mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
537 lines
18 KiB
C
537 lines
18 KiB
C
/*
|
|
** 2005 May 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains functions used to access the internal hash tables
|
|
** of user defined functions and collation sequences.
|
|
*/
|
|
#include "third_party/sqlite3/sqliteInt.inc"
|
|
|
|
/* clang-format off */
|
|
|
|
/*
|
|
** Invoke the 'collation needed' callback to request a collation sequence
|
|
** in the encoding enc of name zName, length nName.
|
|
*/
|
|
static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
|
|
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
|
if( db->xCollNeeded ){
|
|
char *zExternal = sqlite3DbStrDup(db, zName);
|
|
if( !zExternal ) return;
|
|
db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
|
|
sqlite3DbFree(db, zExternal);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( db->xCollNeeded16 ){
|
|
char const *zExternal;
|
|
sqlite3_value *pTmp = sqlite3ValueNew(db);
|
|
sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
|
|
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
|
if( zExternal ){
|
|
db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
|
}
|
|
sqlite3ValueFree(pTmp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine is called if the collation factory fails to deliver a
|
|
** collation function in the best encoding but there may be other versions
|
|
** of this collation function (for other text encodings) available. Use one
|
|
** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
|
|
** possible.
|
|
*/
|
|
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
|
|
CollSeq *pColl2;
|
|
char *z = pColl->zName;
|
|
int i;
|
|
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
|
|
for(i=0; i<3; i++){
|
|
pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
|
|
if( pColl2->xCmp!=0 ){
|
|
memcpy(pColl, pColl2, sizeof(CollSeq));
|
|
pColl->xDel = 0; /* Do not copy the destructor */
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** This routine is called on a collation sequence before it is used to
|
|
** check that it is defined. An undefined collation sequence exists when
|
|
** a database is loaded that contains references to collation sequences
|
|
** that have not been defined by sqlite3_create_collation() etc.
|
|
**
|
|
** If required, this routine calls the 'collation needed' callback to
|
|
** request a definition of the collating sequence. If this doesn't work,
|
|
** an equivalent collating sequence that uses a text encoding different
|
|
** from the main database is substituted, if one is available.
|
|
*/
|
|
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
|
|
if( pColl && pColl->xCmp==0 ){
|
|
const char *zName = pColl->zName;
|
|
sqlite3 *db = pParse->db;
|
|
CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
|
|
if( !p ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
assert( p==pColl );
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Locate and return an entry from the db.aCollSeq hash table. If the entry
|
|
** specified by zName and nName is not found and parameter 'create' is
|
|
** true, then create a new entry. Otherwise return NULL.
|
|
**
|
|
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
|
|
** array of three CollSeq structures. The first is the collation sequence
|
|
** preferred for UTF-8, the second UTF-16le, and the third UTF-16be.
|
|
**
|
|
** Stored immediately after the three collation sequences is a copy of
|
|
** the collation sequence name. A pointer to this string is stored in
|
|
** each collation sequence structure.
|
|
*/
|
|
static CollSeq *findCollSeqEntry(
|
|
sqlite3 *db, /* Database connection */
|
|
const char *zName, /* Name of the collating sequence */
|
|
int create /* Create a new entry if true */
|
|
){
|
|
CollSeq *pColl;
|
|
pColl = sqlite3HashFind(&db->aCollSeq, zName);
|
|
|
|
if( 0==pColl && create ){
|
|
int nName = sqlite3Strlen30(zName) + 1;
|
|
pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName);
|
|
if( pColl ){
|
|
CollSeq *pDel = 0;
|
|
pColl[0].zName = (char*)&pColl[3];
|
|
pColl[0].enc = SQLITE_UTF8;
|
|
pColl[1].zName = (char*)&pColl[3];
|
|
pColl[1].enc = SQLITE_UTF16LE;
|
|
pColl[2].zName = (char*)&pColl[3];
|
|
pColl[2].enc = SQLITE_UTF16BE;
|
|
memcpy(pColl[0].zName, zName, nName);
|
|
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl);
|
|
|
|
/* If a malloc() failure occurred in sqlite3HashInsert(), it will
|
|
** return the pColl pointer to be deleted (because it wasn't added
|
|
** to the hash table).
|
|
*/
|
|
assert( pDel==0 || pDel==pColl );
|
|
if( pDel!=0 ){
|
|
sqlite3OomFault(db);
|
|
sqlite3DbFree(db, pDel);
|
|
pColl = 0;
|
|
}
|
|
}
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Parameter zName points to a UTF-8 encoded string nName bytes long.
