mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
957c61cbbf
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker appears to have changed things so that only a single de-duplicated str table is present in the binary, and it gets placed wherever the linker wants, regardless of what the linker script says. To cope with that we need to stop using .ident to embed licenses. As such, this change does significant work to revamp how third party licenses are defined in the codebase, using `.section .notice,"aR",@progbits`. This new GCC 12.3 toolchain has support for GNU indirect functions. It lets us support __target_clones__ for the first time. This is used for optimizing the performance of libc string functions such as strlen and friends so far on x86, by ensuring AVX systems favor a second codepath that uses VEX encoding. It shaves some latency off certain operations. It's a useful feature to have for scientific computing for the reasons explained by the test/libcxx/openmp_test.cc example which compiles for fifteen different microarchitectures. Thanks to the upgrades, it's now also possible to use newer instruction sets, such as AVX512FP16, VNNI. Cosmo now uses the %gs register on x86 by default for TLS. Doing it is helpful for any program that links `cosmo_dlopen()`. Such programs had to recompile their binaries at startup to change the TLS instructions. That's not great, since it means every page in the executable needs to be faulted. The work of rewriting TLS-related x86 opcodes, is moved to fixupobj.com instead. This is great news for MacOS x86 users, since we previously needed to morph the binary every time for that platform but now that's no longer necessary. The only platforms where we need fixup of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the kernels do not allow us to specify a value for the %gs register. OpenBSD users are now required to use APE Loader to run Cosmo binaries and assimilation is no longer possible. OpenBSD kernel needs to change to allow programs to specify a value for the %gs register, or it needs to stop marking executable pages loaded by the kernel as mimmutable(). This release fixes __constructor__, .ctor, .init_array, and lastly the .preinit_array so they behave the exact same way as glibc. We no longer use hex constants to define math.h symbols like M_PI.
664 lines
22 KiB
C
664 lines
22 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
|
│ vi: set et ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi │
|
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|
│ │
|
|
│ Argon2 reference source code package - reference C implementations │
|
|
│ │
|
|
│ Copyright 2015 │
|
|
│ Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves │
|
|
│ │
|
|
│ You may use this work under the terms of a Creative Commons CC0 1.0 │
|
|
│ License/Waiver or the Apache Public License 2.0, at your option. The │
|
|
│ terms of these licenses can be found at: │
|
|
│ │
|
|
│ - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0 │
|
|
│ - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0 │
|
|
│ │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/mem/mem.h"
|
|
#include "third_party/argon2/blake2-impl.h"
|
|
#include "third_party/argon2/blake2.h"
|
|
#include "third_party/argon2/core.h"
|
|
|
|
__notice(argon2_notice, "\
|
|
argon2 (CC0 or Apache2)\n\
|
|
Copyright 2016 Daniel Dinu, Dmitry Khovratovich\n\
|
|
Copyright 2016 Jean-Philippe Aumasson, Samuel Neves");
|
|
|
|
int FLAG_clear_internal_memory = 1;
|
|
|
|
void init_block_value(block *b, uint8_t in) {
|
|
memset(b->v, in, sizeof(b->v));
|
|
}
|
|
|
|
void copy_block(block *dst, const block *src) {
|
|
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
|
|
}
|
|
|
|
optimizespeed void xor_block(block *dst, const block *src) {
|
|
int i;
|
|
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
|
dst->v[i] ^= src->v[i];
|
|
}
|
|
}
|
|
|
|
static void load_block(block *dst, const void *input) {
|
|
unsigned i;
|
|
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
|
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
|
|
}
|
|
}
|
|
|
|
static void store_block(void *output, const block *src) {
|
|
unsigned i;
|
|
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
|
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Allocates memory to the given pointer, uses the appropriate allocator as
|
|
* specified in the context. Total allocated memory is num*size.
