mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
47a53e143b
The APE_NO_MODIFY_SELF loader payload has been moved out of the examples folder and improved so that it works on BSD systems, and permits general elf program headers. This brings its quality up enough that it should be acceptable to use by default for many programs, e.g. Python, Lua, SQLite and Python. It's the responsibility of the user to define an appropriate TMPDIR if /tmp is considered an adversarial environment. Mac OS shall be supported by APE_NO_MODIFY_SELF soon. Fixes and improvements have been made to program_executable_name as it's now the one true way to get the absolute path of the executing image. This change fixes a memory leak in linenoise history loading, introduced by performance optimizations in51904e2687
This change fixes a longstanding regression with Mach system calls, that23ae9dfceb
back in February which impacted our sched_yield() implementation, which is why no one noticed until now. The Blinkenlights PC emulator has been improved. We now fix rendering on XNU and BSD by not making the assumption that the kernel terminal driver understands UTF8 since that seems to break its internal modeling of \r\n which is now being addressed by using \e[𝑦H instead. The paneling is now more compact in real mode so you won't need to make your font as tiny if you're only emulating an 8086 program. The CLMUL ISA is now emulated too This change also makes improvement to time. CLOCK_MONOTONIC now does the right thing on Windows NT. The nanosecond time module functions added in Python 3.7 have been backported. This change doubles the performance of Argon2 password stretching simply by not using its copy_block and xor_block helper functions, as they were trivial to inline thus resulting in us needing to iterate over each 1024 byte block four fewer times. This change makes code size improvements. _PyUnicode_ToNumeric() was 64k in size and now it's 10k. The CJK codec lookup tables now use lazy delta zigzag deflate (δzd) encoding which reduces their size from 600k to 200k plus the code bloat caused by macro abuse in _decimal.c is now addressed so our fully-loaded statically-linked hermetically-sealed Python virtual interpreter container is now 9.4 megs in the default build mode and 5.5m in MODE=tiny which leaves plenty of room for chibicc. The pydoc web server now accommodates the use case of people who work by SSH'ing into a different machine w/ python.com -m pydoc -p8080 -h0.0.0.0 Finally Python Capsulae delenda est and won't be supported in the future
885 lines
23 KiB
C
885 lines
23 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Python 3 │
|
|
│ https://docs.python.org/3/license.html │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/calls/weirdtypes.h"
|
|
#include "libc/math.h"
|
|
#include "libc/nt/synchronization.h"
|
|
#include "libc/sysv/consts/clock.h"
|
|
#include "libc/time/time.h"
|
|
#include "third_party/python/Include/floatobject.h"
|
|
#include "third_party/python/Include/longobject.h"
|
|
#include "third_party/python/Include/object.h"
|
|
#include "third_party/python/Include/pyerrors.h"
|
|
#include "third_party/python/Include/pymacro.h"
|
|
#include "third_party/python/Include/pymath.h"
|
|
#include "third_party/python/Include/pytime.h"
|
|
/* clang-format off */
|
|
|
|
#define _PyTime_check_mul_overflow(a, b) \
|
|
(assert(b > 0), \
|
|
(_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
|
|
|| _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))
|
|
|
|
/* To millisecond (10^-3) */
|
|
#define SEC_TO_MS 1000
|
|
|
|
/* To microseconds (10^-6) */
|
|
#define MS_TO_US 1000
|
|
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)
|
|
|
|
/* To nanoseconds (10^-9) */
|
|
#define US_TO_NS 1000
|
|
#define MS_TO_NS (MS_TO_US * US_TO_NS)
|
|
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
|
|
|
|
/* Conversion from nanoseconds */
|
|
#define NS_TO_MS (1000 * 1000)
|
|
#define NS_TO_US (1000)
|
|
|
|
typedef int clockid_t;
|
|
|
|
static void
|
|
error_time_t_overflow(void)
|
|
{
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timestamp out of range for platform time_t");
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
|
|
{
|
|
_PyTime_t intpart, remaining;
|
|
/* Compute (ticks * mul / div) in two parts to prevent integer overflow:
|
|
compute integer part, and then the remaining part.
