mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
fa20edc44d
- Remove most __ASSEMBLER__ __LINKER__ ifdefs - Rename libc/intrin/bits.h to libc/serialize.h - Block pthread cancelation in fchmodat() polyfill - Remove `clang-format off` statements in third_party
972 lines
38 KiB
C++
972 lines
38 KiB
C++
/*-*-mode:c++;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8-*-│
|
|
│vi: set net ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|
│ │
|
|
│ llama.com │
|
|
│ Copyright (c) 2023 Justine Alexandra Roberts Tunney │
|
|
│ Copyright (c) 2023 Georgi Gerganov │
|
|
│ │
|
|
│ Permission is hereby granted, free of charge, to any person obtaining │
|
|
│ a copy of this software and associated documentation files (the │
|
|
│ "Software"), to deal in the Software without restriction, including │
|
|
│ without limitation the rights to use, copy, modify, merge, publish, │
|
|
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
|
│ permit persons to whom the Software is furnished to do so, subject to │
|
|
│ the following conditions: │
|
|
│ │
|
|
│ The above copyright notice and this permission notice shall be │
|
|
│ included in all copies or substantial portions of the Software. │
|
|
│ │
|
|
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
|
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
|
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
|
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
|
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
|
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
|
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
|
│ │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/assert.h"
|
|
#include "libc/calls/calls.h"
|
|
#include "libc/calls/struct/sched_param.h"
|
|
#include "libc/calls/struct/sigaction.h"
|
|
#include "libc/calls/struct/stat.h"
|
|
#include "libc/log/log.h"
|
|
#include "libc/macros.internal.h"
|
|
#include "libc/nexgen32e/x86feature.h"
|
|
#include "libc/runtime/runtime.h"
|
|
#include "libc/stdio/stdio.h"
|
|
#include "libc/sysv/consts/ioprio.h"
|
|
#include "libc/sysv/consts/map.h"
|
|
#include "libc/sysv/consts/msync.h"
|
|
#include "libc/sysv/consts/o.h"
|
|
#include "libc/sysv/consts/prio.h"
|
|
#include "libc/sysv/consts/prot.h"
|
|
#include "libc/sysv/consts/sig.h"
|
|
#include "third_party/ggml/common.h"
|
|
#include "third_party/ggml/llama.h"
|
|
#include "third_party/ggml/llama_util.h"
|
|
#include "third_party/libcxx/atomic"
|
|
#include "third_party/libcxx/iostream"
|
|
#include "third_party/libcxx/string"
|
|
#include "libc/serialize.h"
|
|
#include "third_party/libcxx/vector"
|
|
|
|
#define EPHEMERAL(fmt) "\r\e[K\033[1;35m" fmt " \033[0m"
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
llama.cpp (MIT License)\\n\
|
|
Copyright (c) 2023 Georgi Gerganov\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
|
|
static gpt_params params;
|
|
static llama_context * ctx;
|
|
static console_state con_st;
|
|
|
|
static int n_past;
|
|
static int n_remain;
|
|
static int n_consumed;
|
|
static bool input_noecho;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static std::atomic<bool> is_stalled;
|
|
static std::atomic<bool> is_terminated;
|
|
static std::atomic<bool> is_interacting;
|
|
|
|
static void acknowledge_shutdown(void) {
|
|
write(2, "^C", 2);
|
|
}
|
|
|
|
static void sigint_handler_batch(int signo) {
|
|
