mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-12 17:27:56 +00:00
Actually Portable Python is now outperforming the Python binaries that come bundled with Linux distros, at things like HTTP serving. You can now have a fully featured Python install in just one .com file that runs on six operating systems and is about 10mb in size. With tuning, the tiniest is ~1mb. We've got most of the libraries working, including pysqlite, and the repl now feels very pleasant. The things you can't do quite yet are: threads and shared objects but that can happen in the future, if the community falls in love with this project and wants to see it developed further. Changes: - Add siginterrupt() - Add sqlite3 to Python - Add issymlink() helper - Make GetZipCdir() faster - Add tgamma() and finite() - Add legacy function lutimes() - Add readlink() and realpath() - Use heap allocations when appropriate - Reorganize Python into two-stage build - Save Lua / Python shell history to dotfile - Integrate Python Lib embedding into linkage - Make isregularfile() and isdirectory() go faster - Make Python shell auto-completion work perfectly - Make crash reports work better if changed directory - Fix Python+NT open() / access() flag overflow error - Disable Python tests relating to \N{LONG NAME} syntax - Have Python REPL copyright() show all notice embeddings The biggest technical challenge at the moment is working around when Python tries to be too clever about filenames.
692 lines
30 KiB
Python
692 lines
30 KiB
Python
import unittest
|
|
from test import support
|
|
from test.test_grammar import (VALID_UNDERSCORE_LITERALS,
|
|
INVALID_UNDERSCORE_LITERALS)
|
|
|
|
from random import random
|
|
from math import atan2, isnan, copysign
|
|
import operator
|
|
|
|
INF = float("inf")
|
|
NAN = float("nan")
|
|
# These tests ensure that complex math does the right thing
|
|
|
|
class ComplexTest(unittest.TestCase):
|
|
|
|
def assertAlmostEqual(self, a, b):
|
|
if isinstance(a, complex):
|
|
if isinstance(b, complex):
|
|
unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
|
|
unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
|
|
else:
|
|
unittest.TestCase.assertAlmostEqual(self, a.real, b)
|
|
unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
|
|
else:
|
|
if isinstance(b, complex):
|
|
unittest.TestCase.assertAlmostEqual(self, a, b.real)
|
|
unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
|
|
else:
|
|
unittest.TestCase.assertAlmostEqual(self, a, b)
|
|
|
|
def assertCloseAbs(self, x, y, eps=1e-9):
|
|
"""Return true iff floats x and y "are close"."""
|
|
# put the one with larger magnitude second
|
|
if abs(x) > abs(y):
|
|
x, y = y, x
|
|
if y == 0:
|
|
return abs(x) < eps
|
|
if x == 0:
|
|
return abs(y) < eps
|
|
# check that relative difference < eps
|
|
self.assertTrue(abs((x-y)/y) < eps)
|
|
|
|
def assertFloatsAreIdentical(self, x, y):
|
|
"""assert that floats x and y are identical, in the sense that:
|
|
(1) both x and y are nans, or
|
|
(2) both x and y are infinities, with the same sign, or
|
|
(3) both x and y are zeros, with the same sign, or
|
|
(4) x and y are both finite and nonzero, and x == y
|
|
|
|
"""
|
|
msg = 'floats {!r} and {!r} are not identical'
|
|
|
|
if isnan(x) or isnan(y):
|
|
if isnan(x) and isnan(y):
|
|
return
|
|
elif x == y:
|
|
if x != 0.0:
|
|
return
|
|
# both zero; check that signs match
|
|
elif copysign(1.0, x) == copysign(1.0, y):
|
|
return
|
|
else:
|
|
msg += ': zeros have different signs'
|
|
self.fail(msg.format(x, y))
|
|
|
|
def assertClose(self, x, y, eps=1e-9):
|
|
"""Return true iff complexes x and y "are close"."""
|
|
self.assertCloseAbs(x.real, y.real, eps)
|
|
self.assertCloseAbs(x.imag, y.imag, eps)
|
|
|
|
def check_div(self, x, y):
|
|
"""Compute complex z=x*y, and check that z/x==y and z/y==x."""