|
|
(ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
|
|
The caller must ensure that "(div - 1) * mul" cannot overflow. */
|
|
intpart = ticks / div;
|
|
ticks %= div;
|
|
remaining = ticks * mul;
|
|
remaining /= div;
|
|
return intpart * mul + remaining;
|
|
}
|
|
|
|
time_t
|
|
_PyLong_AsTime_t(PyObject *obj)
|
|
{
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
long long val;
|
|
val = PyLong_AsLongLong(obj);
|
|
#else
|
|
long val;
|
|
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
|
|
val = PyLong_AsLong(obj);
|
|
#endif
|
|
if (val == -1 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError))
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return (time_t)val;
|
|
}
|
|
|
|
PyObject *
|
|
_PyLong_FromTime_t(time_t t)
|
|
{
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
return PyLong_FromLongLong((long long)t);
|
|
#else
|
|
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
|
|
return PyLong_FromLong((long)t);
|
|
#endif
|
|
}
|
|
|
|
/* Round to nearest with ties going to nearest even integer
|
|
(_PyTime_ROUND_HALF_EVEN) */
|
|
static double
|
|
_PyTime_RoundHalfEven(double x)
|
|
{
|
|
double rounded = round(x);
|
|
if (fabs(x-rounded) == 0.5)
|
|
/* halfway case: round to even */
|
|
rounded = 2.0*round(x/2.0);
|
|
return rounded;
|
|
}
|
|
|
|
static double
|
|
_PyTime_Round(double x, _PyTime_round_t round)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
d = x;
|
|
if (round == _PyTime_ROUND_HALF_EVEN){
|
|
d = _PyTime_RoundHalfEven(d);
|
|
}
|
|
else if (round == _PyTime_ROUND_CEILING){
|
|
d = ceil(d);
|
|
}
|
|
else if (round == _PyTime_ROUND_FLOOR) {
|
|
d = floor(d);
|
|
}
|
|
else {
|
|
assert(round == _PyTime_ROUND_UP);
|
|
d = (d >= 0.0) ? ceil(d) : floor(d);
|
|
}
|
|
return d;
|
|
}
|
|
|
|
static int
|
|
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
|
|
double denominator, _PyTime_round_t round)
|
|
{
|
|
double intpart;
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double floatpart;
|
|
floatpart = modf(d, &intpart);
|
|
floatpart *= denominator;
|
|
floatpart = _PyTime_Round(floatpart, round);
|
|
if (floatpart >= denominator) {
|
|
floatpart -= denominator;
|
|
intpart += 1.0;
|
|
}
|
|
else if (floatpart < 0) {
|
|
floatpart += denominator;
|
|
intpart -= 1.0;
|
|
}
|
|
assert(0.0 <= floatpart && floatpart < denominator);
|
|
if (!_Py_InIntegralTypeRange(time_t, intpart)) {
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
*sec = (time_t)intpart;
|
|
*numerator = (long)floatpart;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
|
|
double denominator, _PyTime_round_t round)
|
|
{
|
|
assert(denominator <= (double)LONG_MAX);
|
|
if (PyFloat_Check(obj)) {
|
|
double d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
*numerator = 0;
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
return _PyTime_DoubleToDenominator(d, sec, numerator,
|
|
denominator, round);
|
|
}
|
|
else {
|
|
*sec = _PyLong_AsTime_t(obj);
|
|
*numerator = 0;
|
|
if (*sec == (time_t)-1 && PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
|
|
{
|
|
if (PyFloat_Check(obj)) {
|
|
double intpart;
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
|
|
d = _PyTime_Round(d, round);
|
|
(void)modf(d, &intpart);
|
|
|
|
if (!_Py_InIntegralTypeRange(time_t, intpart)) {
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
*sec = (time_t)intpart;
|
|
return 0;
|
|
}
|
|
else {
|
|
*sec = _PyLong_AsTime_t(obj);
|
|
if (*sec == (time_t)-1 && PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
|
|
_PyTime_round_t round)
|
|
{
|
|
int res;
|
|
res = _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round);
|
|
if (res == 0) {
|
|
assert(0 <= *nsec && *nsec < SEC_TO_NS);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int