|
|
** Return the CollSeq* pointer for the collation sequence named zName
|
|
** for the encoding 'enc' from the database 'db'.
|
|
**
|
|
** If the entry specified is not found and 'create' is true, then create a
|
|
** new entry. Otherwise return NULL.
|
|
**
|
|
** A separate function sqlite3LocateCollSeq() is a wrapper around
|
|
** this routine. sqlite3LocateCollSeq() invokes the collation factory
|
|
** if necessary and generates an error message if the collating sequence
|
|
** cannot be found.
|
|
**
|
|
** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
|
|
*/
|
|
CollSeq *sqlite3FindCollSeq(
|
|
sqlite3 *db, /* Database connection to search */
|
|
u8 enc, /* Desired text encoding */
|
|
const char *zName, /* Name of the collating sequence. Might be NULL */
|
|
int create /* True to create CollSeq if doesn't already exist */
|
|
){
|
|
CollSeq *pColl;
|
|
assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
|
assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
|
|
if( zName ){
|
|
pColl = findCollSeqEntry(db, zName, create);
|
|
if( pColl ) pColl += enc-1;
|
|
}else{
|
|
pColl = db->pDfltColl;
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Change the text encoding for a database connection. This means that
|
|
** the pDfltColl must change as well.
|
|
*/
|
|
void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){
|
|
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
|
db->enc = enc;
|
|
/* EVIDENCE-OF: R-08308-17224 The default collating function for all
|
|
** strings is BINARY.
|
|
*/
|
|
db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0);
|
|
}
|
|
|
|
/*
|
|
** This function is responsible for invoking the collation factory callback
|
|
** or substituting a collation sequence of a different encoding when the
|
|
** requested collation sequence is not available in the desired encoding.
|
|
**
|
|
** If it is not NULL, then pColl must point to the database native encoding
|
|
** collation sequence with name zName, length nName.
|
|
**
|
|
** The return value is either the collation sequence to be used in database
|
|
** db for collation type name zName, length nName, or NULL, if no collation
|
|
** sequence can be found. If no collation is found, leave an error message.
|
|
**
|
|
** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
|
|
*/
|
|
CollSeq *sqlite3GetCollSeq(
|
|
Parse *pParse, /* Parsing context */
|
|
u8 enc, /* The desired encoding for the collating sequence */
|
|
CollSeq *pColl, /* Collating sequence with native encoding, or NULL */
|
|
const char *zName /* Collating sequence name */
|
|
){
|
|
CollSeq *p;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
p = pColl;
|
|
if( !p ){
|
|
p = sqlite3FindCollSeq(db, enc, zName, 0);
|
|
}
|
|
if( !p || !p->xCmp ){
|
|
/* No collation sequence of this type for this encoding is registered.
|
|
** Call the collation factory to see if it can supply us with one.
|
|
*/
|
|
callCollNeeded(db, enc, zName);
|
|
p = sqlite3FindCollSeq(db, enc, zName, 0);
|
|
}
|
|
if( p && !p->xCmp && synthCollSeq(db, p) ){
|
|
p = 0;
|
|
}
|
|
assert( !p || p->xCmp );
|
|
if( p==0 ){
|
|
sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
|
|
pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** This function returns the collation sequence for database native text
|
|
** encoding identified by the string zName.
|
|
**
|
|
** If the requested collation sequence is not available, or not available
|
|
** in the database native encoding, the collation factory is invoked to
|
|
** request it. If the collation factory does not supply such a sequence,
|
|
** and the sequence is available in another text encoding, then that is
|
|
** returned instead.
|
|
**
|
|
** If no versions of the requested collations sequence are available, or
|
|
** another error occurs, NULL is returned and an error message written into
|
|
** pParse.
|
|
**
|
|
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
|
** invokes the collation factory if the named collation cannot be found
|
|
** and generates an error message.
|
|
**
|
|
** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
|
|
*/
|
|
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
|
|
sqlite3 *db = pParse->db;
|
|
u8 enc = ENC(db);
|
|
u8 initbusy = db->init.busy;
|
|
CollSeq *pColl;
|
|
|
|
pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
|
|
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
|
|
}
|
|
|
|
return pColl;