|
|
z = x * y
|
|
if x != 0:
|
|
q = z / x
|
|
self.assertClose(q, y)
|
|
q = z.__truediv__(x)
|
|
self.assertClose(q, y)
|
|
if y != 0:
|
|
q = z / y
|
|
self.assertClose(q, x)
|
|
q = z.__truediv__(y)
|
|
self.assertClose(q, x)
|
|
|
|
def test_truediv(self):
|
|
simple_real = [float(i) for i in range(-5, 6)]
|
|
simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
|
|
for x in simple_complex:
|
|
for y in simple_complex:
|
|
self.check_div(x, y)
|
|
|
|
# A naive complex division algorithm (such as in 2.0) is very prone to
|
|
# nonsense errors for these (overflows and underflows).
|
|
self.check_div(complex(1e200, 1e200), 1+0j)
|
|
self.check_div(complex(1e-200, 1e-200), 1+0j)
|
|
|
|
# Just for fun.
|
|
for i in range(100):
|
|
self.check_div(complex(random(), random()),
|
|
complex(random(), random()))
|
|
|
|
self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
|
|
# FIXME: The following currently crashes on Alpha
|
|
# self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
|
|
|
|
self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
|
|
self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
|
|
|
|
for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
|
|
z = complex(0, 0) / complex(denom_real, denom_imag)
|
|
self.assertTrue(isnan(z.real))
|
|
self.assertTrue(isnan(z.imag))
|
|
|
|
def test_floordiv(self):
|
|
self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j)
|
|
self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j)
|
|
|
|
def test_richcompare(self):
|
|
self.assertIs(complex.__eq__(1+1j, 1<<10000), False)
|
|
self.assertIs(complex.__lt__(1+1j, None), NotImplemented)
|
|
self.assertIs(complex.__eq__(1+1j, 1+1j), True)
|
|
self.assertIs(complex.__eq__(1+1j, 2+2j), False)
|
|
self.assertIs(complex.__ne__(1+1j, 1+1j), False)
|
|
self.assertIs(complex.__ne__(1+1j, 2+2j), True)
|
|
for i in range(1, 100):
|
|
f = i / 100.0
|
|
self.assertIs(complex.__eq__(f+0j, f), True)
|
|
self.assertIs(complex.__ne__(f+0j, f), False)
|
|
self.assertIs(complex.__eq__(complex(f, f), f), False)
|
|
self.assertIs(complex.__ne__(complex(f, f), f), True)
|
|
self.assertIs(complex.__lt__(1+1j, 2+2j), NotImplemented)
|
|
self.assertIs(complex.__le__(1+1j, 2+2j), NotImplemented)
|
|
self.assertIs(complex.__gt__(1+1j, 2+2j), NotImplemented)
|
|
self.assertIs(complex.__ge__(1+1j, 2+2j), NotImplemented)
|
|
self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j)
|
|
self.assertRaises(TypeError, operator.le, 1+1j, 2+2j)
|
|
self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j)
|
|
self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j)
|
|
self.assertIs(operator.eq(1+1j, 1+1j), True)
|
|
self.assertIs(operator.eq(1+1j, 2+2j), False)
|
|
self.assertIs(operator.ne(1+1j, 1+1j), False)
|
|
self.assertIs(operator.ne(1+1j, 2+2j), True)
|
|
|
|
def test_richcompare_boundaries(self):
|
|
def check(n, deltas, is_equal, imag = 0.0):
|
|
for delta in deltas:
|
|
i = n + delta
|
|
z = complex(i, imag)
|
|
self.assertIs(complex.__eq__(z, i), is_equal(delta))
|
|
self.assertIs(complex.__ne__(z, i), not is_equal(delta))