|
|
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
|
|
_PyTime_round_t round)
|
|
{
|
|
int res;
|
|
res = _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round);
|
|
if (res == 0) {
|
|
assert(0 <= *usec && *usec < SEC_TO_US);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
_PyTime_overflow(void)
|
|
{
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timestamp too large to convert to C _PyTime_t");
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_FromSeconds(int seconds)
|
|
{
|
|
_PyTime_t t;
|
|
t = (_PyTime_t)seconds;
|
|
/* ensure that integer overflow cannot happen, int type should have 32
|
|
bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
|
|
bits). */
|
|
Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
|
|
Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
|
|
assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
|
|
|| (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
|
|
t *= SEC_TO_NS;
|
|
return t;
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_FromNanoseconds(long long ns)
|
|
{
|
|
_PyTime_t t;
|
|
Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
|
|
t = Py_SAFE_DOWNCAST(ns, long long, _PyTime_t);
|
|
return t;
|
|
}
|
|
|
|
static int
|
|
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise)
|
|
{
|
|
int res = 0;
|
|
_PyTime_t t;
|
|
Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
|
|
t = (_PyTime_t)ts->tv_sec;
|
|
if (__builtin_mul_overflow(t, SEC_TO_NS, &t)) {
|
|
if (raise)
|
|
_PyTime_overflow();
|
|
res = -1;
|
|
}
|
|
t += ts->tv_nsec;
|
|
*tp = t;
|
|
return res;
|
|
}
|
|
|
|
int
|
|
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
|
|
{
|
|
return pytime_fromtimespec(tp, ts, 1);
|
|
}
|
|
|
|
int
|
|
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise)
|
|
{
|
|
_PyTime_t t;
|
|
int res = 0;
|
|
Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
|
|
t = (_PyTime_t)tv->tv_sec;
|
|
if (__builtin_mul_overflow(t, SEC_TO_NS, &t)) {
|
|
if (raise)
|
|
_PyTime_overflow();
|
|
res = -1;
|
|
}
|
|
t += (_PyTime_t)tv->tv_usec * US_TO_NS;
|
|
*tp = t;
|
|
return res;
|
|
}
|
|
|
|
int
|
|
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
|
|
{
|
|
return pytime_fromtimeval(tp, tv, 1);
|
|
}
|
|
|
|
static int
|
|
_PyTime_FromFloatObject(_PyTime_t *t, double value, _PyTime_round_t round,
|
|
long unit_to_ns)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
/* convert to a number of nanoseconds */
|
|
d = value;
|
|
d *= (double)unit_to_ns;
|
|
d = _PyTime_Round(d, round);
|
|
if (!_Py_InIntegralTypeRange(_PyTime_t, d)) {
|
|
_PyTime_overflow();
|
|
return -1;
|
|
}
|
|
*t = (_PyTime_t)d;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
|
|
long unit_to_ns)
|
|
{
|
|
if (PyFloat_Check(obj)) {
|
|
double d;
|
|
d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
return _PyTime_FromFloatObject(t, d, round, unit_to_ns);
|
|
}
|
|
else {
|
|
long long sec;
|
|
Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
|
|
sec = PyLong_AsLongLong(obj);
|
|
if (sec == -1 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError))
|
|
_PyTime_overflow();
|
|
return -1;
|
|
}
|
|
if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
|
|
_PyTime_overflow();
|
|
return -1;
|
|
}
|
|
*t = sec * unit_to_ns;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
|
|
}
|
|
|
|
int
|
|
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_FromObject(t, obj, round, MS_TO_NS);
|
|
}
|
|
|
|
double
|
|
_PyTime_AsSecondsDouble(_PyTime_t t)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
if (t % SEC_TO_NS == 0) {
|
|
_PyTime_t secs;
|
|
/* Divide using integers to avoid rounding issues on the integer part.