|
|
}
|
|
|
|
/* During the search for the best function definition, this procedure
|
|
** is called to test how well the function passed as the first argument
|
|
** matches the request for a function with nArg arguments in a system
|
|
** that uses encoding enc. The value returned indicates how well the
|
|
** request is matched. A higher value indicates a better match.
|
|
**
|
|
** If nArg is -1 that means to only return a match (non-zero) if p->nArg
|
|
** is also -1. In other words, we are searching for a function that
|
|
** takes a variable number of arguments.
|
|
**
|
|
** If nArg is -2 that means that we are searching for any function
|
|
** regardless of the number of arguments it uses, so return a positive
|
|
** match score for any
|
|
**
|
|
** The returned value is always between 0 and 6, as follows:
|
|
**
|
|
** 0: Not a match.
|
|
** 1: UTF8/16 conversion required and function takes any number of arguments.
|
|
** 2: UTF16 byte order change required and function takes any number of args.
|
|
** 3: encoding matches and function takes any number of arguments
|
|
** 4: UTF8/16 conversion required - argument count matches exactly
|
|
** 5: UTF16 byte order conversion required - argument count matches exactly
|
|
** 6: Perfect match: encoding and argument count match exactly.
|
|
**
|
|
** If nArg==(-2) then any function with a non-null xSFunc is
|
|
** a perfect match and any function with xSFunc NULL is
|
|
** a non-match.
|
|
*/
|
|
#define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */
|
|
static int matchQuality(
|
|
FuncDef *p, /* The function we are evaluating for match quality */
|
|
int nArg, /* Desired number of arguments. (-1)==any */
|
|
u8 enc /* Desired text encoding */
|
|
){
|
|
int match;
|
|
assert( p->nArg>=-1 );
|
|
|
|
/* Wrong number of arguments means "no match" */
|
|
if( p->nArg!=nArg ){
|
|
if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH;
|
|
if( p->nArg>=0 ) return 0;
|
|
}
|
|
|
|
/* Give a better score to a function with a specific number of arguments
|
|
** than to function that accepts any number of arguments. */
|
|
if( p->nArg==nArg ){
|
|
match = 4;
|
|
}else{
|
|
match = 1;
|
|
}
|
|
|
|
/* Bonus points if the text encoding matches */
|
|
if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){
|
|
match += 2; /* Exact encoding match */
|
|
}else if( (enc & p->funcFlags & 2)!=0 ){
|
|
match += 1; /* Both are UTF16, but with different byte orders */
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
/*
|
|
** Search a FuncDefHash for a function with the given name. Return
|
|
** a pointer to the matching FuncDef if found, or 0 if there is no match.
|
|
*/
|
|
FuncDef *sqlite3FunctionSearch(
|
|
int h, /* Hash of the name */
|
|
const char *zFunc /* Name of function */
|
|
){
|
|
FuncDef *p;
|
|
for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
|
|
if( sqlite3StrICmp(p->zName, zFunc)==0 ){
|
|
return p;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Insert a new FuncDef into a FuncDefHash hash table.
|
|
*/
|
|
void sqlite3InsertBuiltinFuncs(
|
|
FuncDef *aDef, /* List of global functions to be inserted */
|
|
int nDef /* Length of the apDef[] list */
|
|
){
|
|
int i;
|
|
for(i=0; i<nDef; i++){
|
|
FuncDef *pOther;
|
|
const char *zName = aDef[i].zName;
|
|
int nName = sqlite3Strlen30(zName);
|
|
int h = SQLITE_FUNC_HASH(zName[0], nName);
|
|
assert( zName[0]>='a' && zName[0]<='z' );
|
|
pOther = sqlite3FunctionSearch(h, zName);
|
|
if( pOther ){
|
|
assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
|
|
aDef[i].pNext = pOther->pNext;
|
|
pOther->pNext = &aDef[i];
|
|
}else{
|
|
aDef[i].pNext = 0;
|
|
aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h];
|
|
sqlite3BuiltinFunctions.a[h] = &aDef[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Locate a user function given a name, a number of arguments and a flag
|
|
** indicating whether the function prefers UTF-16 over UTF-8. Return a
|
|
** pointer to the FuncDef structure that defines that function, or return
|
|
** NULL if the function does not exist.
|
|
**
|
|
** If the createFlag argument is true, then a new (blank) FuncDef
|
|
** structure is created and liked into the "db" structure if a
|
|
** no matching function previously existed.
|
|
**
|
|
** If nArg is -2, then the first valid function found is returned. A
|
|
** function is valid if xSFunc is non-zero. The nArg==(-2)
|
|
** case is used to see if zName is a valid function name for some number
|
|
** of arguments. If nArg is -2, then createFlag must be 0.
|
|
**
|
|
** If createFlag is false, then a function with the required name and
|
|
** number of arguments may be returned even if the eTextRep flag does not
|
|
** match that requested.
|
|
*/
|
|
FuncDef *sqlite3FindFunction(
|
|
sqlite3 *db, /* An open database */
|
|
const char *zName, /* Name of the function. zero-terminated */
|
|
int nArg, /* Number of arguments. -1 means any number */
|
|
u8 enc, /* Preferred text encoding */
|
|
u8 createFlag /* Create new entry if true and does not otherwise exist */
|
|
){
|
|
FuncDef *p; /* Iterator variable */
|
|
FuncDef *pBest = 0; /* Best match found so far */
|
|
int bestScore = 0; /* Score of best match */
|
|
int h; /* Hash value */
|
|
int nName; /* Length of the name */
|
|
|
|
assert( nArg>=(-2) );
|
|
assert( nArg>=(-1) || createFlag==0 );
|
|
nName = sqlite3Strlen30(zName);
|
|
|
|
/* First search for a match amongst the application-defined functions.
