cosmopolitan/third_party/intel/clang/ammintrin.h
Justine Tunney c9152b6f14
Release Cosmopolitan v3.8.0
This change switches c++ exception handling from sjlj to standard dwarf.
It's needed because clang for aarch64 doesn't support sjlj. It turns out
that libunwind had a bare-metal configuration that made this easy to do.

This change gets the new experimental cosmocc -mclang flag in a state of
working so well that it can now be used to build all of llamafile and it
goes 3x faster in terms of build latency, without trading away any perf.

The int_fast16_t and int_fast32_t types are now always defined as 32-bit
in the interest of having more abi consistency between cosmocc -mgcc and
-mclang mode.
2024-08-30 20:14:07 -07:00

183 lines
7.6 KiB
C

/*===---- ammintrin.h - SSE4a intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __AMMINTRIN_H
#define __AMMINTRIN_H
#if !defined(__i386__) && !defined(__x86_64__)
#error "This header is only meant to be used on x86 and x64 architecture"
#endif
#include "pmmintrin.h"
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4a"), __min_vector_width__(128)))
/// Extracts the specified bits from the lower 64 bits of the 128-bit
/// integer vector operand at the index \a idx and of the length \a len.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_extracti_si64(__m128i x, const int len, const int idx);
/// \endcode
///
/// This intrinsic corresponds to the <c> EXTRQ </c> instruction.
///
/// \param x
/// The value from which bits are extracted.
/// \param len
/// Bits [5:0] specify the length; the other bits are ignored. If bits [5:0]
/// are zero, the length is interpreted as 64.
/// \param idx
/// Bits [5:0] specify the index of the least significant bit; the other
/// bits are ignored. If the sum of the index and length is greater than 64,
/// the result is undefined. If the length and index are both zero, bits
/// [63:0] of parameter \a x are extracted. If the length is zero but the
/// index is non-zero, the result is undefined.
/// \returns A 128-bit integer vector whose lower 64 bits contain the bits
/// extracted from the source operand.
#define _mm_extracti_si64(x, len, idx) \
((__m128i)__builtin_ia32_extrqi((__v2di)(__m128i)(x), \
(char)(len), (char)(idx)))
/// Extracts the specified bits from the lower 64 bits of the 128-bit
/// integer vector operand at the index and of the length specified by
/// \a __y.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> EXTRQ </c> instruction.
///
/// \param __x
/// The value from which bits are extracted.
/// \param __y
/// Specifies the index of the least significant bit at [13:8] and the
/// length at [5:0]; all other bits are ignored. If bits [5:0] are zero, the
/// length is interpreted as 64. If the sum of the index and length is
/// greater than 64, the result is undefined. If the length and index are
/// both zero, bits [63:0] of parameter \a __x are extracted. If the length
/// is zero but the index is non-zero, the result is undefined.
/// \returns A 128-bit vector whose lower 64 bits contain the bits extracted
/// from the source operand.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_extract_si64(__m128i __x, __m128i __y)
{
return (__m128i)__builtin_ia32_extrq((__v2di)__x, (__v16qi)__y);
}
/// Inserts bits of a specified length from the source integer vector
/// \a y into the lower 64 bits of the destination integer vector \a x at
/// the index \a idx and of the length \a len.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_inserti_si64(__m128i x, __m128i y, const int len,
/// const int idx);
/// \endcode
///
/// This intrinsic corresponds to the <c> INSERTQ </c> instruction.
///
/// \param x
/// The destination operand where bits will be inserted. The inserted bits
/// are defined by the length \a len and by the index \a idx specifying the
/// least significant bit.
/// \param y
/// The source operand containing the bits to be extracted. The extracted
/// bits are the least significant bits of operand \a y of length \a len.
/// \param len
/// Bits [5:0] specify the length; the other bits are ignored. If bits [5:0]
/// are zero, the length is interpreted as 64.
/// \param idx
/// Bits [5:0] specify the index of the least significant bit; the other
/// bits are ignored. If the sum of the index and length is greater than 64,
/// the result is undefined. If the length and index are both zero, bits
/// [63:0] of parameter \a y are inserted into parameter \a x. If the length
/// is zero but the index is non-zero, the result is undefined.
/// \returns A 128-bit integer vector containing the original lower 64-bits of
/// destination operand \a x with the specified bitfields replaced by the
/// lower bits of source operand \a y. The upper 64 bits of the return value
/// are undefined.
#define _mm_inserti_si64(x, y, len, idx) \
((__m128i)__builtin_ia32_insertqi((__v2di)(__m128i)(x), \
(__v2di)(__m128i)(y), \
(char)(len), (char)(idx)))
/// Inserts bits of a specified length from the source integer vector
/// \a __y into the lower 64 bits of the destination integer vector \a __x
/// at the index and of the length specified by \a __y.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> INSERTQ </c> instruction.
///
/// \param __x
/// The destination operand where bits will be inserted. The inserted bits
/// are defined by the length and by the index of the least significant bit
/// specified by operand \a __y.
/// \param __y
/// The source operand containing the bits to be extracted. The extracted
/// bits are the least significant bits of operand \a __y with length
/// specified by bits [69:64]. These are inserted into the destination at the
/// index specified by bits [77:72]; all other bits are ignored. If bits
/// [69:64] are zero, the length is interpreted as 64. If the sum of the
/// index and length is greater than 64, the result is undefined. If the
/// length and index are both zero, bits [63:0] of parameter \a __y are
/// inserted into parameter \a __x. If the length is zero but the index is
/// non-zero, the result is undefined.
/// \returns A 128-bit integer vector containing the original lower 64-bits of
/// destination operand \a __x with the specified bitfields replaced by the
/// lower bits of source operand \a __y. The upper 64 bits of the return
/// value are undefined.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_insert_si64(__m128i __x, __m128i __y)
{
return (__m128i)__builtin_ia32_insertq((__v2di)__x, (__v2di)__y);
}
/// Stores a 64-bit double-precision value in a 64-bit memory location.
/// To minimize caching, the data is flagged as non-temporal (unlikely to be
/// used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTSD </c> instruction.
///
/// \param __p
/// The 64-bit memory location used to store the register value.
/// \param __a
/// The 64-bit double-precision floating-point register value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_sd(void *__p, __m128d __a)
{
__builtin_ia32_movntsd((double *)__p, (__v2df)__a);
}
/// Stores a 32-bit single-precision floating-point value in a 32-bit
/// memory location. To minimize caching, the data is flagged as
/// non-temporal (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTSS </c> instruction.
///
/// \param __p
/// The 32-bit memory location used to store the register value.
/// \param __a
/// The 32-bit single-precision floating-point register value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_ss(void *__p, __m128 __a)
{
__builtin_ia32_movntss((float *)__p, (__v4sf)__a);
}
#undef __DEFAULT_FN_ATTRS
#endif /* __AMMINTRIN_H */