mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
cc1920749e
Your redbean can now interoperate with clients that require TLS crypto. This is accomplished using a protocol polyglot that lets us distinguish between HTTP and HTTPS regardless of the port number. Certificates will be generated automatically, if none are supplied by the user. Footprint increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb - Add lseek() polyfills for ZIP executable - Automatically polyfill /tmp/FOO paths on NT - Fix readdir() / ftw() / nftw() bugs on Windows - Introduce -B flag for slower SSL that's stronger - Remove mbedtls features Cosmopolitan doesn't need - Have base64 decoder support the uri-safe alternative - Remove Truncated HMAC because it's forbidden by the IETF - Add all the mbedtls test suites and make them go 3x faster - Support opendir() / readdir() / closedir() on ZIP executable - Use Everest for ECDHE-ECDSA because it's so good it's so good - Add tinier implementation of sha1 since it's not worth the rom - Add chi-square monte-carlo mean correlation tests for getrandom() - Source entropy on Windows from the proper interface everyone uses We're continuing to outperform NGINX and other servers on raw message throughput. Using SSL means that instead of 1,000,000 qps you can get around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL handshakes, since redbean can do 2,627 per second and NGINX does 4.3k Right now, the SSL UX story works best if you give your redbean a key signing key since that can be easily generated by openssl using a one liner then redbean will do all the things that are impossibly hard to do like signing ecdsa and rsa certificates that'll work in chrome. We should integrate the let's encrypt acme protocol in the future. Live Demo: https://redbean.justine.lol/ Root Cert: https://redbean.justine.lol/redbean1.crt
567 lines
25 KiB
C
567 lines
25 KiB
C
#ifndef MBEDTLS_AES_H_
|
|
#define MBEDTLS_AES_H_
|
|
#include "third_party/mbedtls/config.h"
|
|
COSMOPOLITAN_C_START_
|
|
/* clang-format off */
|
|
|
|
/* padlock.c and aesni.c rely on these values! */
|
|
#define MBEDTLS_AES_ENCRYPT 1 /**< AES encryption. */
|
|
#define MBEDTLS_AES_DECRYPT 0 /**< AES decryption. */
|
|
|
|
/* Error codes in range 0x0020-0x0022 */
|
|
#define MBEDTLS_ERR_AES_INVALID_KEY_LENGTH -0x0020 /**< Invalid key length. */
|
|
#define MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH -0x0022 /**< Invalid data input length. */
|
|
|
|
/* Error codes in range 0x0021-0x0025 */
|
|
#define MBEDTLS_ERR_AES_BAD_INPUT_DATA -0x0021 /**< Invalid input data. */
|
|
|
|
/* MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE is deprecated and should not be used. */
|
|
#define MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE -0x0023 /**< Feature not available. For example, an unsupported AES key size. */
|
|
|
|
/* MBEDTLS_ERR_AES_HW_ACCEL_FAILED is deprecated and should not be used. */
|
|
#define MBEDTLS_ERR_AES_HW_ACCEL_FAILED -0x0025 /**< AES hardware accelerator failed. */
|
|
|
|
/**
|
|
* \brief The AES context-type definition.
|
|
*/
|
|
typedef struct mbedtls_aes_context
|
|
{
|
|
int nr; /*!< The number of rounds. */
|
|
uint32_t *rk; /*!< AES round keys. */
|
|
uint32_t buf[68]; /*!< Unaligned data buffer. This buffer can
|
|
hold 32 extra Bytes, which can be used for
|
|
one of the following purposes:
|
|
<ul><li>Alignment if VIA padlock is
|
|
used.</li>
|
|
<li>Simplifying key expansion in the 256-bit
|
|
case by generating an extra round key.
|
|
</li></ul> */
|
|
}
|
|
mbedtls_aes_context;
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
/**
|
|
* \brief The AES XTS context-type definition.
|
|
*/
|
|
typedef struct mbedtls_aes_xts_context
|
|
{
|
|
mbedtls_aes_context crypt; /*!< The AES context to use for AES block
|
|
encryption or decryption. */
|
|
mbedtls_aes_context tweak; /*!< The AES context used for tweak
|
|
computation. */
|
|
} mbedtls_aes_xts_context;
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
/**
|
|
* \brief This function initializes the specified AES context.
|
|
*
|
|
* It must be the first API called before using
|
|
* the context.
|
|
*
|
|
* \param ctx The AES context to initialize. This must not be \c NULL.
|
|
*/
|
|
void mbedtls_aes_init( mbedtls_aes_context *ctx );
|
|
|
|
/**
|
|
* \brief This function releases and clears the specified AES context.