|
|
# For IEEE-754 doubles the following should hold:
|
|
# x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
|
|
# where the interval is representable, of course.
|
|
for i in range(1, 10):
|
|
pow = 52 + i
|
|
mult = 2 ** i
|
|
check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
|
|
check(2 ** pow, range(1, 101), lambda delta: False, float(i))
|
|
check(2 ** 53, range(-100, 0), lambda delta: True)
|
|
|
|
def test_mod(self):
|
|
# % is no longer supported on complex numbers
|
|
self.assertRaises(TypeError, (1+1j).__mod__, 0+0j)
|
|
self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0)
|
|
self.assertRaises(TypeError, (1+1j).__mod__, 4.3j)
|
|
|
|
def test_divmod(self):
|
|
self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
|
|
self.assertRaises(TypeError, divmod, 1+1j, 0+0j)
|
|
|
|
def test_pow(self):
|
|
self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
|
|
self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
|
|
self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
|
|
self.assertAlmostEqual(pow(1j, -1), 1/1j)
|
|
self.assertAlmostEqual(pow(1j, 200), 1)
|
|
self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
|
|
|
|
a = 3.33+4.43j
|
|
self.assertEqual(a ** 0j, 1)
|
|
self.assertEqual(a ** 0.+0.j, 1)
|
|
|
|
self.assertEqual(3j ** 0j, 1)
|
|
self.assertEqual(3j ** 0, 1)
|
|
|
|
try:
|
|
0j ** a
|
|
except ZeroDivisionError:
|
|
pass
|
|
else:
|
|
self.fail("should fail 0.0 to negative or complex power")
|
|
|
|
try:
|
|
0j ** (3-2j)
|
|
except ZeroDivisionError:
|
|
pass
|
|
else:
|
|
self.fail("should fail 0.0 to negative or complex power")
|
|
|
|
# The following is used to exercise certain code paths
|
|
self.assertEqual(a ** 105, a ** 105)
|
|
self.assertEqual(a ** -105, a ** -105)
|
|
self.assertEqual(a ** -30, a ** -30)
|
|
|
|
self.assertEqual(0.0j ** 0, 1)
|
|
|
|
b = 5.1+2.3j
|
|
self.assertRaises(ValueError, pow, a, b, 0)
|
|
|
|
def test_boolcontext(self):
|
|
for i in range(100):
|
|
self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
|
|
self.assertTrue(not complex(0.0, 0.0))
|
|
|
|
def test_conjugate(self):
|
|
self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
|
|
|
|
def test_constructor(self):
|
|
class OS:
|
|
def __init__(self, value): self.value = value
|
|
def __complex__(self): return self.value
|
|
class NS(object):
|
|
def __init__(self, value): self.value = value
|
|
def __complex__(self): return self.value
|
|
self.assertEqual(complex(OS(1+10j)), 1+10j)
|
|
self.assertEqual(complex(NS(1+10j)), 1+10j)
|
|
self.assertRaises(TypeError, complex, OS(None))
|
|
self.assertRaises(TypeError, complex, NS(None))
|
|
self.assertRaises(TypeError, complex, {})
|
|
self.assertRaises(TypeError, complex, NS(1.5))
|
|
self.assertRaises(TypeError, complex, NS(1))
|
|
|
|
self.assertAlmostEqual(complex("1+10j"), 1+10j)
|
|
self.assertAlmostEqual(complex(10), 10+0j)
|
|
self.assertAlmostEqual(complex(10.0), 10+0j)
|
|
self.assertAlmostEqual(complex(10), 10+0j)
|
|
self.assertAlmostEqual(complex(10+0j), 10+0j)
|
|
self.assertAlmostEqual(complex(1,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1,10.0), 1+10j)
|
|
self.assertAlmostEqual(complex(1,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1,10.0), 1+10j)
|
|
self.assertAlmostEqual(complex(1.0,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1.0,10), 1+10j)
|
|
self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
|
|
self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
|
|
self.assertAlmostEqual(complex(3.14), 3.14+0j)
|
|
self.assertAlmostEqual(complex(314), 314.0+0j)
|
|
self.assertAlmostEqual(complex(314), 314.0+0j)
|
|
self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
|
|
self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
|
|
self.assertAlmostEqual(complex(314, 0), 314.0+0j)
|
|
self.assertAlmostEqual(complex(314, 0), 314.0+0j)
|
|
self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
|
|
self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
|
|
self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
|
|
self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
|
|
self.assertAlmostEqual(complex("1"), 1+0j)
|
|
self.assertAlmostEqual(complex("1j"), 1j)
|
|
self.assertAlmostEqual(complex(), 0)
|
|
self.assertAlmostEqual(complex("-1"), -1)
|
|
self.assertAlmostEqual(complex("+1"), +1)
|
|
self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
|
|
self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
|
|
self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
|
|
self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
|
|
self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
|
|
self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
|
|
self.assertAlmostEqual(complex("J"), 1j)
|
|
self.assertAlmostEqual(complex("( j )"), 1j)
|
|
self.assertAlmostEqual(complex("+J"), 1j)
|
|
self.assertAlmostEqual(complex("( -j)"), -1j)
|
|
self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
|
|
self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
|
|
self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
|
|
|
|
class complex2(complex): pass
|
|
self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
|
|
self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
|
|
self.assertAlmostEqual(complex(real=17+23j), 17+23j)
