic) {
|
|
teamsize_cutoff = 8;
|
|
}
|
|
#endif
|
|
int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
|
|
if (tree_available) {
|
|
if (team_size <= teamsize_cutoff) {
|
|
if (atomic_available) {
|
|
retval = atomic_reduce_block;
|
|
}
|
|
} else {
|
|
retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
|
|
}
|
|
} else if (atomic_available) {
|
|
retval = atomic_reduce_block;
|
|
}
|
|
#else
|
|
#error "Unknown or unsupported OS"
|
|
#endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
|
|
// KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD ||
|
|
// KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
|
|
|
|
#elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS || \
|
|
KMP_ARCH_WASM || KMP_ARCH_PPC
|
|
|
|
#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_HURD || KMP_OS_SOLARIS || \
|
|
KMP_OS_WASI || KMP_OS_AIX
|
|
|
|
// basic tuning
|
|
|
|
if (atomic_available) {
|
|
if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
|
|
retval = atomic_reduce_block;
|
|
}
|
|
} // otherwise: use critical section
|
|
|
|
#elif KMP_OS_DARWIN
|
|
|
|
int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
|
|
if (atomic_available && (num_vars <= 3)) {
|
|
retval = atomic_reduce_block;
|
|
} else if (tree_available) {
|
|
if ((reduce_size > (9 * sizeof(kmp_real64))) &&
|
|
(reduce_size < (2000 * sizeof(kmp_real64)))) {
|
|
retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
|
|
}
|
|
} // otherwise: use critical section
|
|
|
|
#else
|
|
#error "Unknown or unsupported OS"
|
|
#endif
|
|
|
|
#else
|
|
#error "Unknown or unsupported architecture"
|
|
#endif
|
|
}
|
|
|
|
// KMP_FORCE_REDUCTION
|
|
|
|
// If the team is serialized (team_size == 1), ignore the forced reduction
|
|
// method and stay with the unsynchronized method (empty_reduce_block)
|
|
if (__kmp_force_reduction_method != reduction_method_not_defined &&
|
|
team_size != 1) {
|
|
|
|
PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;
|
|
|
|
int atomic_available, tree_available;
|
|
|
|
switch ((forced_retval = __kmp_force_reduction_method)) {
|
|
case critical_reduce_block:
|
|
KMP_ASSERT(lck); // lck should be != 0
|
|
break;
|
|
|
|
case atomic_reduce_block:
|
|
atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
|
|
if (!atomic_available) {
|
|
KMP_WARNING(RedMethodNotSupported, "atomic");
|
|
forced_retval = critical_reduce_block;
|
|
}
|
|
break;
|
|
|
|
case tree_reduce_block:
|
|
tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
|
|
if (!tree_available) {
|
|
KMP_WARNING(RedMethodNotSupported, "tree");
|
|
forced_retval = critical_reduce_block;
|
|
} else {
|
|
#if KMP_FAST_REDUCTION_BARRIER
|
|
forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
default:
|
|
KMP_ASSERT(0); // "unsupported method specified"
|
|
}
|
|
|
|
retval = forced_retval;
|
|
}
|
|
|
|
KA_TRACE(10, ("reduction method selected=%08x\n", retval));
|
|
|
|
#undef FAST_REDUCTION_TREE_METHOD_GENERATED
|
|
#undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED
|
|
|
|
return (retval);
|
|
}
|
|
// this function is for testing set/get/determine reduce method
|
|
kmp_int32 __kmp_get_reduce_method(void) {
|
|
return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
|
|
}
|
|
|
|
// Soft pause sets up threads to ignore blocktime and just go to sleep.
|
|
// Spin-wait code checks __kmp_pause_status and reacts accordingly.
|
|
void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }
|
|
|
|
// Hard pause shuts down the runtime completely. Resume happens naturally when
|
|
// OpenMP is used subsequently.
|
|
void __kmp_hard_pause() {
|
|
__kmp_pause_status = kmp_hard_paused;
|
|
__kmp_internal_end_thread(-1);
|
|
}
|
|
|
|
// Soft resume sets __kmp_pause_status, and wakes up all threads.