|
|
*
|
|
* \param ctx The AES context to clear.
|
|
* If this is \c NULL, this function does nothing.
|
|
* Otherwise, the context must have been at least initialized.
|
|
*/
|
|
void mbedtls_aes_free( mbedtls_aes_context *ctx );
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
/**
|
|
* \brief This function initializes the specified AES XTS context.
|
|
*
|
|
* It must be the first API called before using
|
|
* the context.
|
|
*
|
|
* \param ctx The AES XTS context to initialize. This must not be \c NULL.
|
|
*/
|
|
void mbedtls_aes_xts_init( mbedtls_aes_xts_context *ctx );
|
|
|
|
/**
|
|
* \brief This function releases and clears the specified AES XTS context.
|
|
*
|
|
* \param ctx The AES XTS context to clear.
|
|
* If this is \c NULL, this function does nothing.
|
|
* Otherwise, the context must have been at least initialized.
|
|
*/
|
|
void mbedtls_aes_xts_free( mbedtls_aes_xts_context *ctx );
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
/**
|
|
* \brief This function sets the encryption key.
|
|
*
|
|
* \param ctx The AES context to which the key should be bound.
|
|
* It must be initialized.
|
|
* \param key The encryption key.
|
|
* This must be a readable buffer of size \p keybits bits.
|
|
* \param keybits The size of data passed in bits. Valid options are:
|
|
* <ul><li>128 bits</li>
|
|
* <li>192 bits</li>
|
|
* <li>256 bits</li></ul>
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
|
|
*/
|
|
int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key,
|
|
unsigned int keybits );
|
|
|
|
/**
|
|
* \brief This function sets the decryption key.
|
|
*
|
|
* \param ctx The AES context to which the key should be bound.
|
|
* It must be initialized.
|
|
* \param key The decryption key.
|
|
* This must be a readable buffer of size \p keybits bits.
|
|
* \param keybits The size of data passed. Valid options are:
|
|
* <ul><li>128 bits</li>
|
|
* <li>192 bits</li>
|
|
* <li>256 bits</li></ul>
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
|
|
*/
|
|
int mbedtls_aes_setkey_dec( mbedtls_aes_context *ctx, const unsigned char *key,
|
|
unsigned int keybits );
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
/**
|
|
* \brief This function prepares an XTS context for encryption and
|
|
* sets the encryption key.
|
|
*
|
|
* \param ctx The AES XTS context to which the key should be bound.
|
|
* It must be initialized.
|
|
* \param key The encryption key. This is comprised of the XTS key1
|
|
* concatenated with the XTS key2.
|
|
* This must be a readable buffer of size \p keybits bits.
|
|
* \param keybits The size of \p key passed in bits. Valid options are:
|
|
* <ul><li>256 bits (each of key1 and key2 is a 128-bit key)</li>
|
|
* <li>512 bits (each of key1 and key2 is a 256-bit key)</li></ul>
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
|
|
*/
|
|
int mbedtls_aes_xts_setkey_enc( mbedtls_aes_xts_context *ctx,
|
|
const unsigned char *key,
|
|
unsigned int keybits );
|
|
|
|
/**
|
|
* \brief This function prepares an XTS context for decryption and
|
|
* sets the decryption key.
|
|
*
|
|
* \param ctx The AES XTS context to which the key should be bound.
|
|
* It must be initialized.
|
|
* \param key The decryption key. This is comprised of the XTS key1
|
|
* concatenated with the XTS key2.
|
|
* This must be a readable buffer of size \p keybits bits.
|
|
* \param keybits The size of \p key passed in bits. Valid options are:
|
|
* <ul><li>256 bits (each of key1 and key2 is a 128-bit key)</li>
|
|
* <li>512 bits (each of key1 and key2 is a 256-bit key)</li></ul>
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
|
|
*/
|
|
int mbedtls_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx,
|
|
const unsigned char *key,
|
|
unsigned int keybits );
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
/**
|
|
* \brief This function performs an AES single-block encryption or
|
|
* decryption operation.
|
|
*
|
|
* It performs the operation defined in the \p mode parameter
|
|
* (encrypt or decrypt), on the input data buffer defined in
|
|
* the \p input parameter.
|
|
*
|
|
* mbedtls_aes_init(), and either mbedtls_aes_setkey_enc() or
|
|
* mbedtls_aes_setkey_dec() must be called before the first
|
|
* call to this API with the same context.