|
|
self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
|
|
self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
|
|
|
|
# check that the sign of a zero in the real or imaginary part
|
|
# is preserved when constructing from two floats. (These checks
|
|
# are harmless on systems without support for signed zeros.)
|
|
def split_zeros(x):
|
|
"""Function that produces different results for 0. and -0."""
|
|
return atan2(x, -1.)
|
|
|
|
self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
|
|
self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
|
|
self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
|
|
self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
|
|
|
|
c = 3.14 + 1j
|
|
self.assertTrue(complex(c) is c)
|
|
del c
|
|
|
|
self.assertRaises(TypeError, complex, "1", "1")
|
|
self.assertRaises(TypeError, complex, 1, "1")
|
|
|
|
# SF bug 543840: complex(string) accepts strings with \0
|
|
# Fixed in 2.3.
|
|
self.assertRaises(ValueError, complex, '1+1j\0j')
|
|
|
|
self.assertRaises(TypeError, int, 5+3j)
|
|
self.assertRaises(TypeError, int, 5+3j)
|
|
self.assertRaises(TypeError, float, 5+3j)
|
|
self.assertRaises(ValueError, complex, "")
|
|
self.assertRaises(TypeError, complex, None)
|
|
self.assertRaisesRegex(TypeError, "not 'NoneType'", complex, None)
|
|
self.assertRaises(ValueError, complex, "\0")
|
|
self.assertRaises(ValueError, complex, "3\09")
|
|
self.assertRaises(TypeError, complex, "1", "2")
|
|
self.assertRaises(TypeError, complex, "1", 42)
|
|
self.assertRaises(TypeError, complex, 1, "2")
|
|
self.assertRaises(ValueError, complex, "1+")
|
|
self.assertRaises(ValueError, complex, "1+1j+1j")
|
|
self.assertRaises(ValueError, complex, "--")
|
|
self.assertRaises(ValueError, complex, "(1+2j")
|
|
self.assertRaises(ValueError, complex, "1+2j)")
|
|
self.assertRaises(ValueError, complex, "1+(2j)")
|
|
self.assertRaises(ValueError, complex, "(1+2j)123")
|
|
self.assertRaises(ValueError, complex, "x")
|
|
self.assertRaises(ValueError, complex, "1j+2")
|
|
self.assertRaises(ValueError, complex, "1e1ej")
|
|
self.assertRaises(ValueError, complex, "1e++1ej")
|
|
self.assertRaises(ValueError, complex, ")1+2j(")
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"first argument must be a string or a number, not 'dict'",
|
|
complex, {1:2}, 1)
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"second argument must be a number, not 'dict'",
|
|
complex, 1, {1:2})
|
|
# the following three are accepted by Python 2.6
|
|
self.assertRaises(ValueError, complex, "1..1j")
|
|
self.assertRaises(ValueError, complex, "1.11.1j")
|
|
self.assertRaises(ValueError, complex, "1e1.1j")
|
|
|
|
# # TODO(jart): pycomp.com needs \N thing
|
|
# # check that complex accepts long unicode strings
|
|
# self.assertEqual(type(complex("1"*500)), complex)
|
|
# # check whitespace processing
|
|