is_terminated = true;
|
|
acknowledge_shutdown();
|
|
}
|
|
|
|
static void sigint_handler_interactive(int signo) {
|
|
if (!is_interacting && !is_stalled) {
|
|
is_interacting = true;
|
|
} else {
|
|
is_terminated = true;
|
|
acknowledge_shutdown();
|
|
}
|
|
}
|
|
|
|
static int CompareTime(struct timespec a, struct timespec b) {
|
|
int cmp;
|
|
if (!(cmp = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec))) {
|
|
cmp = (a.tv_nsec > b.tv_nsec) - (a.tv_nsec < b.tv_nsec);
|
|
}
|
|
return cmp;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// ux explanatory logging for llama.com developers
|
|
|
|
#if 0
|
|
#define DEVLOG(...) (void)0
|
|
#else
|
|
#define DEVLOG(...) if (g_devlog) fprintf(g_devlog, __VA_ARGS__)
|
|
static FILE *g_devlog;
|
|
__attribute__((__constructor__)) static void init(void) {
|
|
char path[PATH_MAX];
|
|
static char linebuf[4096];
|
|
snprintf(path, sizeof(path), "/tmp/llama-%s.log", getenv("USER"));
|
|
if ((g_devlog = fopen(path, "wa"))) {
|
|
setvbuf(g_devlog, linebuf, _IOLBF, sizeof(linebuf));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
enum jtlp_status {
|
|
kPromptPending,
|
|
kPromptCompleted,
|
|
kPromptFinished
|
|
};
|
|
|
|
struct jtlp_header {
|
|
uint8_t magic[4];
|
|
uint8_t version[4];
|
|
uint8_t state_size[8];
|
|
uint8_t model_dev[8];
|
|
uint8_t model_ino[8];
|
|
uint8_t model_mtim_sec[8];
|
|
uint8_t model_mtim_nsec[8];
|
|
uint8_t prompt_size[8];
|
|
};
|
|
|
|
constexpr uint32_t kJtlpMagic = 'j' | 't' << 8 | 'l' << 16 | 'p' << 24;
|
|
constexpr uint32_t kJtlpVersion = 0;
|
|
|
|
static std::string last_output;
|
|
static std::vector<llama_token> last_n_tokens;
|
|
static std::string::size_type longest_antiprompt;
|
|
static enum jtlp_status prompt_status = kPromptPending;
|
|
|
|
static void remember_init() {
|
|
last_output.clear();
|
|
last_n_tokens.resize(llama_n_ctx(ctx), 0);
|
|
for (std::string & antiprompt : params.antiprompt) {
|
|
longest_antiprompt = std::max(longest_antiprompt, antiprompt.size());
|
|
}
|
|
longest_antiprompt += llama_longest_token(ctx) * 2;
|
|
}
|
|
|
|
static void remember_token(llama_token tok,
|
|
bool is_user_input = false) {
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(tok);
|
|
if (!is_user_input) {
|
|
last_output.append(llama_token_to_str(ctx, tok));
|
|
if (last_output.size() > longest_antiprompt) {
|
|
last_output.erase(0, last_output.size() - longest_antiprompt);
|
|
}
|
|
}
|
|
DEVLOG("remember_token(%`'s, %d) -> %`'s\n",
|
|
llama_token_to_str(ctx, tok), is_user_input,
|
|
last_output.c_str());
|
|
}
|
|
|
|
static bool has_antiprompt(std::string::size_type *out_index = nullptr,
|
|
std::string *out_antiprompt = nullptr) {
|
|
for (std::string & antiprompt : params.antiprompt) {
|
|
std::string::size_type index = last_output.rfind(antiprompt);
|
|
if (index != std::string::npos) {
|
|
if (out_index) *out_index = index;
|
|
if (out_antiprompt) *out_antiprompt = antiprompt;
|
|
DEVLOG("found antiprompt %`'s at index %d of %`'s\n",
|
|
antiprompt.c_str(), (int)index, last_output.c_str());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void finish_initializing_prompt() {
|
|
prompt_status = kPromptFinished;
|
|
if (params.interactive) {
|
|
std::string::size_type ap_index;
|
|
is_interacting = true;
|
|
if (has_antiprompt(&ap_index)) {
|
|
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
|