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
|
|
* #MBEDTLS_AES_DECRYPT.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and at least \c 16 Bytes long.
|
|
* \param output The buffer where the output data will be written.
|
|
* It must be writeable and at least \c 16 Bytes long.
|
|
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_aes_crypt_ecb( mbedtls_aes_context *ctx,
|
|
int mode,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] );
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CBC)
|
|
/**
|
|
* \brief This function performs an AES-CBC encryption or decryption operation
|
|
* on full blocks.
|
|
*
|
|
* It performs the operation defined in the \p mode
|
|
* parameter (encrypt/decrypt), on the input data buffer defined in
|
|
* the \p input parameter.
|
|
*
|
|
* It can be called as many times as needed, until all the input
|
|
* data is processed. mbedtls_aes_init(), and either
|
|
* mbedtls_aes_setkey_enc() or mbedtls_aes_setkey_dec() must be called
|
|
* before the first call to this API with the same context.
|
|
*
|
|
* \note This function operates on full blocks, that is, the input size
|
|
* must be a multiple of the AES block size of \c 16 Bytes.
|
|
*
|
|
* \note Upon exit, the content of the IV is updated so that you can
|
|
* call the same function again on the next
|
|
* block(s) of data and get the same result as if it was
|
|
* encrypted in one call. This allows a "streaming" usage.
|
|
* If you need to retain the contents of the IV, you should
|
|
* either save it manually or use the cipher module instead.
|
|
*
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
|
|
* #MBEDTLS_AES_DECRYPT.
|
|
* \param length The length of the input data in Bytes. This must be a
|
|
* multiple of the block size (\c 16 Bytes).
|
|
* \param iv Initialization vector (updated after use).
|
|
* It must be a readable and writeable buffer of \c 16 Bytes.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and of size \p length Bytes.
|
|
* \param output The buffer holding the output data.
|
|
* It must be writeable and of size \p length Bytes.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH
|
|
* on failure.
|
|
*/
|
|
int mbedtls_aes_crypt_cbc( mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
#endif /* MBEDTLS_CIPHER_MODE_CBC */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
/**
|
|
* \brief This function performs an AES-XTS encryption or decryption
|
|
* operation for an entire XTS data unit.
|
|
*
|
|
* AES-XTS encrypts or decrypts blocks based on their location as
|
|
* defined by a data unit number. The data unit number must be
|
|
* provided by \p data_unit.
|
|
*
|
|
* NIST SP 800-38E limits the maximum size of a data unit to 2^20
|
|
* AES blocks. If the data unit is larger than this, this function
|
|
* returns #MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH.
|
|
*
|
|
* \param ctx The AES XTS context to use for AES XTS operations.
|
|
* It must be initialized and bound to a key.
|
|
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
|
|
* #MBEDTLS_AES_DECRYPT.
|
|
* \param length The length of a data unit in Bytes. This can be any
|
|
* length between 16 bytes and 2^24 bytes inclusive
|
|
* (between 1 and 2^20 block cipher blocks).
|
|
* \param data_unit The address of the data unit encoded as an array of 16
|
|
* bytes in little-endian format. For disk encryption, this
|
|
* is typically the index of the block device sector that
|
|
* contains the data.
|
|
* \param input The buffer holding the input data (which is an entire
|
|
* data unit). This function reads \p length Bytes from \p
|
|
* input.
|
|
* \param output The buffer holding the output data (which is an entire
|
|
* data unit). This function writes \p length Bytes to \p
|
|
* output.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH if \p length is
|
|
* smaller than an AES block in size (16 Bytes) or if \p
|
|
* length is larger than 2^20 blocks (16 MiB).
|
|
*/
|
|
int mbedtls_aes_crypt_xts( mbedtls_aes_xts_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
const unsigned char data_unit[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CFB)
|
|
/**
|
|
* \brief This function performs an AES-CFB128 encryption or decryption
|
|
* operation.
|
|
*
|
|
* It performs the operation defined in the \p mode
|
|
* parameter (encrypt or decrypt), on the input data buffer
|
|
* defined in the \p input parameter.
|
|
*
|
|
* For CFB, you must set up the context with mbedtls_aes_setkey_enc(),
|
|
* regardless of whether you are performing an encryption or decryption
|
|
* operation, that is, regardless of the \p mode parameter. This is
|
|
* because CFB mode uses the same key schedule for encryption and
|
|
* decryption.
|
|
*
|
|
* \note Upon exit, the content of the IV is updated so that you can
|
|
* call the same function again on the next
|
|
* block(s) of data and get the same result as if it was
|
|
* encrypted in one call. This allows a "streaming" usage.
|
|
* If you need to retain the contents of the
|
|
* IV, you must either save it manually or use the cipher
|
|
* module instead.