# self.assertEqual(complex('\N{EM SPACE}(\N{EN SPACE}1+1j ) '), 1+1j)
|
|
# # Invalid unicode string
|
|
# # See bpo-34087
|
|
# self.assertRaises(ValueError, complex, '\u3053\u3093\u306b\u3061\u306f')
|
|
|
|
class EvilExc(Exception):
|
|
pass
|
|
|
|
class evilcomplex:
|
|
def __complex__(self):
|
|
raise EvilExc
|
|
|
|
self.assertRaises(EvilExc, complex, evilcomplex())
|
|
|
|
class float2:
|
|
def __init__(self, value):
|
|
self.value = value
|
|
def __float__(self):
|
|
return self.value
|
|
|
|
self.assertAlmostEqual(complex(float2(42.)), 42)
|
|
self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
|
|
self.assertRaises(TypeError, complex, float2(None))
|
|
|
|
class complex0(complex):
|
|
"""Test usage of __complex__() when inheriting from 'complex'"""
|
|
def __complex__(self):
|
|
return 42j
|
|
|
|
class complex1(complex):
|
|
"""Test usage of __complex__() with a __new__() method"""
|
|
def __new__(self, value=0j):
|
|
return complex.__new__(self, 2*value)
|
|
def __complex__(self):
|
|
return self
|
|
|
|
class complex2(complex):
|
|
"""Make sure that __complex__() calls fail if anything other than a
|
|
complex is returned"""
|
|
def __complex__(self):
|
|
return None
|
|
|
|
self.assertAlmostEqual(complex(complex0(1j)), 42j)
|
|
self.assertAlmostEqual(complex(complex1(1j)), 2j)
|
|
self.assertRaises(TypeError, complex, complex2(1j))
|
|
|
|
@support.requires_IEEE_754
|
|
def test_constructor_special_numbers(self):
|
|
class complex2(complex):
|
|
pass
|
|
for x in 0.0, -0.0, INF, -INF, NAN:
|
|
for y in 0.0, -0.0, INF, -INF, NAN:
|
|
with self.subTest(x=x, y=y):
|
|
z = complex(x, y)
|
|
self.assertFloatsAreIdentical(z.real, x)
|
|
self.assertFloatsAreIdentical(z.imag, y)
|
|
z = complex2(x, y)
|
|
self.assertIs(type(z), complex2)
|
|
self.assertFloatsAreIdentical(z.real, x)
|
|
self.assertFloatsAreIdentical(z.imag, y)
|
|
z = complex(complex2(x, y))
|
|
self.assertIs(type(z), complex)
|
|
self.assertFloatsAreIdentical(z.real, x)
|
|
self.assertFloatsAreIdentical(z.imag, y)
|
|
z = complex2(complex(x, y))
|
|
self.assertIs(type(z), complex2)
|
|
self.assertFloatsAreIdentical(z.real, x)
|
|
self.assertFloatsAreIdentical(z.imag, y)
|
|
|
|
def test_underscores(self):
|
|
# check underscores
|
|
for lit in VALID_UNDERSCORE_LITERALS:
|
|
if not any(ch in lit for ch in 'xXoObB'):
|
|
self.assertEqual(complex(lit), eval(lit))
|
|
self.assertEqual(complex(lit), complex(lit.replace('_', '')))
|
|
for lit in INVALID_UNDERSCORE_LITERALS:
|
|
if lit in ('0_7', '09_99'): # octals are not recognized here
|
|
continue
|
|
if not any(ch in lit for ch in 'xXoObB'):
|
|
self.assertRaises(ValueError, complex, lit)
|
|
|
|
def test_hash(self):
|
|
for x in range(-30, 30):
|
|
self.assertEqual(hash(x), hash(complex(x, 0)))
|
|
x /= 3.0 # now check against floating point
|
|
self.assertEqual(hash(x), hash(complex(x, 0.)))