|
|
* @param context argon2_context which specifies the allocator
|
|
* @param memory pointer to the pointer to the memory
|
|
* @param size the size in bytes for each element to be allocated
|
|
* @param num the number of elements to be allocated
|
|
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
|
|
*/
|
|
int allocate_memory(const argon2_context *context, uint8_t **memory,
|
|
size_t num, size_t size) {
|
|
size_t memory_size = num*size;
|
|
if (memory == NULL) {
|
|
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
|
}
|
|
/* 1. Check for multiplication overflow */
|
|
if (size != 0 && memory_size / size != num) {
|
|
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
|
}
|
|
/* 2. Try to allocate with appropriate allocator */
|
|
if (context->allocate_cbk) {
|
|
(context->allocate_cbk)(memory, memory_size);
|
|
} else {
|
|
*memory = malloc(memory_size);
|
|
}
|
|
if (*memory == NULL) {
|
|
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
|
}
|
|
return ARGON2_OK;
|
|
}
|
|
|
|
/**
|
|
* Frees memory at the given pointer, uses the appropriate deallocator as
|
|
* specified in the context. Also cleans the memory using clear_internal_memory.
|
|
* @param context argon2_context which specifies the deallocator
|
|
* @param memory pointer to buffer to be freed
|
|
* @param size the size in bytes for each element to be deallocated
|
|
* @param num the number of elements to be deallocated
|
|
*/
|
|
void free_memory(const argon2_context *context, uint8_t *memory,
|
|
size_t num, size_t size) {
|
|
size_t memory_size = num*size;
|
|
clear_internal_memory(memory, memory_size);
|
|
if (context->free_cbk) {
|
|
(context->free_cbk)(memory, memory_size);
|
|
} else {
|
|
free(memory);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Function that securely clears the memory if
|
|
* FLAG_clear_internal_memory is set. If the flag isn't set, this
|
|
* function does nothing.
|
|
*
|
|
* @param mem Pointer to the memory
|
|
* @param s Memory size in bytes
|
|
*/
|
|
void clear_internal_memory(void *v, size_t n) {
|
|
if (FLAG_clear_internal_memory && v) {
|
|
explicit_bzero(v, n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* XORing the last block of each lane, hashing it, making the tag.
|
|
* Deallocates the memory.
|
|
*
|
|
* @param context current Argon2 context (use only the out parameters from it)
|
|
* @param instance Pointer to current instance of Argon2
|
|
* @pre instance->state must point to necessary amount of memory
|
|
* @pre context->out must point to outlen bytes of memory
|
|
* @pre if context->free_cbk is not NULL, it should point to a function that
|
|
* deallocates memory
|
|
*/
|
|
void finalize(const argon2_context *context, argon2_instance_t *instance) {
|
|
if (context != NULL && instance != NULL) {
|
|
block blockhash;
|
|
uint32_t l;
|
|
|
|
copy_block(&blockhash, instance->memory + instance->lane_length - 1);
|
|
|
|
/* XOR the last blocks */
|
|
for (l = 1; l < instance->lanes; ++l) {
|
|
uint32_t last_block_in_lane =
|
|
l * instance->lane_length + (instance->lane_length - 1);
|
|
xor_block(&blockhash, instance->memory + last_block_in_lane);
|
|
}
|
|
|
|
/* Hash the result */
|
|
{
|
|
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
|
store_block(blockhash_bytes, &blockhash);
|
|
blake2b_long(context->out, context->outlen, blockhash_bytes,
|
|
ARGON2_BLOCK_SIZE);
|
|
/* clear blockhash and blockhash_bytes */
|
|
clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE);
|
|
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
|
}
|
|
|
|
free_memory(context, (uint8_t *)instance->memory,
|
|
instance->memory_blocks, sizeof(block));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Computes absolute position of reference block in the lane following a skewed
|
|
* distribution and using a pseudo-random value as input
|
|
* @param instance Pointer to the current instance
|
|
* @param position Pointer to the current position
|
|
* @param pseudo_rand 32-bit pseudo-random value used to determine the position
|
|
* @param same_lane Indicates if the block will be taken from the current lane.