printf("%s", last_output.substr(ap_index).c_str());
|
|
fflush(stdout);
|
|
}
|
|
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
|
}
|
|
last_output.clear();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static int on_missing_feature(const char *name) {
|
|
fprintf(stderr, "%s: error: cpuid %s not detected\n", __func__, name);
|
|
fprintf(stderr, "%s: amd microprocessors made after 2017 usually work\n", __func__);
|
|
fprintf(stderr, "%s: intel microprocessors made after 2013 usually work\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
verynice();
|
|
ShowCrashReports();
|
|
|
|
setvbuf(stdin, NULL, _IONBF, 0);
|
|
setvbuf(stdout, NULL, _IONBF, 0);
|
|
setvbuf(stderr, NULL, _IONBF, 0);
|
|
|
|
params.model = "models/llama-7B/ggml-model.bin";
|
|
|
|
#ifdef __x86_64__
|
|
if (!X86_HAVE(AVX2)) return on_missing_feature("avx2");
|
|
if (!X86_HAVE(AVX)) return on_missing_feature("avx");
|
|
if (!X86_HAVE(FMA)) return on_missing_feature("fma");
|
|
if (!X86_HAVE(SSE3)) return on_missing_feature("sse3");
|
|
if (!X86_HAVE(F16C)) return on_missing_feature("f16c");
|
|
#endif /* __x86_64__ */
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
// save choice to use color for later
|
|
// (note for later: this is a slightly awkward choice)
|
|
con_st.use_color = params.use_color;
|
|
|
|
con_st.multiline_input = params.multiline_input;
|
|
console_init(con_st);
|
|
atexit([]() { console_cleanup(con_st); });
|
|
|
|
if (params.perplexity) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.embedding) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.n_ctx > 2048) {
|
|
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
|
"expect poor results\n", __func__, params.n_ctx);
|
|
}
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
}
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
// params.prompt = R"(// this function checks if the number n is prime
|
|
//bool is_prime(int n) {)";
|
|
|
|
struct stat model_stat;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
ctx = llama_init_from_gpt_params(params);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
stat(params.model.c_str(), &model_stat);
|
|
|
|
if (!params.lora_adapter.empty()) {
|
|
int err = llama_apply_lora_from_file(ctx,
|
|
params.lora_adapter.c_str(),
|
|
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
|
params.n_threads);
|
|
if (err != 0) {
|
|
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// print system information
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
}
|
|
|
|
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
|
|
// uncomment the "used_mem" line in llama.cpp to see the results
|
|
if (params.mem_test) {
|
|
{
|
|
const std::vector<llama_token> tmp(params.n_batch, 0);
|
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
}
|
|
|
|
{
|
|
const std::vector<llama_token> tmp = { 0, };
|
|
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
|
|
}
|
|
|
|
if (params.verbose > 0) {
|
|
llama_print_timings(ctx);
|
|
}
|
|
llama_free(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
|
// params.prompt.insert(0, 1, ' ');
|
|
|
|
// tokenize the prompt
|
|
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
|
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
|
return 1;
|
|
}
|
|
|
|
// number of tokens to keep when resetting context
|
|
int n_keep = params.n_keep;
|
|