|
|
|
|
def test_abs(self):
|
|
nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)]
|
|
for num in nums:
|
|
self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num))
|
|
|
|
def test_repr_str(self):
|
|
def test(v, expected, test_fn=self.assertEqual):
|
|
test_fn(repr(v), expected)
|
|
test_fn(str(v), expected)
|
|
|
|
test(1+6j, '(1+6j)')
|
|
test(1-6j, '(1-6j)')
|
|
|
|
test(-(1+0j), '(-1+-0j)', test_fn=self.assertNotEqual)
|
|
|
|
test(complex(1., INF), "(1+infj)")
|
|
test(complex(1., -INF), "(1-infj)")
|
|
test(complex(INF, 1), "(inf+1j)")
|
|
test(complex(-INF, INF), "(-inf+infj)")
|
|
test(complex(NAN, 1), "(nan+1j)")
|
|
test(complex(1, NAN), "(1+nanj)")
|
|
test(complex(NAN, NAN), "(nan+nanj)")
|
|
|
|
test(complex(0, INF), "infj")
|
|
test(complex(0, -INF), "-infj")
|
|
test(complex(0, NAN), "nanj")
|
|
|
|
self.assertEqual(1-6j,complex(repr(1-6j)))
|
|
self.assertEqual(1+6j,complex(repr(1+6j)))
|
|
self.assertEqual(-6j,complex(repr(-6j)))
|
|
self.assertEqual(6j,complex(repr(6j)))
|
|
|
|
@support.requires_IEEE_754
|
|
def test_negative_zero_repr_str(self):
|
|
def test(v, expected, test_fn=self.assertEqual):
|
|
test_fn(repr(v), expected)
|
|
test_fn(str(v), expected)
|
|
|
|
test(complex(0., 1.), "1j")
|
|
test(complex(-0., 1.), "(-0+1j)")
|
|
test(complex(0., -1.), "-1j")
|
|
test(complex(-0., -1.), "(-0-1j)")
|
|
|
|
test(complex(0., 0.), "0j")
|
|
test(complex(0., -0.), "-0j")
|
|
test(complex(-0., 0.), "(-0+0j)")
|
|
test(complex(-0., -0.), "(-0-0j)")
|
|
|
|
def test_neg(self):
|
|
self.assertEqual(-(1+6j), -1-6j)
|
|
|
|
def test_file(self):
|
|
a = 3.33+4.43j
|
|
b = 5.1+2.3j
|
|
|
|
fo = None
|
|
try:
|
|
fo = open(support.TESTFN, "w")
|
|
print(a, b, file=fo)
|
|
fo.close()
|
|
fo = open(support.TESTFN, "r")
|
|
self.assertEqual(fo.read(), ("%s %s\n" % (a, b)))
|
|
finally:
|
|
if (fo is not None) and (not fo.closed):
|
|
fo.close()
|
|
support.unlink(support.TESTFN)
|
|
|
|
def test_getnewargs(self):
|
|
self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
|
|
self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
|
|
self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
|
|
self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
|
|
self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
|
|
self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
|
|
|
|
@support.requires_IEEE_754
|
|
def test_plus_minus_0j(self):
|
|
# test that -0j and 0j literals are not identified
|
|
z1, z2 = 0j, -0j
|
|
self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
|
|
self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
|
|
|
|
@support.requires_IEEE_754
|
|
def test_negated_imaginary_literal(self):
