cosmopolitan/test/tool/build/lib/machine_test.c
Justine Tunney e75ffde09e Get codebase completely working with LLVM
You can now build Cosmopolitan with Clang:

    make -j8 MODE=llvm
    o/llvm/examples/hello.com

The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
2021-02-09 02:57:32 -08:00

348 lines
12 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/fmt/bing.internal.h"
#include "libc/math.h"
#include "libc/mem/mem.h"
#include "libc/runtime/gc.h"
#include "libc/stdio/stdio.h"
#include "libc/testlib/ezbench.h"
#include "libc/testlib/testlib.h"
#include "libc/x/x.h"
#include "tool/build/lib/endian.h"
#include "tool/build/lib/fpu.h"
#include "tool/build/lib/machine.h"
#include "tool/build/lib/memory.h"
const uint8_t kPi80[] = {
0xd9, 0xe8, // fld1
0xb8, 0x0a, 0x00, 0x00, 0x00, // mov $0xa,%eax
0x31, 0xd2, // xor %edx,%edx
0xd9, 0xee, // fldz
0x48, 0x98, // cltq
0x48, 0x39, 0xc2, // cmp %rax,%rdx
0xd9, 0x05, 0x1a, 0x00, 0x00, 0x00, // flds 0x1a(%rip)
0x7d, 0x13, // jge 2b <pi80+0x2b>
0xde, 0xc1, // faddp
0x48, 0xff, 0xc2, // inc %rdx
0xd9, 0xfa, // fsqrt
0xd9, 0x05, 0x0f, 0x00, 0x00, 0x00, // flds 15(%rip)
0xd8, 0xc9, // fmul %st(1),%st
0xde, 0xca, // fmulp %st,%st(2)
0xeb, 0xe2, // jmp d <pi80+0xd>
0xdd, 0xd9, // fstp %st(1)
0xde, 0xf1, // fdivp
0xf4, // hlt
0x00, 0x00, 0x00, 0x40, // .float 2.0
0x00, 0x00, 0x00, 0x3f, // .float 0.5
};
const uint8_t kTenthprime[] = {
0x31, 0xd2, // xor %edx,%edx
0x45, 0x31, 0xc0, // xor %r8d,%r8d
0x31, 0xc9, // xor %ecx,%ecx
0xbe, 0x03, 0x00, 0x00, 0x00, // mov $0x3,%esi
0x41, 0xff, 0xc0, // inc %r8d
0x44, 0x89, 0xc0, // mov %r8d,%eax
0x83, 0xf9, 0x0a, // cmp $0xa,%ecx
0x74, 0x0b, // je 20
0x99, // cltd
0xf7, 0xfe, // idiv %esi
0x83, 0xfa, 0x01, // cmp $0x1,%edx
0x83, 0xd9, 0xff, // sbb $-1,%ecx
0xeb, 0xea, // jmp a
0xf4, // hlt
};
const uint8_t kTenthprime2[] = {
0xE8, 0x11, 0x00, 0x00, 0x00, //
0xF4, //
0x89, 0xF8, //
0xB9, 0x03, 0x00, 0x00, 0x00, //
0x99, //
0xF7, 0xF9, //
0x85, 0xD2, //
0x0F, 0x95, 0xC0, //
0xC3, //
0x55, //
0x48, 0x89, 0xE5, //
0x31, 0xF6, //
0x45, 0x31, 0xC0, //
0x44, 0x89, 0xC7, //
0xE8, 0xDF, 0xFF, 0xFF, 0xFF, //
0x0F, 0xB6, 0xC0, //
0x66, 0x83, 0xF8, 0x01, //
0x83, 0xDE, 0xFF, //
0x41, 0xFF, 0xC0, //
0x83, 0xFE, 0x0A, //
0x75, 0xE6, //
0x44, 0x89, 0xC0, //
0x5D, //
0xC3, //
};
struct Machine *m;
void SetUp(void) {
m = NewMachine();
m->mode = XED_MACHINE_MODE_LONG_64;
m->cr3 = AllocateLinearPage(m);
ReserveVirtual(m, 0, 4096, 0x0207);
ASSERT_EQ(0x1007, Read64(m->real.p + 0x0000)); // PML4T
ASSERT_EQ(0x2007, Read64(m->real.p + 0x1000)); // PDPT
ASSERT_EQ(0x3007, Read64(m->real.p + 0x2000)); // PDE
ASSERT_EQ(0x0207, Read64(m->real.p + 0x3000)); // PT
ASSERT_EQ(0x4000, m->real.i);
ASSERT_EQ(1, m->memstat.reserved);
ASSERT_EQ(4, m->memstat.committed);
ASSERT_EQ(4, m->memstat.allocated);
ASSERT_EQ(3, m->memstat.pagetables);
Write64(m->sp, 4096);
}
void TearDown(void) {
FreeVirtual(m, 0, 4096);
ASSERT_EQ(0x1007, Read64(m->real.p + 0x0000)); // PML4T
ASSERT_EQ(0x2007, Read64(m->real.p + 0x1000)); // PDPT