if (n_keep < 0 || n_keep > (int)embd_inp.size() || params.instruct) {
|
|
n_keep = (int)embd_inp.size();
|
|
}
|
|
if (!n_keep && !params.n_keep_str.empty()) {
|
|
auto pivot = ::llama_tokenize(ctx, params.n_keep_str, false);
|
|
auto pos = std::search(embd_inp.begin(), embd_inp.end(),
|
|
pivot.begin(), pivot.end());
|
|
if (pos == embd_inp.end()) {
|
|
fprintf(stderr, "%s: error: --n_keep %`'s substring not found within prompt\n",
|
|
__func__, params.n_keep_str.c_str());
|
|
return 1;
|
|
}
|
|
n_keep = (pos - embd_inp.begin()) + (pivot.end() - pivot.begin());
|
|
}
|
|
|
|
// prefix & suffix for instruct mode
|
|
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
|
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
|
|
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
if (params.instruct) {
|
|
params.interactive_first = true;
|
|
params.antiprompt.push_back("### Instruction:\n\n");
|
|
}
|
|
|
|
// enable interactive mode if interactive start is specified
|
|
if (params.interactive_first) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
// determine newline token
|
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
|
|
if (params.verbose_prompt) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
fprintf(stderr, "%6d %6d -> %`'s\n", i, embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
fprintf(stderr, "%s: first part of prompt: \"", __func__);
|
|
for (int i = 0; i < n_keep; i++) {
|
|
fprintf(stderr, "%'s", llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
fprintf(stderr, "\"\n");
|
|
fprintf(stderr, "%s: second part of prompt: \"", __func__);
|
|
for (int i = n_keep; i < (int)embd_inp.size(); i++) {
|
|
fprintf(stderr, "%'s", llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
fprintf(stderr, "\"\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
// setup ctrl-c handler
|
|
struct sigaction sa;
|
|
sa.sa_flags = 0;
|
|
sigemptyset(&sa.sa_mask);
|
|
if (params.interactive) {
|
|
sa.sa_handler = sigint_handler_interactive;
|
|
} else {
|
|
sa.sa_handler = sigint_handler_batch;
|
|
}
|
|
sigaction(SIGINT, &sa, NULL);
|
|
|
|
if (params.interactive) {
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
|
}
|
|
|
|
if (params.verbose > 0 && params.antiprompt.size()) {
|
|
for (auto antiprompt : params.antiprompt) {
|
|
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
|
|
}
|
|
}
|
|
|
|
if (params.verbose > 0 && !params.input_prefix.empty()) {
|
|
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
|
|
}
|
|
}
|
|
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n",
|
|
params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
|
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n",
|
|
n_ctx, params.n_batch, params.n_predict, n_keep);
|
|
fprintf(stderr, "\n\n");
|
|
}
|
|
|
|
if (params.verbose > 0 && params.interactive) {
|
|
fprintf(stderr, "== Running in interactive mode. ==\n"
|
|
" - Press Ctrl+C to interject at any time.\n"
|
|
" - Press Return to return control to LLaMa.\n"
|
|
" - If you want to submit another line, end your input in '\\'.\n\n");
|
|
is_interacting = params.interactive_first;
|
|
}
|
|
|
|
remember_init();
|
|
|
|
input_noecho = params.verbose <= 0;
|
|
|
|
n_past = 0;
|
|
n_remain = params.n_predict;
|
|
n_consumed = 0;
|
|
|
|
// instantly reload prompt if it's cached
|
|
int fd = open(params.prompt_path.c_str(), O_RDONLY);
|
|
if (fd != -1) {
|
|
size_t state_size;