|
|
* If so we can reference the current segment
|
|
* @pre All pointers must be valid
|
|
*/
|
|
uint32_t index_alpha(const argon2_instance_t *instance,
|
|
const argon2_position_t *position, uint32_t pseudo_rand,
|
|
int same_lane) {
|
|
/*
|
|
* Pass 0:
|
|
* This lane : all already finished segments plus already constructed
|
|
* blocks in this segment
|
|
* Other lanes : all already finished segments
|
|
* Pass 1+:
|
|
* This lane : (SYNC_POINTS - 1) last segments plus already constructed
|
|
* blocks in this segment
|
|
* Other lanes : (SYNC_POINTS - 1) last segments
|
|
*/
|
|
uint32_t reference_area_size;
|
|
uint64_t relative_position;
|
|
uint32_t start_position, absolute_position;
|
|
|
|
if (0 == position->pass) {
|
|
/* First pass */
|
|
if (0 == position->slice) {
|
|
/* First slice */
|
|
reference_area_size =
|
|
position->index - 1; /* all but the previous */
|
|
} else {
|
|
if (same_lane) {
|
|
/* The same lane => add current segment */
|
|
reference_area_size =
|
|
position->slice * instance->segment_length +
|
|
position->index - 1;
|
|
} else {
|
|
reference_area_size =
|
|
position->slice * instance->segment_length +
|
|
((position->index == 0) ? (-1) : 0);
|
|
}
|
|
}
|
|
} else {
|
|
/* Second pass */
|
|
if (same_lane) {
|
|
reference_area_size = instance->lane_length -
|
|
instance->segment_length + position->index -
|
|
1;
|
|
} else {
|
|
reference_area_size = instance->lane_length -
|
|
instance->segment_length +
|
|
((position->index == 0) ? (-1) : 0);
|
|
}
|
|
}
|
|
|
|
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
|
|
* relative position */
|
|
relative_position = pseudo_rand;
|
|
relative_position = relative_position * relative_position >> 32;
|
|
relative_position = reference_area_size - 1 -
|
|
(reference_area_size * relative_position >> 32);
|
|
|
|
/* 1.2.5 Computing starting position */
|
|
start_position = 0;
|
|
|
|
if (0 != position->pass) {
|
|
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
|
|
? 0
|
|
: (position->slice + 1) * instance->segment_length;
|
|
}
|
|
|
|
/* 1.2.6. Computing absolute position */
|
|
absolute_position = (start_position + relative_position) %
|
|
instance->lane_length; /* absolute position */
|
|
return absolute_position;
|
|
}
|
|
|
|
/* Single-threaded version for p=1 case */
|
|
static int fill_memory_blocks_st(argon2_instance_t *instance) {
|
|
uint32_t r, s, l;
|
|
|
|
for (r = 0; r < instance->passes; ++r) {
|
|
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
|
|
for (l = 0; l < instance->lanes; ++l) {
|
|
argon2_position_t position = {r, l, (uint8_t)s, 0};
|
|
fill_segment(instance, position);
|
|
}
|
|
}
|
|
}
|
|
return ARGON2_OK;
|
|
}
|
|
|
|
#if !defined(ARGON2_NO_THREADS)
|
|
|
|
#ifdef _WIN32
|
|
static unsigned __stdcall fill_segment_thr(void *thread_data)
|
|
#else
|
|
static void *fill_segment_thr(void *thread_data)
|
|
#endif
|
|
{
|
|
argon2_thread_data *my_data = thread_data;
|
|
fill_segment(my_data->instance_ptr, my_data->pos);
|
|
argon2_thread_exit();
|
|
return 0;
|
|
}
|
|
|
|
/* Multi-threaded version for p > 1 case */
|
|
static int fill_memory_blocks_mt(argon2_instance_t *instance) {
|
|
uint32_t r, s;
|
|
argon2_thread_handle_t *thread = NULL;
|
|
argon2_thread_data *thr_data = NULL;
|
|
int rc = ARGON2_OK;
|
|
|
|
/* 1. Allocating space for threads */
|
|
thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t));
|
|
if (thread == NULL) {
|
|
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
|
|
goto fail;
|
|
}
|
|
|
|
thr_data = calloc(instance->lanes, sizeof(argon2_thread_data));
