cosmopolitan/test/posix/signal_latency_test.c
Justine Tunney af7bd80430
Eliminate cyclic locks in runtime
This change introduces a new deadlock detector for Cosmo's POSIX threads
implementation. Error check mutexes will now track a DAG of nested locks
and report EDEADLK when a deadlock is theoretically possible. These will
occur rarely, but it's important for production hardening your code. You
don't even need to change your mutexes to use the POSIX error check mode
because `cosmocc -mdbg` will enable error checking on mutexes by default
globally. When cycles are found, an error message showing your demangled
symbols describing the strongly connected component are printed and then
the SIGTRAP is raised, which means you'll also get a backtrace if you're
using ShowCrashReports() too. This new error checker is so low-level and
so pure that it's able to verify the relationships of every libc runtime
lock, including those locks upon which the mutex implementation depends.
2024-12-16 22:25:12 -08:00

177 lines
4.6 KiB
C

// Copyright 2024 Justine Alexandra Roberts Tunney
//
// Permission to use, copy, modify, and/or distribute this software for
// any purpose with or without fee is hereby granted, provided that the
// above copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
// PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include <assert.h>
#include <cosmo.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdatomic.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#define ITERATIONS 10000
atomic_bool got_sigusr2;
pthread_t sender_thread;
pthread_t receiver_thread;
struct timespec send_time;
double latencies[ITERATIONS];
void sender_signal_handler(int signo) {
got_sigusr2 = true;
}
void receiver_signal_handler(int signo) {
struct timespec receive_time;
if (clock_gettime(CLOCK_MONOTONIC, &receive_time) == -1)
exit(1);
long sec_diff = receive_time.tv_sec - send_time.tv_sec;
long nsec_diff = receive_time.tv_nsec - send_time.tv_nsec;
double latency_ns = sec_diff * 1e9 + nsec_diff;
static int iteration = 0;
if (iteration < ITERATIONS)
latencies[iteration++] = latency_ns;
// Send SIGUSR2 back to sender_thread
if (pthread_kill(sender_thread, SIGUSR2))
exit(2);
// Exit if we're done.
if (iteration >= ITERATIONS)
pthread_exit(0);
}
void *sender_func(void *arg) {
// Block SIGUSR2
sigset_t block_set;
sigemptyset(&block_set);
sigaddset(&block_set, SIGUSR2);
if (pthread_sigmask(SIG_BLOCK, &block_set, 0))
exit(3);
// Install signal handler for SIGUSR2
struct sigaction sa;
sa.sa_handler = sender_signal_handler;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGUSR2, &sa, 0))
exit(4);
for (int i = 0; i < ITERATIONS; i++) {
if (clock_gettime(CLOCK_MONOTONIC, &send_time))
exit(5);
// Send SIGUSR1 to receiver_thread
got_sigusr2 = false;
if (pthread_kill(receiver_thread, SIGUSR1))
exit(6);
// Unblock SIGUSR2 and wait for it
sigset_t wait_set;
sigemptyset(&wait_set);
while (!got_sigusr2)
if (sigsuspend(&wait_set) && errno != EINTR)
exit(7);
}
return 0;
}
void *receiver_func(void *arg) {
// Install signal handler for SIGUSR1
struct sigaction sa;
sa.sa_handler = receiver_signal_handler;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGUSR1, &sa, 0))
exit(8);
// Block all signals except SIGUSR1
sigset_t block_set;
sigfillset(&block_set);
sigdelset(&block_set, SIGUSR1);
if (pthread_sigmask(SIG_SETMASK, &block_set, 0))
exit(9);
// Wait indefinitely for signals
while (1)
pause();
return 0;
}
int compare(const void *a, const void *b) {
const double *x = a, *y = b;
if (*x < *y)
return -1;
else if (*x > *y)
return 1;
else
return 0;
}
int main() {
// TODO(jart): Why is this test flaky on Windows?
if (IsWindows())
return 0;
// Block SIGUSR1 and SIGUSR2 in main thread
sigset_t block_set;
sigemptyset(&block_set);
sigaddset(&block_set, SIGUSR1);
sigaddset(&block_set, SIGUSR2);
if (pthread_sigmask(SIG_BLOCK, &block_set, 0))
exit(10);
// Create receiver thread first
if (pthread_create(&receiver_thread, 0, receiver_func, 0))
exit(11);
// Create sender thread
if (pthread_create(&sender_thread, 0, sender_func, 0))
exit(12);
// Wait for threads to finish
if (pthread_join(sender_thread, 0))
exit(13);
if (pthread_join(receiver_thread, 0))
exit(14);
// Compute mean latency
double total_latency = 0;
for (int i = 0; i < ITERATIONS; i++)
total_latency += latencies[i];
double mean_latency = total_latency / ITERATIONS;
// Sort latencies to compute percentiles
qsort(latencies, ITERATIONS, sizeof(double), compare);
double p50 = latencies[(int)(0.50 * ITERATIONS)];
double p90 = latencies[(int)(0.90 * ITERATIONS)];
double p95 = latencies[(int)(0.95 * ITERATIONS)];
double p99 = latencies[(int)(0.99 * ITERATIONS)];
printf("Mean latency: %.2f ns\n", mean_latency);
printf("50th percentile latency: %.2f ns\n", p50);
printf("90th percentile latency: %.2f ns\n", p90);
printf("95th percentile latency: %.2f ns\n", p95);
printf("99th percentile latency: %.2f ns\n", p99);
}