|
|
z0 = -0j
|
|
z1 = -7j
|
|
z2 = -1e1000j
|
|
# Note: In versions of Python < 3.2, a negated imaginary literal
|
|
# accidentally ended up with real part 0.0 instead of -0.0, thanks to a
|
|
# modification during CST -> AST translation (see issue #9011). That's
|
|
# fixed in Python 3.2.
|
|
self.assertFloatsAreIdentical(z0.real, -0.0)
|
|
self.assertFloatsAreIdentical(z0.imag, -0.0)
|
|
self.assertFloatsAreIdentical(z1.real, -0.0)
|
|
self.assertFloatsAreIdentical(z1.imag, -7.0)
|
|
self.assertFloatsAreIdentical(z2.real, -0.0)
|
|
self.assertFloatsAreIdentical(z2.imag, -INF)
|
|
|
|
@support.requires_IEEE_754
|
|
def test_overflow(self):
|
|
self.assertEqual(complex("1e500"), complex(INF, 0.0))
|
|
self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
|
|
self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
|
|
|
|
@support.requires_IEEE_754
|
|
def test_repr_roundtrip(self):
|
|
vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
|
|
vals += [-v for v in vals]
|
|
|
|
# complex(repr(z)) should recover z exactly, even for complex
|
|
# numbers involving an infinity, nan, or negative zero
|
|
for x in vals:
|
|
for y in vals:
|
|
z = complex(x, y)
|
|
roundtrip = complex(repr(z))
|
|
self.assertFloatsAreIdentical(z.real, roundtrip.real)
|
|
self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
|
|
|
|
# if we predefine some constants, then eval(repr(z)) should
|
|
# also work, except that it might change the sign of zeros
|
|
inf, nan = float('inf'), float('nan')
|
|
infj, nanj = complex(0.0, inf), complex(0.0, nan)
|
|
for x in vals:
|
|
for y in vals:
|
|
z = complex(x, y)
|
|
roundtrip = eval(repr(z))
|
|
# adding 0.0 has no effect beside changing -0.0 to 0.0
|
|
self.assertFloatsAreIdentical(0.0 + z.real,
|
|
0.0 + roundtrip.real)
|
|
self.assertFloatsAreIdentical(0.0 + z.imag,
|
|
0.0 + roundtrip.imag)
|
|
|
|
def test_format(self):
|
|
# empty format string is same as str()
|
|
self.assertEqual(format(1+3j, ''), str(1+3j))
|
|
self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
|
|
self.assertEqual(format(3j, ''), str(3j))
|
|
self.assertEqual(format(3.2j, ''), str(3.2j))
|
|
self.assertEqual(format(3+0j, ''), str(3+0j))
|
|
self.assertEqual(format(3.2+0j, ''), str(3.2+0j))
|
|
|
|
# empty presentation type should still be analogous to str,
|
|
# even when format string is nonempty (issue #5920).
|
|
self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
|
|
self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
|
|
z = 4/7. - 100j/7.
|
|
self.assertEqual(format(z, ''), str(z))
|
|
self.assertEqual(format(z, '-'), str(z))
|
|
self.assertEqual(format(z, '<'), str(z))
|
|
self.assertEqual(format(z, '10'), str(z))
|
|
z = complex(0.0, 3.0)
|
|
self.assertEqual(format(z, ''), str(z))
|
|
self.assertEqual(format(z, '-'), str(z))
|
|
self.assertEqual(format(z, '<'), str(z))
|
|
self.assertEqual(format(z, '2'), str(z))
|
|
z = complex(-0.0, 2.0)
|
|
self.assertEqual(format(z, ''), str(z))
|
|
self.assertEqual(format(z, '-'), str(z))
|
|
self.assertEqual(format(z, '<'), str(z))
|
|
self.assertEqual(format(z, '3'), str(z))
|
|
|
|
self.assertEqual(format(1+3j, 'g'), '1+3j')
|
|
self.assertEqual(format(3j, 'g'), '0+3j')
|
|
self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')
|
|
|
|
self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
|
|
self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
|
|
self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
|
|
self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
|
|
self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
|
|
self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
|
|
self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')
|
|
|
|
self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
|
|
self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
|
|
self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
|
|
self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
|
|
self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
|
|