|
|
1e-9 cannot be stored exactly in IEEE 64-bit. */
|
|
secs = t / SEC_TO_NS;
|
|
d = (double)secs;
|
|
}
|
|
else {
|
|
d = (double)t;
|
|
d /= 1e9;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
PyObject *
|
|
_PyTime_AsNanosecondsObject(_PyTime_t t)
|
|
{
|
|
Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
|
|
return PyLong_FromLongLong((long long)t);
|
|
}
|
|
|
|
static _PyTime_t
|
|
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
|
|
const _PyTime_round_t round)
|
|
{
|
|
assert(k > 1);
|
|
if (round == _PyTime_ROUND_HALF_EVEN) {
|
|
_PyTime_t x, r, abs_r;
|
|
x = t / k;
|
|
r = t % k;
|
|
abs_r = Py_ABS(r);
|
|
if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
|
|
if (t >= 0)
|
|
x++;
|
|
else
|
|
x--;
|
|
}
|
|
return x;
|
|
}
|
|
else if (round == _PyTime_ROUND_CEILING) {
|
|
if (t >= 0){
|
|
return (t + k - 1) / k;
|
|
}
|
|
else{
|
|
return t / k;
|
|
}
|
|
}
|
|
else if (round == _PyTime_ROUND_FLOOR){
|
|
if (t >= 0) {
|
|
return t / k;
|
|
}
|
|
else{
|
|
return (t - (k - 1)) / k;
|
|
}
|
|
}
|
|
else {
|
|
assert(round == _PyTime_ROUND_UP);
|
|
if (t >= 0) {
|
|
return (t + k - 1) / k;
|
|
}
|
|
else {
|
|
return (t - (k - 1)) / k;
|
|
}
|
|
}
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_Divide(t, NS_TO_MS, round);
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_Divide(t, NS_TO_US, round);
|
|
}
|
|
|
|
static int
|
|
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
|
|
_PyTime_round_t round)
|
|
{
|
|
_PyTime_t secs, ns;
|
|
int usec;
|
|
int res = 0;
|
|
secs = t / SEC_TO_NS;
|
|
ns = t % SEC_TO_NS;
|
|
usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
|
|
if (usec < 0) {
|
|
usec += SEC_TO_US;
|
|
if (secs != _PyTime_MIN)
|
|
secs -= 1;
|
|
else
|
|
res = -1;
|
|
}
|
|
else if (usec >= SEC_TO_US) {
|
|
usec -= SEC_TO_US;
|
|
if (secs != _PyTime_MAX)
|
|
secs += 1;
|
|
else
|
|
res = -1;
|
|
}
|
|
assert(0 <= usec && usec < SEC_TO_US);
|
|
*p_secs = secs;
|
|
*p_us = usec;
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
|
|
_PyTime_round_t round, int raise)
|
|
{
|
|
_PyTime_t secs, secs2;
|
|
int us;
|
|
int res;
|
|
res = _PyTime_AsTimeval_impl(t, &secs, &us, round);
|
|
#ifdef MS_WINDOWS
|
|
tv->tv_sec = (long)secs;
|
|
#else
|
|
tv->tv_sec = secs;
|
|
#endif
|
|
tv->tv_usec = us;
|
|
secs2 = (_PyTime_t)tv->tv_sec;
|
|
if (res < 0 || secs2 != secs) {
|
|
if (raise)
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
|
|
}
|
|
|
|
int
|
|
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
|
|
{
|
|
return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
|
|
}
|
|
|
|
int
|
|
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
|
|
_PyTime_round_t round)
|
|
{
|
|
_PyTime_t secs;
|
|
int res;
|
|
res = _PyTime_AsTimeval_impl(t, &secs, us, round);
|
|
*p_secs = secs;
|
|
if (res < 0 || (_PyTime_t)*p_secs != secs) {
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
win_perf_counter_frequency(int64_t *pfrequency, int raise)
|
|
{
|
|
int64_t frequency;
|
|
if (!QueryPerformanceFrequency(&frequency)) {
|
|
if (raise) {
|
|
PyErr_SetFromWindowsErr(0);
|
|
}
|
|
return -1;
|
|
}
|
|
/* Sanity check: should never occur in practice */
|
|
if (frequency < 1) {
|
|
if (raise) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"invalid QueryPerformanceFrequency");
|
|
}
|
|
return -1;
|
|
}
|
|
/* Check that frequency can be casted to _PyTime_t.
|
|
*
|
|
* Make also sure that (ticks * SEC_TO_NS) cannot overflow in
|
|
* _PyTime_MulDiv(), with ticks < frequency.