|
|
if (thr_data == NULL) {
|
|
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
|
|
goto fail;
|
|
}
|
|
|
|
for (r = 0; r < instance->passes; ++r) {
|
|
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
|
|
uint32_t l, ll;
|
|
|
|
/* 2. Calling threads */
|
|
for (l = 0; l < instance->lanes; ++l) {
|
|
argon2_position_t position;
|
|
|
|
/* 2.1 Join a thread if limit is exceeded */
|
|
if (l >= instance->threads) {
|
|
if (argon2_thread_join(thread[l - instance->threads])) {
|
|
rc = ARGON2_THREAD_FAIL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* 2.2 Create thread */
|
|
position.pass = r;
|
|
position.lane = l;
|
|
position.slice = (uint8_t)s;
|
|
position.index = 0;
|
|
thr_data[l].instance_ptr =
|
|
instance; /* preparing the thread input */
|
|
memcpy(&(thr_data[l].pos), &position,
|
|
sizeof(argon2_position_t));
|
|
if (argon2_thread_create(&thread[l], &fill_segment_thr,
|
|
(void *)&thr_data[l])) {
|
|
/* Wait for already running threads */
|
|
for (ll = 0; ll < l; ++ll)
|
|
argon2_thread_join(thread[ll]);
|
|
rc = ARGON2_THREAD_FAIL;
|
|
goto fail;
|
|
}
|
|
|
|
/* fill_segment(instance, position); */
|
|
/*Non-thread equivalent of the lines above */
|
|
}
|
|
|
|
/* 3. Joining remaining threads */
|
|
for (l = instance->lanes - instance->threads; l < instance->lanes;
|
|
++l) {
|
|
if (argon2_thread_join(thread[l])) {
|
|
rc = ARGON2_THREAD_FAIL;
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fail:
|
|
if (thread != NULL) {
|
|
free(thread);
|
|
}
|
|
if (thr_data != NULL) {
|
|
free(thr_data);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#endif /* ARGON2_NO_THREADS */
|
|
|
|
/**
|
|
* Function that fills the entire memory t_cost times based on the first two
|
|
* blocks in each lane
|
|
* @param instance Pointer to the current instance
|
|
* @return ARGON2_OK if successful, @context->state
|
|
*/
|
|
int fill_memory_blocks(argon2_instance_t *instance) {
|
|
if (instance == NULL || instance->lanes == 0) {
|
|
return ARGON2_INCORRECT_PARAMETER;
|
|
}
|
|
#if defined(ARGON2_NO_THREADS)
|
|
return fill_memory_blocks_st(instance);
|
|
#else
|
|
return instance->threads == 1 ?
|
|
fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Function that validates all inputs against predefined restrictions
|
|
* and return an error code.
|
|
*
|
|
* @param context Pointer to current Argon2 context
|
|
* @return ARGON2_OK if everything is all right, otherwise one of error
|
|
* codes (all defined in argon.h)
|
|
*/
|
|
int validate_inputs(const argon2_context *context) {
|
|
if (NULL == context) {
|
|
return ARGON2_INCORRECT_PARAMETER;
|
|
}
|
|
|
|
if (NULL == context->out) {
|
|
return ARGON2_OUTPUT_PTR_NULL;
|
|
}
|
|
|
|
/* Validate output length */
|
|
if (ARGON2_MIN_OUTLEN > context->outlen) {
|
|
return ARGON2_OUTPUT_TOO_SHORT;
|
|
}
|
|
|
|
if (ARGON2_MAX_OUTLEN < context->outlen) {
|
|
return ARGON2_OUTPUT_TOO_LONG;
|
|
}
|
|
|
|
/* Validate password (required param) */
|
|
if (NULL == context->pwd) {
|
|
if (0 != context->pwdlen) {
|
|
return ARGON2_PWD_PTR_MISMATCH;
|
|
}
|
|
}
|
|
|
|
if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) {
|
|
return ARGON2_PWD_TOO_SHORT;
|
|
}
|
|
|
|
if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) {
|
|
return ARGON2_PWD_TOO_LONG;
|
|
}
|
|
|
|
/* Validate salt (required param) */
|
|
if (NULL == context->salt) {
|
|
if (0 != context->saltlen) {
|
|
return ARGON2_SALT_PTR_MISMATCH;
|
|
}
|
|
}
|
|
|
|
if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {
|
|
return ARGON2_SALT_TOO_SHORT;
|
|
}
|
|
|
|