|
|
*
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
|
|
* #MBEDTLS_AES_DECRYPT.
|
|
* \param length The length of the input data in Bytes.
|
|
* \param iv_off The offset in IV (updated after use).
|
|
* It must point to a valid \c size_t.
|
|
* \param iv The initialization vector (updated after use).
|
|
* It must be a readable and writeable buffer of \c 16 Bytes.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and of size \p length Bytes.
|
|
* \param output The buffer holding the output data.
|
|
* It must be writeable and of size \p length Bytes.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_aes_crypt_cfb128( mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
|
|
/**
|
|
* \brief This function performs an AES-CFB8 encryption or decryption
|
|
* operation.
|
|
*
|
|
* It performs the operation defined in the \p mode
|
|
* parameter (encrypt/decrypt), on the input data buffer defined
|
|
* in the \p input parameter.
|
|
*
|
|
* Due to the nature of CFB, you must use the same key schedule for
|
|
* both encryption and decryption operations. Therefore, you must
|
|
* use the context initialized with mbedtls_aes_setkey_enc() for
|
|
* both #MBEDTLS_AES_ENCRYPT and #MBEDTLS_AES_DECRYPT.
|
|
*
|
|
* \note Upon exit, the content of the IV is updated so that you can
|
|
* call the same function again on the next
|
|
* block(s) of data and get the same result as if it was
|
|
* encrypted in one call. This allows a "streaming" usage.
|
|
* If you need to retain the contents of the
|
|
* IV, you should either save it manually or use the cipher
|
|
* module instead.
|
|
*
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
|
|
* #MBEDTLS_AES_DECRYPT
|
|
* \param length The length of the input data.
|
|
* \param iv The initialization vector (updated after use).
|
|
* It must be a readable and writeable buffer of \c 16 Bytes.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and of size \p length Bytes.
|
|
* \param output The buffer holding the output data.
|
|
* It must be writeable and of size \p length Bytes.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_aes_crypt_cfb8( mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
#endif /*MBEDTLS_CIPHER_MODE_CFB */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_OFB)
|
|
/**
|
|
* \brief This function performs an AES-OFB (Output Feedback Mode)
|
|
* encryption or decryption operation.
|
|
*
|
|
* For OFB, you must set up the context with
|
|
* mbedtls_aes_setkey_enc(), regardless of whether you are
|
|
* performing an encryption or decryption operation. This is
|
|
* because OFB mode uses the same key schedule for encryption and
|
|
* decryption.
|
|
*
|
|
* The OFB operation is identical for encryption or decryption,
|
|
* therefore no operation mode needs to be specified.
|
|
*
|
|
* \note Upon exit, the content of iv, the Initialisation Vector, is
|
|
* updated so that you can call the same function again on the next
|
|
* block(s) of data and get the same result as if it was encrypted
|
|
* in one call. This allows a "streaming" usage, by initialising
|
|
* iv_off to 0 before the first call, and preserving its value
|
|
* between calls.
|
|
*
|
|
* For non-streaming use, the iv should be initialised on each call
|
|
* to a unique value, and iv_off set to 0 on each call.
|
|
*
|
|
* If you need to retain the contents of the initialisation vector,
|
|
* you must either save it manually or use the cipher module
|
|
* instead.
|
|
*
|
|
* \warning For the OFB mode, the initialisation vector must be unique
|
|
* every encryption operation. Reuse of an initialisation vector
|
|
* will compromise security.
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param length The length of the input data.
|
|
* \param iv_off The offset in IV (updated after use).
|
|
* It must point to a valid \c size_t.
|
|
* \param iv The initialization vector (updated after use).
|
|
* It must be a readable and writeable buffer of \c 16 Bytes.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and of size \p length Bytes.
|
|
* \param output The buffer holding the output data.
|
|
* It must be writeable and of size \p length Bytes.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_aes_crypt_ofb( mbedtls_aes_context *ctx,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
|
|
#endif /* MBEDTLS_CIPHER_MODE_OFB */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CTR)
|
|
/**
|
|
* \brief This function performs an AES-CTR encryption or decryption
|
|
* operation.
|
|
*
|
|
* This function performs the operation defined in the \p mode
|
|
* parameter (encrypt/decrypt), on the input data buffer
|
|
* defined in the \p input parameter.
|
|
*
|
|
* Due to the nature of CTR, you must use the same key schedule
|
|
* for both encryption and decryption operations. Therefore, you
|
|
* must use the context initialized with mbedtls_aes_setkey_enc()
|
|
* for both #MBEDTLS_AES_ENCRYPT and #MBEDTLS_AES_DECRYPT.