|
|
*
|
|
* Known QueryPerformanceFrequency() values:
|
|
*
|
|
* - 10,000,000 (10 MHz): 100 ns resolution
|
|
* - 3,579,545 Hz (3.6 MHz): 279 ns resolution
|
|
*
|
|
* None of these frequencies can overflow with 64-bit _PyTime_t, but
|
|
* check for overflow, just in case.
|
|
*/
|
|
if (frequency > _PyTime_MAX
|
|
|| frequency > (int64_t)_PyTime_MAX / (int64_t)SEC_TO_NS)
|
|
{
|
|
if (raise) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"QueryPerformanceFrequency is too large");
|
|
}
|
|
return -1;
|
|
}
|
|
*pfrequency = frequency;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
|
|
{
|
|
static int64_t frequency;
|
|
if (!frequency) {
|
|
if (win_perf_counter_frequency(&frequency, raise) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (info) {
|
|
info->implementation = "QueryPerformanceCounter()";
|
|
info->resolution = 1 / (double)frequency;
|
|
info->monotonic = 1;
|
|
info->adjustable = 0;
|
|
}
|
|
int64_t ticksll;
|
|
QueryPerformanceCounter(&ticksll);
|
|
/* Make sure that casting int64_t to _PyTime_t cannot overflow,
|
|
both types are signed */
|
|
_PyTime_t ticks;
|
|
Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
|
|
ticks = (_PyTime_t)ticksll;
|
|
*tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
|
|
{
|
|
if (!IsWindows()) {
|
|
return _PyTime_GetMonotonicClockWithInfo(t, info);
|
|
} else {
|
|
return py_get_win_perf_counter(t, info, 1);
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
|
|
{
|
|
_PyTime_t secs, nsec;
|
|
secs = t / SEC_TO_NS;
|
|
nsec = t % SEC_TO_NS;
|
|
if (nsec < 0) {
|
|
nsec += SEC_TO_NS;
|
|
secs -= 1;
|
|
}
|
|
ts->tv_sec = (time_t)secs;
|
|
assert(0 <= nsec && nsec < SEC_TO_NS);
|
|
ts->tv_nsec = nsec;
|
|
if ((_PyTime_t)ts->tv_sec != secs) {
|
|
error_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
|
|
{
|
|
if (IsWindows()) {
|
|
uint64_t large;
|
|
struct NtFileTime system_time;
|
|
assert(info == NULL || raise);
|
|
GetSystemTimeAsFileTime(&system_time);
|
|
large = system_time.dwHighDateTime;
|
|
large <<= 32;
|
|
large |= system_time.dwLowDateTime;
|
|
/* 11,644,473,600,000,000,000: number of nanoseconds between
|
|
the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
|
|
days). */
|
|
*tp = large * 100 - 11644473600000000000ull;
|
|
if (info) {
|
|
bool32 isTimeAdjustmentDisabled;
|
|
uint32_t timeAdjustment, timeIncrement;
|
|
info->implementation = "GetSystemTimeAsFileTime()";
|
|
info->monotonic = 0;
|
|
if (!GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
|
|
&isTimeAdjustmentDisabled)) {
|
|
PyErr_SetFromWindowsErr(0);
|
|
return -1;
|
|
}
|
|
info->resolution = timeIncrement * 1e-7;
|
|
info->adjustable = 1;
|
|
}
|
|
} else {
|
|
int err;
|
|
struct timespec ts;
|
|
assert(info == NULL || raise);
|
|
err = clock_gettime(CLOCK_REALTIME, &ts);
|
|
if (err) {
|
|
if (raise)
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
if (pytime_fromtimespec(tp, &ts, raise) < 0)
|
|
return -1;
|
|
if (info) {
|
|
struct timespec res;
|
|
info->implementation = "clock_gettime(CLOCK_REALTIME)";
|
|
info->monotonic = 0;
|
|
info->adjustable = 1;
|
|
if (clock_getres(CLOCK_REALTIME, &res) == 0)
|
|
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
|
|
else
|
|
info->resolution = 1e-9;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_GetSystemClock(void)
|
|
{
|
|
_PyTime_t t;
|
|
if (pygettimeofday(&t, NULL, 0) < 0) {
|
|
/* should not happen, _PyTime_Init() checked the clock at startup */
|
|
assert(0);
|
|
/* use a fixed value instead of a random value from the stack */
|
|
t = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
int
|
|
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