|
|
*/
|
|
p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName);
|
|
while( p ){
|
|
int score = matchQuality(p, nArg, enc);
|
|
if( score>bestScore ){
|
|
pBest = p;
|
|
bestScore = score;
|
|
}
|
|
p = p->pNext;
|
|
}
|
|
|
|
/* If no match is found, search the built-in functions.
|
|
**
|
|
** If the DBFLAG_PreferBuiltin flag is set, then search the built-in
|
|
** functions even if a prior app-defined function was found. And give
|
|
** priority to built-in functions.
|
|
**
|
|
** Except, if createFlag is true, that means that we are trying to
|
|
** install a new function. Whatever FuncDef structure is returned it will
|
|
** have fields overwritten with new information appropriate for the
|
|
** new function. But the FuncDefs for built-in functions are read-only.
|
|
** So we must not search for built-ins when creating a new function.
|
|
*/
|
|
if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){
|
|
bestScore = 0;
|
|
h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName);
|
|
p = sqlite3FunctionSearch(h, zName);
|
|
while( p ){
|
|
int score = matchQuality(p, nArg, enc);
|
|
if( score>bestScore ){
|
|
pBest = p;
|
|
bestScore = score;
|
|
}
|
|
p = p->pNext;
|
|
}
|
|
}
|
|
|
|
/* If the createFlag parameter is true and the search did not reveal an
|
|
** exact match for the name, number of arguments and encoding, then add a
|
|
** new entry to the hash table and return it.
|
|
*/
|
|
if( createFlag && bestScore<FUNC_PERFECT_MATCH &&
|
|
(pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
|
|
FuncDef *pOther;
|
|
u8 *z;
|
|
pBest->zName = (const char*)&pBest[1];
|
|
pBest->nArg = (u16)nArg;
|
|
pBest->funcFlags = enc;
|
|
memcpy((char*)&pBest[1], zName, nName+1);
|
|
for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z];
|
|
pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest);
|
|
if( pOther==pBest ){
|
|
sqlite3DbFree(db, pBest);
|
|
sqlite3OomFault(db);
|
|
return 0;
|
|
}else{
|
|
pBest->pNext = pOther;
|
|
}
|
|
}
|
|
|
|
if( pBest && (pBest->xSFunc || createFlag) ){
|
|
return pBest;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Free all resources held by the schema structure. The void* argument points
|
|
** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
|
|
** pointer itself, it just cleans up subsidiary resources (i.e. the contents
|
|
** of the schema hash tables).
|
|
**
|
|
** The Schema.cache_size variable is not cleared.
|
|
*/
|
|
void sqlite3SchemaClear(void *p){
|
|
Hash temp1;
|
|
Hash temp2;
|
|
HashElem *pElem;
|
|
Schema *pSchema = (Schema *)p;
|
|
|
|
temp1 = pSchema->tblHash;
|
|
temp2 = pSchema->trigHash;
|
|
sqlite3HashInit(&pSchema->trigHash);
|
|
sqlite3HashClear(&pSchema->idxHash);
|
|
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
|
sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
|
|
}
|
|
sqlite3HashClear(&temp2);
|
|
sqlite3HashInit(&pSchema->tblHash);
|
|
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
|
Table *pTab = sqliteHashData(pElem);
|
|
sqlite3DeleteTable(0, pTab);
|
|
}
|
|
sqlite3HashClear(&temp1);
|
|
sqlite3HashClear(&pSchema->fkeyHash);
|
|
pSchema->pSeqTab = 0;
|
|
if( pSchema->schemaFlags & DB_SchemaLoaded ){
|
|
pSchema->iGeneration++;
|
|
}
|
|
pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted);
|
|
}
|
|
|
|
/*
|
|
** Find and return the schema associated with a BTree. Create
|
|
** a new one if necessary.
|
|
*/
|
|
Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
|
|
Schema * p;
|
|
if( pBt ){
|
|
p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
|
|
}else{
|
|
p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
|
|
}
|
|
if( !p ){
|
|
sqlite3OomFault(db);
|
|
}else if ( 0==p->file_format ){
|
|
sqlite3HashInit(&p->tblHash);
|
|
sqlite3HashInit(&p->idxHash);
|
|
sqlite3HashInit(&p->trigHash);
|
|
sqlite3HashInit(&p->fkeyHash);
|
|
p->enc = SQLITE_UTF8;
|
|
}
|
|
return p;
|
|
}
|