|
|
*
|
|
* \warning You must never reuse a nonce value with the same key. Doing so
|
|
* would void the encryption for the two messages encrypted with
|
|
* the same nonce and key.
|
|
*
|
|
* There are two common strategies for managing nonces with CTR:
|
|
*
|
|
* 1. You can handle everything as a single message processed over
|
|
* successive calls to this function. In that case, you want to
|
|
* set \p nonce_counter and \p nc_off to 0 for the first call, and
|
|
* then preserve the values of \p nonce_counter, \p nc_off and \p
|
|
* stream_block across calls to this function as they will be
|
|
* updated by this function.
|
|
*
|
|
* With this strategy, you must not encrypt more than 2**128
|
|
* blocks of data with the same key.
|
|
*
|
|
* 2. You can encrypt separate messages by dividing the \p
|
|
* nonce_counter buffer in two areas: the first one used for a
|
|
* per-message nonce, handled by yourself, and the second one
|
|
* updated by this function internally.
|
|
*
|
|
* For example, you might reserve the first 12 bytes for the
|
|
* per-message nonce, and the last 4 bytes for internal use. In that
|
|
* case, before calling this function on a new message you need to
|
|
* set the first 12 bytes of \p nonce_counter to your chosen nonce
|
|
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
|
|
* stream_block to be ignored). That way, you can encrypt at most
|
|
* 2**96 messages of up to 2**32 blocks each with the same key.
|
|
*
|
|
* The per-message nonce (or information sufficient to reconstruct
|
|
* it) needs to be communicated with the ciphertext and must be unique.
|
|
* The recommended way to ensure uniqueness is to use a message
|
|
* counter. An alternative is to generate random nonces, but this
|
|
* limits the number of messages that can be securely encrypted:
|
|
* for example, with 96-bit random nonces, you should not encrypt
|
|
* more than 2**32 messages with the same key.
|
|
*
|
|
* Note that for both stategies, sizes are measured in blocks and
|
|
* that an AES block is 16 bytes.
|
|
*
|
|
* \warning Upon return, \p stream_block contains sensitive data. Its
|
|
* content must not be written to insecure storage and should be
|
|
* securely discarded as soon as it's no longer needed.
|
|
*
|
|
* \param ctx The AES context to use for encryption or decryption.
|
|
* It must be initialized and bound to a key.
|
|
* \param length The length of the input data.
|
|
* \param nc_off The offset in the current \p stream_block, for
|
|
* resuming within the current cipher stream. The
|
|
* offset pointer should be 0 at the start of a stream.
|
|
* It must point to a valid \c size_t.
|
|
* \param nonce_counter The 128-bit nonce and counter.
|
|
* It must be a readable-writeable buffer of \c 16 Bytes.
|
|
* \param stream_block The saved stream block for resuming. This is
|
|
* overwritten by the function.
|
|
* It must be a readable-writeable buffer of \c 16 Bytes.
|
|
* \param input The buffer holding the input data.
|
|
* It must be readable and of size \p length Bytes.
|
|
* \param output The buffer holding the output data.
|
|
* It must be writeable and of size \p length Bytes.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_aes_crypt_ctr( mbedtls_aes_context *ctx,
|
|
size_t length,
|
|
size_t *nc_off,
|
|
unsigned char nonce_counter[16],
|
|
unsigned char stream_block[16],
|
|
const unsigned char *input,
|
|
unsigned char *output );
|
|
#endif /* MBEDTLS_CIPHER_MODE_CTR */
|
|
|
|
/**
|
|
* \brief Internal AES block encryption function. This is only
|
|
* exposed to allow overriding it using
|
|
* \c MBEDTLS_AES_ENCRYPT_ALT.
|
|
*
|
|
* \param ctx The AES context to use for encryption.
|
|
* \param input The plaintext block.
|
|
* \param output The output (ciphertext) block.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] );
|
|
|
|
/**
|
|
* \brief Internal AES block decryption function. This is only
|
|
* exposed to allow overriding it using see
|
|
* \c MBEDTLS_AES_DECRYPT_ALT.
|
|
*
|
|
* \param ctx The AES context to use for decryption.
|
|
* \param input The ciphertext block.
|
|
* \param output The output (plaintext) block.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16] );
|
|
|
|
/**
|
|
* \brief Checkup routine.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return \c 1 on failure.
|
|
*/
|
|
int mbedtls_aes_self_test( int verbose );
|
|
|
|
COSMOPOLITAN_C_END_
|
|
#endif /* MBEDTLS_AES_H_ */
|