|
|
void __kmp_resume_if_soft_paused() {
|
|
if (__kmp_pause_status == kmp_soft_paused) {
|
|
__kmp_pause_status = kmp_not_paused;
|
|
|
|
for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
|
|
kmp_info_t *thread = __kmp_threads[gtid];
|
|
if (thread) { // Wake it if sleeping
|
|
kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
|
|
thread);
|
|
if (fl.is_sleeping())
|
|
fl.resume(gtid);
|
|
else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
|
|
__kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
|
|
} else { // thread holds the lock and may sleep soon
|
|
do { // until either the thread sleeps, or we can get the lock
|
|
if (fl.is_sleeping()) {
|
|
fl.resume(gtid);
|
|
break;
|
|
} else if (__kmp_try_suspend_mx(thread)) {
|
|
__kmp_unlock_suspend_mx(thread);
|
|
break;
|
|
}
|
|
} while (1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is called via __kmpc_pause_resource. Returns 0 if successful.
|
|
// TODO: add warning messages
|
|
int __kmp_pause_resource(kmp_pause_status_t level) {
|
|
if (level == kmp_not_paused) { // requesting resume
|
|
if (__kmp_pause_status == kmp_not_paused) {
|
|
// error message about runtime not being paused, so can't resume
|
|
return 1;
|
|
} else {
|
|
KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
|
|
__kmp_pause_status == kmp_hard_paused);
|
|
__kmp_pause_status = kmp_not_paused;
|
|
return 0;
|
|
}
|
|
} else if (level == kmp_soft_paused) { // requesting soft pause
|
|
if (__kmp_pause_status != kmp_not_paused) {
|
|
// error message about already being paused
|
|
return 1;
|
|
} else {
|
|
__kmp_soft_pause();
|
|
return 0;
|
|
}
|
|
} else if (level == kmp_hard_paused) { // requesting hard pause
|
|
if (__kmp_pause_status != kmp_not_paused) {
|
|
// error message about already being paused
|
|
return 1;
|
|
} else {
|
|
__kmp_hard_pause();
|
|
return 0;
|
|
}
|
|
} else {
|
|
// error message about invalid level
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void __kmp_omp_display_env(int verbose) {
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
if (__kmp_init_serial == 0)
|
|
__kmp_do_serial_initialize();
|
|
__kmp_display_env_impl(!verbose, verbose);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
// The team size is changing, so distributed barrier must be modified
|
|
void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
|
|
int new_nthreads) {
|
|
KMP_DEBUG_ASSERT(__kmp_barrier_release_pattern[bs_forkjoin_barrier] ==
|
|
bp_dist_bar);
|
|
kmp_info_t **other_threads = team->t.t_threads;
|
|
|
|
// We want all the workers to stop waiting on the barrier while we adjust the
|
|
// size of the team.
|
|
for (int f = 1; f < old_nthreads; ++f) {
|
|
KMP_DEBUG_ASSERT(other_threads[f] != NULL);
|
|
// Ignore threads that are already inactive or not present in the team
|
|
if (team->t.t_threads[f]->th.th_used_in_team.load() == 0) {
|
|
// teams construct causes thread_limit to get passed in, and some of
|
|
// those could be inactive; just ignore them
|
|
continue;
|
|
}
|
|
// If thread is transitioning still to in_use state, wait for it
|
|
if (team->t.t_threads[f]->th.th_used_in_team.load() == 3) {
|
|
while (team->t.t_threads[f]->th.th_used_in_team.load() == 3)
|
|
KMP_CPU_PAUSE();
|
|
}
|
|
// The thread should be in_use now
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 1);
|
|
// Transition to unused state
|
|
team->t.t_threads[f]->th.th_used_in_team.store(2);
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 2);
|
|
}
|
|
// Release all the workers
|
|
team->t.b->go_release();
|
|
|
|
KMP_MFENCE();
|
|
|
|
// Workers should see transition status 2 and move to 0; but may need to be
|
|
// woken up first
|
|
int count = old_nthreads - 1;
|
|
while (count > 0) {
|
|
count = old_nthreads - 1;
|
|
for (int f = 1; f < old_nthreads; ++f) {
|
|
if (other_threads[f]->th.th_used_in_team.load() != 0) {
|
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up the workers
|
|
kmp_atomic_flag_64<> *flag = (kmp_atomic_flag_64<> *)CCAST(
|
|
void *, other_threads[f]->th.th_sleep_loc);
|
|
__kmp_atomic_resume_64(other_threads[f]->th.th_info.ds.ds_gtid, flag);
|
|
}
|
|
} else {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 0);
|
|
count--;
|
|
}
|
|
}
|
|
}
|
|
// Now update the barrier size
|
|
team->t.b->update_num_threads(new_nthreads);
|
|
team->t.b->go_reset();
|
|
}
|
|
|
|
void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads) {
|
|
// Add the threads back to the team
|
|
KMP_DEBUG_ASSERT(team);
|
|
// Threads were paused and pointed at th_used_in_team temporarily during a
|
|
// resize of the team. We're going to set th_used_in_team to 3 to indicate to
|
|
// the thread that it should transition itself back into the team. Then, if
|
|
// blocktime isn't infinite, the thread could be sleeping, so we send a resume
|
|
// to wake it up.