self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
|
|
self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')
|
|
|
|
self.assertEqual(format(1.5+3j, '<20g'), '1.5+3j ')
|
|
self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
|
|
self.assertEqual(format(1.5+3j, '>20g'), ' 1.5+3j')
|
|
self.assertEqual(format(1.5+3j, '^20g'), ' 1.5+3j ')
|
|
self.assertEqual(format(1.5+3j, '<20'), '(1.5+3j) ')
|
|
self.assertEqual(format(1.5+3j, '>20'), ' (1.5+3j)')
|
|
self.assertEqual(format(1.5+3j, '^20'), ' (1.5+3j) ')
|
|
self.assertEqual(format(1.123-3.123j, '^20.2'), ' (1.1-3.1j) ')
|
|
|
|
self.assertEqual(format(1.5+3j, '20.2f'), ' 1.50+3.00j')
|
|
self.assertEqual(format(1.5+3j, '>20.2f'), ' 1.50+3.00j')
|
|
self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j ')
|
|
self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
|
|
self.assertEqual(format(1.5e20+3j, '>40.2f'), ' 150000000000000000000.00+3.00j')
|
|
self.assertEqual(format(1.5e20+3j, '^40,.2f'), ' 150,000,000,000,000,000,000.00+3.00j ')
|
|
self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
|
|
self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')
|
|
|
|
# Issue 7094: Alternate formatting (specified by #)
|
|
self.assertEqual(format(1+1j, '.0e'), '1e+00+1e+00j')
|
|
self.assertEqual(format(1+1j, '#.0e'), '1.e+00+1.e+00j')
|
|
self.assertEqual(format(1+1j, '.0f'), '1+1j')
|
|
self.assertEqual(format(1+1j, '#.0f'), '1.+1.j')
|
|
self.assertEqual(format(1.1+1.1j, 'g'), '1.1+1.1j')
|
|
self.assertEqual(format(1.1+1.1j, '#g'), '1.10000+1.10000j')
|
|
|
|
# Alternate doesn't make a difference for these, they format the same with or without it
|
|
self.assertEqual(format(1+1j, '.1e'), '1.0e+00+1.0e+00j')
|
|
self.assertEqual(format(1+1j, '#.1e'), '1.0e+00+1.0e+00j')
|
|
self.assertEqual(format(1+1j, '.1f'), '1.0+1.0j')
|
|
self.assertEqual(format(1+1j, '#.1f'), '1.0+1.0j')
|
|
|
|
# Misc. other alternate tests
|
|
self.assertEqual(format((-1.5+0.5j), '#f'), '-1.500000+0.500000j')
|
|
self.assertEqual(format((-1.5+0.5j), '#.0f'), '-2.+0.j')
|
|
self.assertEqual(format((-1.5+0.5j), '#e'), '-1.500000e+00+5.000000e-01j')
|
|
self.assertEqual(format((-1.5+0.5j), '#.0e'), '-2.e+00+5.e-01j')
|
|
self.assertEqual(format((-1.5+0.5j), '#g'), '-1.50000+0.500000j')
|
|
self.assertEqual(format((-1.5+0.5j), '.0g'), '-2+0.5j')
|
|
self.assertEqual(format((-1.5+0.5j), '#.0g'), '-2.+0.5j')
|
|
|
|
# zero padding is invalid
|
|
self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')
|
|
|
|
# '=' alignment is invalid
|
|
self.assertRaises(ValueError, (1.5+3j).__format__, '=20')
|
|
|
|
# integer presentation types are an error
|
|
for t in 'bcdoxX':
|
|
self.assertRaises(ValueError, (1.5+0.5j).__format__, t)
|
|
|
|
# make sure everything works in ''.format()
|
|
self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')
|
|
|
|
# issue 3382
|
|
self.assertEqual(format(complex(NAN, NAN), 'f'), 'nan+nanj')
|
|
self.assertEqual(format(complex(1, NAN), 'f'), '1.000000+nanj')
|
|
self.assertEqual(format(complex(NAN, 1), 'f'), 'nan+1.000000j')
|
|
self.assertEqual(format(complex(NAN, -1), 'f'), 'nan-1.000000j')
|
|
self.assertEqual(format(complex(NAN, NAN), 'F'), 'NAN+NANj')
|
|
self.assertEqual(format(complex(1, NAN), 'F'), '1.000000+NANj')
|
|
self.assertEqual(format(complex(NAN, 1), 'F'), 'NAN+1.000000j')
|
|
self.assertEqual(format(complex(NAN, -1), 'F'), 'NAN-1.000000j')
|
|
self.assertEqual(format(complex(INF, INF), 'f'), 'inf+infj')
|
|
self.assertEqual(format(complex(1, INF), 'f'), '1.000000+infj')
|
|
self.assertEqual(format(complex(INF, 1), 'f'), 'inf+1.000000j')
|
|
self.assertEqual(format(complex(INF, -1), 'f'), 'inf-1.000000j')
|
|
self.assertEqual(format(complex(INF, INF), 'F'), 'INF+INFj')
|
|
self.assertEqual(format(complex(1, INF), 'F'), '1.000000+INFj')
|
|
self.assertEqual(format(complex(INF, 1), 'F'), 'INF+1.000000j')
|
|
self.assertEqual(format(complex(INF, -1), 'F'), 'INF-1.000000j')
|
|
|
|
def test_main():
|
|
support.run_unittest(ComplexTest)
|
|
|
|
if __name__ == "__main__":
|
|
test_main()
|