ASSERT_EQ(0x3007, Read64(m->real.p + 0x2000)); // PDE
ASSERT_EQ(0x0000, Read64(m->real.p + 0x3000)); // PT
FreeMachine(m);
}
int ExecuteUntilHalt(struct Machine *m) {
int rc;
if (!(rc = setjmp(m->onhalt))) {
for (;;) {
LoadInstruction(m);
ExecuteInstruction(m);
}
} else {
return rc;
}
}
TEST(machine, test) {
VirtualRecv(m, 0, kTenthprime, sizeof(kTenthprime));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
}
TEST(machine, testFpu) {
VirtualRecv(m, 0, kPi80, sizeof(kPi80));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_TRUE(fabsl(3.14159 - FpuPop(m)) < 0.0001);
m->ip = 0;
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_TRUE(fabsl(3.14159 - FpuPop(m)) < 0.0001);
}
BENCH(machine, benchPrimeNumberPrograms) {
VirtualRecv(m, 0, kTenthprime2, sizeof(kTenthprime2));
EZBENCH2("tenthprime2", m->ip = 0, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
VirtualRecv(m, 0, kTenthprime, sizeof(kTenthprime));
EZBENCH2("tenthprime", m->ip = 0, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
}
static void machine_benchFpu_fn(void) {
ExecuteUntilHalt(m);
FpuPop(m);
}
BENCH(machine, benchFpu) {
VirtualRecv(m, 0, kPi80, sizeof(kPi80));
EZBENCH2("pi80", m->ip = 0, machine_benchFpu_fn());
}
BENCH(machine, benchLoadExec2) {
uint8_t kMovCode[] = {0xbe, 0x03, 0x00, 0x00, 0x00};
VirtualRecv(m, 0, kMovCode, sizeof(kMovCode));
LoadInstruction(m);
EZBENCH2("mov", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec3) {
uint8_t kMovdCode[] = {0x66, 0x0f, 0x6e, 0xc0};
Write64(m->ax, 0);
VirtualRecv(m, 0, kMovdCode, sizeof(kMovdCode));
LoadInstruction(m);
EZBENCH2("movd", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec4) {
uint8_t kAddpsRegregCode[] = {0x0f, 0x58, 0xC0};
uint8_t kAddpsMemregCode[] = {0x0f, 0x58, 0x00};
Write64(m->ax, 0);
VirtualRecv(m, 0, kAddpsRegregCode, sizeof(kAddpsRegregCode));
LoadInstruction(m);
EZBENCH2("addps reg reg", m->ip = 0, ExecuteInstruction(m));
VirtualRecv(m, 0, kAddpsMemregCode, sizeof(kAddpsMemregCode));
LoadInstruction(m);
EZBENCH2("addps mem reg", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec5) {
uint8_t kPaddwRegregCode[] = {0x66, 0x0F, 0xFD, 0xC0};
uint8_t kPaddwMemregCode[] = {0x66, 0x0F, 0xFD, 0x00};
Write64(m->ax, 0);
VirtualRecv(m, 0, kPaddwRegregCode, sizeof(kPaddwRegregCode));
LoadInstruction(m);
EZBENCH2("paddw", m->ip = 0, ExecuteInstruction(m));
VirtualRecv(m, 0, kPaddwMemregCode, sizeof(kPaddwMemregCode));
LoadInstruction(m);
EZBENCH2("paddw mem", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec6) {
uint8_t kPsubqRegregCode[] = {0x66, 0x0F, 0xFB, 0xC0};
uint8_t kPsubqMemregCode[] = {0x66, 0x0F, 0xFB, 0x00};
Write64(m->ax, 0);
VirtualRecv(m, 0, kPsubqRegregCode, sizeof(kPsubqRegregCode));
LoadInstruction(m);
EZBENCH2("psubq", m->ip = 0, ExecuteInstruction(m));
VirtualRecv(m, 0, kPsubqMemregCode, sizeof(kPsubqMemregCode));
LoadInstruction(m);
EZBENCH2("psubq mem", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchAddqMem) {
uint8_t kAddMemregCode[] = {0x48, 0x03, 0x08};
Write64(m->ax, 0);
VirtualRecv(m, 0, kAddMemregCode, sizeof(kAddMemregCode));