|
|
size_t prompt_size;
|
|
struct timespec mtim;
|
|
struct jtlp_header *header;
|
|
off_t rc = lseek(fd, 0, SEEK_END);
|
|
LLAMA_ASSERT(rc != -1);
|
|
void *map = MAP_FAILED;
|
|
size_t file_size = rc;
|
|
if (file_size < sizeof(header)) {
|
|
fprintf(stderr, "%s: prompt file too small\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
map = mmap(0, file_size, PROT_READ, MAP_SHARED, fd, 0);
|
|
if (map == MAP_FAILED) {
|
|
fprintf(stderr, "%s: mmap failed: %s\n",
|
|
params.prompt_path.c_str(), strerror(errno));
|
|
goto CantReloadPrompt;
|
|
}
|
|
header = (struct jtlp_header *)map;
|
|
// check file format magic
|
|
if (READ32LE(header->magic) != kJtlpMagic) {
|
|
fprintf(stderr, "%s: prompt file has wrong magic\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check file format version
|
|
if (READ32LE(header->version) > kJtlpVersion) {
|
|
fprintf(stderr, "%s: prompt has future file format version\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check expected state size
|
|
state_size = llama_get_state_size(ctx);
|
|
if (READ64LE(header->state_size) != state_size) {
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: prompt has stale data state size\n",
|
|
params.prompt_path.c_str());
|
|
}
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check model device id
|
|
if (READ64LE(header->model_dev) != model_stat.st_dev) {
|
|
fprintf(stderr, "%s: prompt is for different model (dev)\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check model inode id
|
|
if (READ64LE(header->model_ino) != model_stat.st_ino) {
|
|
fprintf(stderr, "%s: prompt is for different model (ino)\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check model modified timestamp
|
|
mtim.tv_sec = READ64LE(header->model_mtim_sec);
|
|
mtim.tv_nsec = READ64LE(header->model_mtim_nsec);
|
|
if (CompareTime(model_stat.st_mtim, mtim) > 0) {
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: model file timestamp changed; will reload and regenerate prompt\n",
|
|
params.prompt_path.c_str());
|
|
}
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check prompt file size
|
|
prompt_size = READ64LE(header->prompt_size);
|
|
if (sizeof(struct jtlp_header) + prompt_size + state_size > file_size) {
|
|
fprintf(stderr, "%s: prompt file size unexpected\n",
|
|
params.prompt_path.c_str());
|
|
goto CantReloadPrompt;
|
|
}
|
|
// check prompt textus
|
|
if (prompt_size != params.prompt.size() ||
|
|
memcmp(header + 1, params.prompt.c_str(), prompt_size) != 0) {
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: prompt text changed; will reload and regenerate\n",
|
|
params.prompt_path.c_str());
|
|
}
|
|
goto CantReloadPrompt;
|
|
}
|
|
// read the transformer state
|
|
llama_set_state_data(ctx, (uint8_t *)(header + 1) + prompt_size);
|
|
// we're finished loading the prompt file
|
|
if (params.verbose > 0) {
|
|
fprintf(stderr, "%s: %s: reloaded previously saved prompt\n",
|
|
__func__, params.prompt_path.c_str());
|
|
}
|
|
// now setup the business logic
|
|
llama_set_rng_seed(ctx, params.seed);
|
|
while ((int) embd_inp.size() > n_consumed) {
|
|
remember_token(embd_inp[n_consumed++]);
|
|
}
|
|
n_past = n_consumed;
|
|
finish_initializing_prompt();
|
|
CantReloadPrompt:
|
|
if (map != MAP_FAILED) {
|
|
munmap(map, file_size);
|
|
}
|
|
close(fd);
|
|
}
|
|
|
|
if (prompt_status == kPromptPending && params.verbose > 0) {
|