|
|
for (int f = 1; f < new_nthreads; ++f) {
|
|
KMP_DEBUG_ASSERT(team->t.t_threads[f]);
|
|
KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team), 0,
|
|
3);
|
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up sleeping threads
|
|
__kmp_resume_32(team->t.t_threads[f]->th.th_info.ds.ds_gtid,
|
|
(kmp_flag_32<false, false> *)NULL);
|
|
}
|
|
}
|
|
// The threads should be transitioning to the team; when they are done, they
|
|
// should have set th_used_in_team to 1. This loop forces master to wait until
|
|
// all threads have moved into the team and are waiting in the barrier.
|
|
int count = new_nthreads - 1;
|
|
while (count > 0) {
|
|
count = new_nthreads - 1;
|
|
for (int f = 1; f < new_nthreads; ++f) {
|
|
if (team->t.t_threads[f]->th.th_used_in_team.load() == 1) {
|
|
count--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Globals and functions for hidden helper task
|
|
kmp_info_t **__kmp_hidden_helper_threads;
|
|
kmp_info_t *__kmp_hidden_helper_main_thread;
|
|
std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
|
|
#if KMP_OS_LINUX
|
|
kmp_int32 __kmp_hidden_helper_threads_num = 8;
|
|
kmp_int32 __kmp_enable_hidden_helper = IsLinux();
|
|
#else
|
|
kmp_int32 __kmp_hidden_helper_threads_num = 0;
|
|
kmp_int32 __kmp_enable_hidden_helper = FALSE;
|
|
#endif
|
|
|
|
namespace {
|
|
std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num;
|
|
|
|
void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) {
|
|
// This is an explicit synchronization on all hidden helper threads in case
|
|
// that when a regular thread pushes a hidden helper task to one hidden
|
|
// helper thread, the thread has not been awaken once since they're released
|
|
// by the main thread after creating the team.
|
|
KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num);
|
|
while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) !=
|
|
__kmp_hidden_helper_threads_num)
|
|
;
|
|
|
|
// If main thread, then wait for signal
|
|
if (__kmpc_master(nullptr, *gtid)) {
|
|
// First, unset the initial state and release the initial thread
|
|
TCW_4(__kmp_init_hidden_helper_threads, FALSE);
|
|
__kmp_hidden_helper_initz_release();
|
|
__kmp_hidden_helper_main_thread_wait();
|
|
// Now wake up all worker threads
|
|
for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) {
|
|
__kmp_hidden_helper_worker_thread_signal();
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void __kmp_hidden_helper_threads_initz_routine() {
|
|
// Create a new root for hidden helper team/threads
|
|
const int gtid = __kmp_register_root(TRUE);
|
|
__kmp_hidden_helper_main_thread = __kmp_threads[gtid];
|
|
__kmp_hidden_helper_threads = &__kmp_threads[gtid];
|
|
__kmp_hidden_helper_main_thread->th.th_set_nproc =
|
|
__kmp_hidden_helper_threads_num;
|
|
|
|
KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0);
|
|
|
|
__kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn);
|
|
|
|
// Set the initialization flag to FALSE
|
|
TCW_SYNC_4(__kmp_init_hidden_helper, FALSE);
|
|
|
|
__kmp_hidden_helper_threads_deinitz_release();
|
|
}
|
|
|
|
/* Nesting Mode:
|
|
Set via KMP_NESTING_MODE, which takes an integer.
|
|
Note: we skip duplicate topology levels, and skip levels with only
|
|
one entity.
|
|
KMP_NESTING_MODE=0 is the default, and doesn't use nesting mode.
|
|
KMP_NESTING_MODE=1 sets as many nesting levels as there are distinct levels
|
|
in the topology, and initializes the number of threads at each of those
|
|
levels to the number of entities at each level, respectively, below the
|
|
entity at the parent level.
|
|
KMP_NESTING_MODE=N, where N>1, attempts to create up to N nesting levels,
|
|
but starts with nesting OFF -- max-active-levels-var is 1 -- and requires
|
|
the user to turn nesting on explicitly. This is an even more experimental
|
|
option to this experimental feature, and may change or go away in the
|
|
future.
