cosmopolitan/third_party/nsync/mem/nsync_once.c
Justine Tunney 8c645fa1ee
Make mmap() scalable
It's now possible to create thousands of thousands of sparse independent
memory mappings, without any slowdown. The memory manager is better with
tracking memory protection now, particularly on Windows in a precise way
that can be restored during fork(). You now have the highest quality mem
manager possible. It's even better than some OSes like XNU, where mmap()
is implemented as an O(n) operation which means sadly things aren't much
improved over there. With this change the llamafile HTTP server endpoint
at /tokenize with a prompt of 50 tokens is now able to handle 2.6m r/sec
2024-07-05 23:26:00 -07:00

145 lines
5.6 KiB
C

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2016 Google Inc. │
│ │
│ Licensed under the Apache License, Version 2.0 (the "License"); │
│ you may not use this file except in compliance with the License. │
│ You may obtain a copy of the License at │
│ │
│ http://www.apache.org/licenses/LICENSE-2.0 │
│ │
│ Unless required by applicable law or agreed to in writing, software │
│ distributed under the License is distributed on an "AS IS" BASIS, │
│ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │
│ See the License for the specific language governing permissions and │
│ limitations under the License. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/nsync/atomic.h"
#include "third_party/nsync/atomic.internal.h"
#include "third_party/nsync/common.internal.h"
#include "third_party/nsync/mu_semaphore.h"
#include "third_party/nsync/once.h"
#include "third_party/nsync/races.internal.h"
#include "libc/thread/thread.h"
#include "third_party/nsync/wait_s.internal.h"
__static_yoink("nsync_notice");
/* An once_sync_s struct contains a lock, and a condition variable on which
threads may wait for an nsync_once to be initialized by another thread.
A separate struct is used only to keep nsync_once small.
A given nsync_once can be associated with any once_sync_s struct, but cannot
be associated with more than one. nsync_once instances are mapped to
once_sync_s instances by a trivial hashing scheme implemented by
NSYNC_ONCE_SYNC_().
The number of once_sync_s structs in the following array is greater than one
only to reduce the probability of contention if a great many distinct
nsync_once variables are initialized concurrently. */
static struct once_sync_s {
nsync_mu once_mu;
nsync_cv once_cv;
} once_sync[64];
/* Return a pointer to the once_sync_s struct associated with the nsync_once *p. */
#define NSYNC_ONCE_SYNC_(p) &once_sync[(((uintptr_t) (p)) / sizeof (*(p))) % \
(sizeof (once_sync) / sizeof (once_sync[0]))]
/* Implement nsync_run_once, nsync_run_once_arg, nsync_run_once_spin, or
nsync_run_once_arg_spin, chosen as described below.
If s!=NULL, s is required to point to the once_sync_s associated with *once,
and the semantics of nsync_run_once or nsync_run_once_arg are provided.
If s==NULL, the semantics of nsync_run_once_spin, or nsync_run_once_arg_spin
are provided.
If f!=NULL, the semantics of nsync_run_once or nsync_run_once_spin are
provided. Otherwise, farg is required to be non-NULL, and the semantics of
nsync_run_once_arg or nsync_run_once_arg_spin are provided. */
static void nsync_run_once_impl (nsync_once *once, struct once_sync_s *s,
void (*f) (void), void (*farg) (void *arg), void *arg) {
uint32_t o = ATM_LOAD_ACQ (once);
if (o != 2) {
unsigned attempts = 0;
if (s != NULL) {
nsync_mu_lock (&s->once_mu);
}
while (o == 0 && !ATM_CAS_ACQ (once, 0, 1)) {
o = ATM_LOAD (once);
}
if (o == 0) {
if (s != NULL) {
nsync_mu_unlock (&s->once_mu);
}
if (f != NULL) {
(*f) ();
} else {
(*farg) (arg);
}
if (s != NULL) {
nsync_mu_lock (&s->once_mu);
nsync_cv_broadcast (&s->once_cv);
}
ATM_STORE_REL (once, 2);
}
while (ATM_LOAD_ACQ (once) != 2) {
if (s != NULL) {
nsync_time deadline;
if (attempts < 50) {
attempts += 10;
}
deadline = nsync_time_add (nsync_time_now (), nsync_time_ms (attempts));
nsync_cv_wait_with_deadline (&s->once_cv, &s->once_mu, deadline, NULL);
} else {
attempts = pthread_delay_np (once, attempts);
}
}
if (s != NULL) {
nsync_mu_unlock (&s->once_mu);
}
}
}
void nsync_run_once (nsync_once *once, void (*f) (void)) {
uint32_t o;
IGNORE_RACES_START ();
o = ATM_LOAD_ACQ (once);
if (o != 2) {
struct once_sync_s *s = NSYNC_ONCE_SYNC_ (once);
nsync_run_once_impl (once, s, f, NULL, NULL);
}
IGNORE_RACES_END ();
}
void nsync_run_once_arg (nsync_once *once, void (*farg) (void *arg), void *arg) {
uint32_t o;
IGNORE_RACES_START ();
o = ATM_LOAD_ACQ (once);
if (o != 2) {
struct once_sync_s *s = NSYNC_ONCE_SYNC_ (once);
nsync_run_once_impl (once, s, NULL, farg, arg);
}
IGNORE_RACES_END ();
}
void nsync_run_once_spin (nsync_once *once, void (*f) (void)) {
uint32_t o;
IGNORE_RACES_START ();
o = ATM_LOAD_ACQ (once);
if (o != 2) {
nsync_run_once_impl (once, NULL, f, NULL, NULL);
}
IGNORE_RACES_END ();
}
void nsync_run_once_arg_spin (nsync_once *once, void (*farg) (void *arg), void *arg) {
uint32_t o;
IGNORE_RACES_START ();
o = ATM_LOAD_ACQ (once);
if (o != 2) {
nsync_run_once_impl (once, NULL, NULL, farg, arg);
}
IGNORE_RACES_END ();
}