if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {
|
|
return ARGON2_SALT_TOO_LONG;
|
|
}
|
|
|
|
/* Validate secret (optional param) */
|
|
if (NULL == context->secret) {
|
|
if (0 != context->secretlen) {
|
|
return ARGON2_SECRET_PTR_MISMATCH;
|
|
}
|
|
} else {
|
|
if (ARGON2_MIN_SECRET > context->secretlen) {
|
|
return ARGON2_SECRET_TOO_SHORT;
|
|
}
|
|
if (ARGON2_MAX_SECRET < context->secretlen) {
|
|
return ARGON2_SECRET_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
/* Validate associated data (optional param) */
|
|
if (NULL == context->ad) {
|
|
if (0 != context->adlen) {
|
|
return ARGON2_AD_PTR_MISMATCH;
|
|
}
|
|
} else {
|
|
if (ARGON2_MIN_AD_LENGTH > context->adlen) {
|
|
return ARGON2_AD_TOO_SHORT;
|
|
}
|
|
if (ARGON2_MAX_AD_LENGTH < context->adlen) {
|
|
return ARGON2_AD_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
/* Validate memory cost */
|
|
if (ARGON2_MIN_MEMORY > context->m_cost) {
|
|
return ARGON2_MEMORY_TOO_LITTLE;
|
|
}
|
|
|
|
if (ARGON2_MAX_MEMORY < context->m_cost) {
|
|
return ARGON2_MEMORY_TOO_MUCH;
|
|
}
|
|
|
|
if (context->m_cost < 8 * context->lanes) {
|
|
return ARGON2_MEMORY_TOO_LITTLE;
|
|
}
|
|
|
|
/* Validate time cost */
|
|
if (ARGON2_MIN_TIME > context->t_cost) {
|
|
return ARGON2_TIME_TOO_SMALL;
|
|
}
|
|
|
|
if (ARGON2_MAX_TIME < context->t_cost) {
|
|
return ARGON2_TIME_TOO_LARGE;
|
|
}
|
|
|
|
/* Validate lanes */
|
|
if (ARGON2_MIN_LANES > context->lanes) {
|
|
return ARGON2_LANES_TOO_FEW;
|
|
}
|
|
|
|
if (ARGON2_MAX_LANES < context->lanes) {
|
|
return ARGON2_LANES_TOO_MANY;
|
|
}
|
|
|
|
/* Validate threads */
|
|
if (ARGON2_MIN_THREADS > context->threads) {
|
|
return ARGON2_THREADS_TOO_FEW;
|
|
}
|
|
|
|
if (ARGON2_MAX_THREADS < context->threads) {
|
|
return ARGON2_THREADS_TOO_MANY;
|
|
}
|
|
|
|
if (NULL != context->allocate_cbk && NULL == context->free_cbk) {
|
|
return ARGON2_FREE_MEMORY_CBK_NULL;
|
|
}
|
|
|
|
if (NULL == context->allocate_cbk && NULL != context->free_cbk) {
|
|
return ARGON2_ALLOCATE_MEMORY_CBK_NULL;
|
|
}
|
|
|
|
return ARGON2_OK;
|
|
}
|
|
|
|
/**
|
|
* Function creates first 2 blocks per lane
|
|
* @param instance Pointer to the current instance
|
|
* @param blockhash Pointer to the pre-hashing digest
|
|
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
|
|
*/
|
|
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
|
|
uint32_t l;
|
|
/* Make the first and second block in each lane as G(H0||0||i) or
|
|
G(H0||1||i) */
|
|
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
|
for (l = 0; l < instance->lanes; ++l) {
|
|
|
|
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
|
|
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
|
|
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
|
|
ARGON2_PREHASH_SEED_LENGTH);
|
|
load_block(&instance->memory[l * instance->lane_length + 0],
|
|
blockhash_bytes);
|
|
|
|
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
|
|
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
|
|
ARGON2_PREHASH_SEED_LENGTH);
|
|
load_block(&instance->memory[l * instance->lane_length + 1],
|
|
blockhash_bytes);
|
|
}
|
|
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH],
|
|
* clears password and secret if needed
|
|
*
|
|
* @param context Pointer to the Argon2 internal structure containing
|
|
* memory pointer, and parameters for time and space requirements
|
|
* @param blockhash Buffer for pre-hashing digest
|
|
* @param type Argon2 type
|
|
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
|
|
* allocated
|
|
*/
|
|
void initial_hash(uint8_t *blockhash, argon2_context *context,