|
|
*/
|
|
|
|
// Allocate space to store nesting levels
|
|
void __kmp_init_nesting_mode() {
|
|
int levels = KMP_HW_LAST;
|
|
__kmp_nesting_mode_nlevels = levels;
|
|
__kmp_nesting_nth_level = (int *)KMP_INTERNAL_MALLOC(levels * sizeof(int));
|
|
for (int i = 0; i < levels; ++i)
|
|
__kmp_nesting_nth_level[i] = 0;
|
|
if (__kmp_nested_nth.size < levels) {
|
|
__kmp_nested_nth.nth =
|
|
(int *)KMP_INTERNAL_REALLOC(__kmp_nested_nth.nth, levels * sizeof(int));
|
|
__kmp_nested_nth.size = levels;
|
|
}
|
|
}
|
|
|
|
// Set # threads for top levels of nesting; must be called after topology set
|
|
void __kmp_set_nesting_mode_threads() {
|
|
kmp_info_t *thread = __kmp_threads[__kmp_entry_gtid()];
|
|
|
|
if (__kmp_nesting_mode == 1)
|
|
__kmp_nesting_mode_nlevels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
|
|
else if (__kmp_nesting_mode > 1)
|
|
__kmp_nesting_mode_nlevels = __kmp_nesting_mode;
|
|
|
|
if (__kmp_topology) { // use topology info
|
|
int loc, hw_level;
|
|
for (loc = 0, hw_level = 0; hw_level < __kmp_topology->get_depth() &&
|
|
loc < __kmp_nesting_mode_nlevels;
|
|
loc++, hw_level++) {
|
|
__kmp_nesting_nth_level[loc] = __kmp_topology->get_ratio(hw_level);
|
|
if (__kmp_nesting_nth_level[loc] == 1)
|
|
loc--;
|
|
}
|
|
// Make sure all cores are used
|
|
if (__kmp_nesting_mode > 1 && loc > 1) {
|
|
int core_level = __kmp_topology->get_level(KMP_HW_CORE);
|
|
int num_cores = __kmp_topology->get_count(core_level);
|
|
int upper_levels = 1;
|
|
for (int level = 0; level < loc - 1; ++level)
|
|
upper_levels *= __kmp_nesting_nth_level[level];
|
|
if (upper_levels * __kmp_nesting_nth_level[loc - 1] < num_cores)
|
|
__kmp_nesting_nth_level[loc - 1] =
|
|
num_cores / __kmp_nesting_nth_level[loc - 2];
|
|
}
|
|
__kmp_nesting_mode_nlevels = loc;
|
|
__kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
|
|
} else { // no topology info available; provide a reasonable guesstimation
|
|
if (__kmp_avail_proc >= 4) {
|
|
__kmp_nesting_nth_level[0] = __kmp_avail_proc / 2;
|
|
__kmp_nesting_nth_level[1] = 2;
|
|
__kmp_nesting_mode_nlevels = 2;
|
|
} else {
|
|
__kmp_nesting_nth_level[0] = __kmp_avail_proc;
|
|
__kmp_nesting_mode_nlevels = 1;
|
|
}
|
|
__kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
|
|
}
|
|
for (int i = 0; i < __kmp_nesting_mode_nlevels; ++i) {
|
|
__kmp_nested_nth.nth[i] = __kmp_nesting_nth_level[i];
|
|
}
|
|
set__nproc(thread, __kmp_nesting_nth_level[0]);
|
|
if (__kmp_nesting_mode > 1 && __kmp_nesting_mode_nlevels > __kmp_nesting_mode)
|
|
__kmp_nesting_mode_nlevels = __kmp_nesting_mode;
|
|
if (get__max_active_levels(thread) > 1) {
|
|
// if max levels was set, set nesting mode levels to same
|
|
__kmp_nesting_mode_nlevels = get__max_active_levels(thread);
|
|
}
|
|
if (__kmp_nesting_mode == 1) // turn on nesting for this case only
|
|
set__max_active_levels(thread, __kmp_nesting_mode_nlevels);
|
|
}
|
|
|
|
// Empty symbols to export (see exports_so.txt) when feature is disabled
|
|
extern "C" {
|
|
#if !KMP_STATS_ENABLED
|
|
void __kmp_reset_stats() {}
|
|
#endif
|
|
#if !USE_DEBUGGER
|
|
int __kmp_omp_debug_struct_info = FALSE;
|
|
int __kmp_debugging = FALSE;
|
|
#endif
|
|
#if !USE_ITT_BUILD || !USE_ITT_NOTIFY
|
|
void __kmp_itt_fini_ittlib() {}
|
|
void __kmp_itt_init_ittlib() {}
|
|
#endif
|
|
}
|
|
|
|
// end of file
|