LoadInstruction(m);
EZBENCH2("addq mem", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchAddlMem) {
uint8_t kAddMemregCode[] = {0x03, 0x08};
Write64(m->ax, 0);
VirtualRecv(m, 0, kAddMemregCode, sizeof(kAddMemregCode));
LoadInstruction(m);
EZBENCH2("addl mem", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchAddq) {
uint8_t kAddqCode[] = {0x48, 0x01, 0xd8};
Write64(m->ax, 0);
VirtualRecv(m, 0, kAddqCode, sizeof(kAddqCode));
LoadInstruction(m);
EZBENCH2("addq", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchAddb) {
uint8_t kAddbCode[] = {0x00, 0xd8};
Write64(m->ax, 0);
VirtualRecv(m, 0, kAddbCode, sizeof(kAddbCode));
LoadInstruction(m);
EZBENCH2("addb", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchXorReg) {
VirtualRecv(m, 0, kTenthprime, sizeof(kTenthprime));
LoadInstruction(m);
EZBENCH2("xor", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec8) {
uint8_t kFchsCode[] = {0xd9, 0xe0};
Write64(m->ax, 0);
OpFinit(m);
*FpuSt(m, 0) = M_PI;
FpuSetTag(m, 0, kFpuTagValid);
VirtualRecv(m, 0, kFchsCode, sizeof(kFchsCode));
LoadInstruction(m);
EZBENCH2("fchs", m->ip = 0, ExecuteInstruction(m));
}
static void machine_benchPushpop_fn(void) {
LoadInstruction(m);
ExecuteInstruction(m);
LoadInstruction(m);
ExecuteInstruction(m);
}
BENCH(machine, benchPushpop) {
uint8_t kPushpop[] = {0x50, 0x58};
Write64(m->ax, 0);
VirtualRecv(m, 0, kPushpop, sizeof(kPushpop));
EZBENCH2("pushpop", m->ip = 0, machine_benchPushpop_fn());
}
BENCH(machine, benchPause) {
uint8_t kPause[] = {0xf3, 0x90};
Write64(m->ax, 0);
VirtualRecv(m, 0, kPause, sizeof(kPause));
LoadInstruction(m);
EZBENCH2("pause", m->ip = 0, ExecuteInstruction(m));
}
BENCH(machine, benchClc) {
uint8_t kClc[] = {0xf8};
Write64(m->ax, 0);
VirtualRecv(m, 0, kClc, sizeof(kClc));
LoadInstruction(m);
EZBENCH2("clc", m->ip = 0, ExecuteInstruction(m));
}
static void machine_benchNop_fn(void) {
LoadInstruction(m);
ExecuteInstruction(m);
}
BENCH(machine, benchNop) {
uint8_t kNop[] = {0x90};
Write64(m->ax, 0);
VirtualRecv(m, 0, kNop, sizeof(kNop));
LoadInstruction(m);
EZBENCH2("nop", m->ip = 0, ExecuteInstruction(m));
EZBENCH2("nop w/ load", m->ip = 0, machine_benchNop_fn());
}
TEST(x87, fprem1) {
// 1 rem -1.5
const uint8_t prog[] = {
0xd9, 0x05, 0x05, 0x00, 0x00, 0x00, // flds
0xd9, 0xe8, // fld1
0xd9, 0xf8, // fprem
0xf4, // hlt
0x00, 0x00, 0xc0, 0xbf, // .float -1.5
};
VirtualRecv(m, 0, prog, sizeof(prog));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_LDBL_EQ(1, FpuPop(m));
}
TEST(x87, fprem2) {
// 12300000000000000. rem .0000000000000123
const uint8_t prog[] = {
0xdd, 0x05, 0x11, 0x00, 0x00, 0x00, // fldl
0xdd, 0x05, 0x03, 0x00, 0x00, 0x00, // fldl
0xd9, 0xf8, // fprem
0xf4, // hlt
0x00, 0x60, 0x5e, 0x75, 0x64, 0xd9, 0x45, 0x43, //
0x5b, 0x14, 0xea, 0x9d, 0x77, 0xb2, 0x0b, 0x3d, //
};
VirtualRecv(m, 0, prog, sizeof(prog));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_LDBL_EQ(1.1766221079117338e-14, FpuPop(m));
}
TEST(machine, sizeIsReasonable) {
ASSERT_LE(sizeof(struct Machine), 65536 * 3);
}