|
// the first thing we will do is to output the prompt, so set color accordingly
|
|
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
|
}
|
|
|
|
std::vector<llama_token> embd;
|
|
|
|
if (prompt_status == kPromptPending &&
|
|
!params.verbose && con_st.use_color) {
|
|
fprintf(stderr, EPHEMERAL("loading weights..."));
|
|
}
|
|
|
|
// tracks if last character written to stdout was newline
|
|
bool got_newline = false;
|
|
|
|
while ((n_remain != 0 || params.interactive) && !is_terminated) {
|
|
|
|
// perform evaluation
|
|
if (embd.size() > 0) {
|
|
DEVLOG("perform evaluation embd.size()=%d\n", (int)embd.size());
|
|
if (n_past + (int) embd.size() > n_ctx) {
|
|
n_past = n_keep;
|
|
embd.insert(embd.begin(),
|
|
last_n_tokens.end() - (n_past - n_keep) / 2 - embd.size(),
|
|
last_n_tokens.end() - embd.size());
|
|
}
|
|
for (int i = 0; i < (int) embd.size() && !is_terminated; i += params.n_batch) {
|
|
int n_eval = (int) embd.size() - i;
|
|
if (n_eval > params.n_batch) {
|
|
n_eval = params.n_batch;
|
|
}
|
|
is_stalled = n_eval > 1;
|
|
DEVLOG("llama_eval(n_evel=%d, n_past=%d)\n", n_eval, n_past);
|
|
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
return 1;
|
|
}
|
|
is_stalled = false;
|
|
n_past += n_eval;
|
|
if (prompt_status == kPromptPending &&
|
|
!params.verbose && con_st.use_color && embd_inp.size()) {
|
|
fprintf(stderr, EPHEMERAL("loading prompt %d%% ..."),
|
|
(int)(n_consumed / (double)embd_inp.size() * 100));
|
|
}
|
|
}
|
|
if (is_terminated) {
|
|
break;
|
|
}
|
|
embd.clear();
|
|
}
|
|
|
|
// save prompt to disk atomically as soon as it's finished loading
|
|
bool just_finished_initializing_prompt = prompt_status == kPromptCompleted;
|
|
if (just_finished_initializing_prompt && !params.prompt_path.empty()) {
|
|
int fd = -1;
|
|
int close_rc;
|
|
size_t file_size;
|
|
size_t state_size;
|
|
std::string tmppath;
|
|
void *map = MAP_FAILED;
|
|
struct jtlp_header header;
|
|
if (!params.verbose && con_st.use_color) {
|
|
fprintf(stderr, EPHEMERAL("caching prompt..."));
|
|
}
|
|
state_size = llama_get_state_size(ctx);
|
|
WRITE32LE(header.magic, kJtlpMagic);
|
|
WRITE32LE(header.version, kJtlpVersion);
|
|
WRITE64LE(header.state_size, state_size);
|
|
WRITE64LE(header.model_dev, model_stat.st_dev);
|
|
WRITE64LE(header.model_ino, model_stat.st_ino);
|
|
WRITE64LE(header.model_mtim_sec, model_stat.st_mtim.tv_sec);
|
|
WRITE64LE(header.model_mtim_nsec, model_stat.st_mtim.tv_nsec);
|
|
WRITE64LE(header.prompt_size, params.prompt.size());
|
|
file_size = sizeof(header) + params.prompt.size() + state_size;
|
|
tmppath.append(params.prompt_path);
|
|
tmppath.append(".XXXXXX");
|
|
fd = mkstemp(&tmppath[0]);
|
|
if (fd == -1) {
|
|
fprintf(stderr, "%s: mkstemp failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
goto CouldNotSavePrompt;
|
|
}
|
|
if (ftruncate(fd, file_size)) {
|
|
fprintf(stderr, "%s: ftruncate failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
goto CouldNotSavePrompt;
|
|
}
|
|
map = mmap(0, file_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
|
if (map == MAP_FAILED) {
|
|
fprintf(stderr, "%s: mmap failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
goto CouldNotSavePrompt;
|
|
}
|
|
llama_copy_state_data(ctx, (uint8_t *)map + sizeof(header) + params.prompt.size());
|
|
memcpy((uint8_t *)map + sizeof(header), params.prompt.c_str(), params.prompt.size());