|
|
argon2_type type) {
|
|
blake2b_state BlakeHash;
|
|
uint8_t value[sizeof(uint32_t)];
|
|
|
|
if (NULL == context || NULL == blockhash) {
|
|
return;
|
|
}
|
|
|
|
blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);
|
|
|
|
store32(&value, context->lanes);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, context->outlen);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, context->m_cost);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, context->t_cost);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, context->version);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, (uint32_t)type);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
store32(&value, context->pwdlen);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
if (context->pwd != NULL) {
|
|
blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
|
|
context->pwdlen);
|
|
|
|
if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) {
|
|
explicit_bzero(context->pwd, context->pwdlen);
|
|
context->pwdlen = 0;
|
|
}
|
|
}
|
|
|
|
store32(&value, context->saltlen);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
if (context->salt != NULL) {
|
|
blake2b_update(&BlakeHash, (const uint8_t *)context->salt,
|
|
context->saltlen);
|
|
}
|
|
|
|
store32(&value, context->secretlen);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
if (context->secret != NULL) {
|
|
blake2b_update(&BlakeHash, (const uint8_t *)context->secret,
|
|
context->secretlen);
|
|
|
|
if (context->flags & ARGON2_FLAG_CLEAR_SECRET) {
|
|
explicit_bzero(context->secret, context->secretlen);
|
|
context->secretlen = 0;
|
|
}
|
|
}
|
|
|
|
store32(&value, context->adlen);
|
|
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
|
|
|
if (context->ad != NULL) {
|
|
blake2b_update(&BlakeHash, (const uint8_t *)context->ad,
|
|
context->adlen);
|
|
}
|
|
|
|
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
|
}
|
|
|
|
/**
|
|
* Function allocates memory, hashes the inputs with Blake, and creates
|
|
* first two blocks. Returns the pointer to the main memory with 2
|
|
* blocks per lane initialized.
|
|
*
|
|
* @param context Pointer to the Argon2 internal structure containing memory
|
|
* pointer, and parameters for time and space requirements.
|
|
* @param instance Current Argon2 instance
|
|
* @return Zero if successful, -1 if memory failed to allocate. @context->state
|
|
* will be modified if successful.
|
|
*/
|
|
int initialize(argon2_instance_t *instance, argon2_context *context) {
|
|
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
|
|
int result = ARGON2_OK;
|
|
|
|
if (instance == NULL || context == NULL)
|
|
return ARGON2_INCORRECT_PARAMETER;
|
|
instance->context_ptr = context;
|
|
|
|
/* 1. Memory allocation */
|
|
result = allocate_memory(context, (uint8_t **)&(instance->memory),
|
|
instance->memory_blocks, sizeof(block));
|
|
if (result != ARGON2_OK) {
|
|
return result;
|
|
}
|
|
|
|
/* 2. Initial hashing */
|
|
/* H_0 + 8 extra bytes to produce the first blocks */
|
|
/* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */
|
|
/* Hashing all inputs */
|
|
initial_hash(blockhash, context, instance->type);
|
|
/* Zeroing 8 extra bytes */
|
|
clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
|
|
ARGON2_PREHASH_SEED_LENGTH -
|
|
ARGON2_PREHASH_DIGEST_LENGTH);
|
|
|
|
/* 3. Creating first blocks, we always have at least two blocks in a slice
|
|
*/
|
|
fill_first_blocks(blockhash, instance);
|
|
/* Clearing the hash */
|
|
clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
|
|
|
|
return ARGON2_OK;
|
|
}
|