|
|
memcpy(map, &header, sizeof(header));
|
|
if (msync(map, file_size, MS_ASYNC) && params.verbose > 0) {
|
|
fprintf(stderr, "%s: msync failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
}
|
|
if (munmap(map, file_size) && params.verbose > 0) {
|
|
fprintf(stderr, "%s: munmap failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
}
|
|
map = MAP_FAILED;
|
|
close_rc = close(fd);
|
|
fd = -1;
|
|
if (close_rc) {
|
|
fprintf(stderr, "%s: close failed: %s\n",
|
|
tmppath.c_str(), strerror(errno));
|
|
goto CouldNotSavePrompt;
|
|
}
|
|
if (rename(tmppath.c_str(), params.prompt_path.c_str())) {
|
|
fprintf(stderr, "%s -> %s: rename failed: %s\n",
|
|
tmppath.c_str(), params.prompt_path.c_str(), strerror(errno));
|
|
goto CouldNotSavePrompt;
|
|
}
|
|
tmppath.clear();
|
|
CouldNotSavePrompt:
|
|
if (map != MAP_FAILED) munmap(map, file_size);
|
|
if (fd != -1) close(fd);
|
|
if (!tmppath.empty()) unlink(tmppath.c_str());
|
|
}
|
|
if (just_finished_initializing_prompt) {
|
|
if (!params.verbose && con_st.use_color) {
|
|
fprintf(stderr, EPHEMERAL(""));
|
|
}
|
|
finish_initializing_prompt();
|
|
}
|
|
|
|
if (prompt_status == kPromptFinished &&
|
|
(int) embd_inp.size() <= n_consumed && !is_interacting) {
|
|
// out of user input, sample next token
|
|
DEVLOG("out of user input, sample next token w/ embd_inp.size()=%d n_consumed=%d\n",
|
|
(int)embd_inp.size(), n_consumed);
|
|
const float temp = params.temp;
|
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
|
|
llama_token id = 0;
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// Apply penalties
|
|
float nl_logit = logits[llama_token_nl()];
|
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, alpha_frequency, alpha_presence);
|
|
if (!penalize_nl) {
|
|
logits[llama_token_nl()] = nl_logit;
|
|
}
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
|
|
remember_token(id);
|
|
}
|
|
|
|
// replace end of text token with newline token when in interactive mode
|
|
if (id == llama_token_eos() && params.interactive && !params.instruct) {
|
|
id = llama_token_newline.front();
|
|
if (params.antiprompt.size() != 0) {
|
|
// tokenize and inject first reverse prompt
|
|
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
|
}
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// echo this to console
|
|
input_noecho = false;
|
|
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
|
|
} else {
|
|
DEVLOG("some user input remains from prompt or interaction w/ embd_inp.size()=%d n_consumed=%d\n",
|
|
(int)embd_inp.size(), n_consumed);
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int) embd_inp.size() > n_consumed) {
|
|
embd.push_back(embd_inp[n_consumed]);
|
|
remember_token(embd_inp[n_consumed++], true);
|
|
if ((int) embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// we've nearly finished loading the prompt
|
|
if (prompt_status == kPromptPending &&
|
|
(int) embd_inp.size() <= n_consumed) {
|
|
prompt_status = kPromptCompleted;
|
|
}
|
|
}
|
|
|
|
// checks for reverse prompt
|
|
//
|
|
// 1. in interactive mode, this lets us detect when the llm is
|
|
// prompting the user, so we can pause for input, e.g.
|
|
//
|
|
// --interactive
|
|
// --prompt $'CompanionAI: How can I help you?\nHuman:'
|
|
// --reverse-prompt 'Human:'
|
|
//
|
|
// 2. in normal mode, the reverse prompt can be used to specify
|
|
// a custom EOS token, e.g.
|
|
//
|
|
// --prompt 'Question: How old are you?\nAnswer: '
|
|
// --reverse-prompt $'\n'
|
|
//
|
|
bool is_antiprompt;
|
|
std::string ap_text;
|
|
std::string::size_type ap_extra;
|
|
std::string::size_type ap_index;
|
|
if (prompt_status == kPromptFinished) {
|
|
is_antiprompt = has_antiprompt(&ap_index, &ap_text);
|
|
} else {
|
|
is_antiprompt = false;
|
|
}
|
|
|
|
// display text
|
|
if (!input_noecho && embd.size()) {
|
|
std::string printme;
|
|
for (auto id : embd) {
|
|
printme.append(llama_token_to_str(ctx, id));
|
|
}
|
|
if (is_antiprompt) {
|
|
ap_extra = last_output.size() - ap_index;
|
|
printme.erase(std::max(0, (int)(printme.size() - ap_extra)));
|
|
}
|
|
if (printme.size()) {
|
|
got_newline = printme[printme.size() - 1] == '\n';
|
|
printf("%s", printme.c_str());
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
if (is_antiprompt) {
|
|
if (!params.interactive) {
|
|
DEVLOG("exiting due to antiprompt\n");
|
|
if (!got_newline) {
|
|
printf("\n");
|
|
}
|
|
break;
|
|
}
|
|
// scrub antiprompt so to detect it must be typed again
|
|
last_output.erase(0, ap_index + ap_text.size());
|
|
DEVLOG("scrubbed antiprompt -> %`'s\n", last_output.c_str());
|
|
}
|
|
if (prompt_status == kPromptCompleted) {
|
|
DEVLOG("avoid reading line before last token loads\n");
|
|
continue; // avoid reading line before last token loads
|
|
}
|
|
|
|
// reset color to default if we there is no pending user input
|
|
if (params.verbose && !input_noecho && (int)embd_inp.size() == n_consumed) {
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
}
|
|
|
|
if (is_antiprompt) {
|
|
is_interacting = true;
|
|
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
|
fflush(stdout);
|
|
}
|
|
|
|
// in interactive mode, and not currently processing queued inputs;
|
|
// check if we should prompt the user for more
|
|
if (params.interactive && (int) embd_inp.size() <= n_consumed) {
|
|
|
|
if (n_past > 0 && is_interacting) {
|
|
|
|
// potentially set color to indicate we are taking user input
|
|
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
|
|
|
if (params.instruct) {
|
|
printf("\n> ");
|
|
}
|
|
|
|
std::string buffer;
|
|
if (!params.input_prefix.empty()) {
|
|
buffer += params.input_prefix;
|
|
printf("%s", buffer.c_str());
|
|
}
|
|
|
|
// display a "waiting for input" indicator, just in case
|
|
// the model doesn't halt on the antiprompt.
|
|
if (con_st.use_color) {
|
|
fprintf(stdout, "?\b");
|
|
fflush(stdout);
|
|
}
|
|
|
|
std::string line;
|
|
bool another_line = true;
|
|
do {
|
|
another_line = console_readline(con_st, line);
|
|
buffer += line;
|
|
} while (another_line);
|
|
|
|
// done taking input, reset color
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
|
|
// Add tokens to embd only if the input buffer is non-empty
|
|
// Entering a empty line lets the user pass control back
|
|
if (buffer.length() > 1) {
|
|
// append input suffix if any
|
|
if (!params.input_suffix.empty()) {
|
|
buffer += params.input_suffix;
|
|
printf("%s", params.input_suffix.c_str());
|
|
}
|
|
|
|
// instruct mode: insert instruction prefix
|
|
if (params.instruct && !is_antiprompt) {
|
|
n_consumed = embd_inp.size();
|
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
|
}
|
|
|
|
auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
|
|
// instruct mode: insert response suffix
|
|
if (params.instruct) {
|
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
|
}
|
|
|
|
n_remain -= line_inp.size();
|
|
}
|
|
|
|
input_noecho = true; // do not echo this again
|
|
}
|
|
|
|
if (n_past > 0) {
|
|
is_interacting = false;
|
|
}
|
|
assert(!is_interacting);
|
|
}
|
|
|
|
// end of text token
|
|
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
|
if (params.instruct) {
|
|
is_interacting = true;
|
|
} else if (params.verbose > 0) {
|
|
fprintf(stderr, " [end of text]\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
|
|
n_remain = params.n_predict;
|
|
is_interacting = true;
|
|
}
|
|
}
|
|
|
|
if (is_terminated) {
|
|
console_cleanup(con_st);
|
|
printf("\n");
|
|
if (params.verbose > 0) {
|
|
llama_print_timings(ctx);
|
|
}
|
|
_exit(128 + SIGINT);
|
|
}
|
|
|
|
if (params.verbose > 0) {
|
|
llama_print_timings(ctx);
|
|
}
|
|
llama_free(ctx);
|
|
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
|
|
return 0;
|
|
}
|