|
|
{
|
|
return pygettimeofday(t, info, 1);
|
|
}
|
|
|
|
static int
|
|
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
|
|
{
|
|
if (IsWindows()) {
|
|
uint64_t ticks;
|
|
_PyTime_t t;
|
|
assert(info == NULL || raise);
|
|
ticks = GetTickCount64();
|
|
Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
|
|
t = (_PyTime_t)ticks;
|
|
if (__builtin_mul_overflow(t, MS_TO_NS, &t)) {
|
|
if (raise) {
|
|
_PyTime_overflow();
|
|
return -1;
|
|
}
|
|
/* Hello, time traveler! */
|
|
assert(0);
|
|
}
|
|
*tp = t * MS_TO_NS;
|
|
if (info) {
|
|
uint32_t timeAdjustment, timeIncrement;
|
|
bool32 isTimeAdjustmentDisabled, ok;
|
|
info->implementation = "GetTickCount64()";
|
|
info->monotonic = 1;
|
|
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
|
|
&isTimeAdjustmentDisabled);
|
|
if (!ok) {
|
|
PyErr_SetFromWindowsErr(0);
|
|
return -1;
|
|
}
|
|
info->resolution = timeIncrement * 1e-7;
|
|
info->adjustable = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
#ifdef __APPLE__
|
|
static mach_timebase_info_data_t timebase;
|
|
uint64_t time;
|
|
if (timebase.denom == 0) {
|
|
/* According to the Technical Q&A QA1398, mach_timebase_info() cannot
|
|
fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
|
|
(void)mach_timebase_info(&timebase);
|
|
}
|
|
time = mach_absolute_time();
|
|
/* apply timebase factor */
|
|
time *= timebase.numer;
|
|
time /= timebase.denom;
|
|
*tp = time;
|
|
if (info) {
|
|
info->implementation = "mach_absolute_time()";
|
|
info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
|
|
info->monotonic = 1;
|
|
info->adjustable = 0;
|
|
}
|
|
#else
|
|
struct timespec ts;
|
|
#ifdef CLOCK_HIGHRES
|
|
const clockid_t clk_id = CLOCK_HIGHRES;
|
|
const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
|
|
#else
|
|
const clockid_t clk_id = CLOCK_MONOTONIC;
|
|
const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
|
|
#endif
|
|
assert(info == NULL || raise);
|
|
if (clock_gettime(clk_id, &ts) != 0) {
|
|
if (raise) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return -1;
|
|
}
|
|
if (info) {
|
|
struct timespec res;
|
|
info->monotonic = 1;
|
|
info->implementation = implementation;
|
|
info->adjustable = 0;
|
|
if (clock_getres(clk_id, &res) != 0) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
|
|
}
|
|
if (pytime_fromtimespec(tp, &ts, raise) < 0)
|
|
return -1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_GetMonotonicClock(void)
|
|
{
|
|
_PyTime_t t;
|
|
if (pymonotonic(&t, NULL, 0) < 0) {
|
|
/* should not happen, _PyTime_Init() checked that monotonic clock at
|
|
startup */
|
|
assert(0);
|
|
/* use a fixed value instead of a random value from the stack */
|
|
t = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
int
|
|
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
|
|
{
|
|
return pymonotonic(tp, info, 1);
|
|
}
|
|
|
|
int
|
|
_PyTime_Init(void)
|
|
{
|
|
_PyTime_t t;
|
|
/* ensure that the system clock works */
|
|
if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0)
|
|
return -1;
|
|
/* ensure that the operating system provides a monotonic clock */
|
|
if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyTime_localtime(time_t t, struct tm *tm)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
int error;
|
|
|
|
error = localtime_s(tm, &t);
|
|
if (error != 0) {
|
|
errno = error;
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#else /* !MS_WINDOWS */
|
|
if (localtime_r(&t, tm) == NULL) {
|
|
#ifdef EINVAL
|
|
if (errno == 0)
|
|
errno = EINVAL;
|
|
#endif
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#endif /* MS_WINDOWS */
|
|
}
|
|
|
|
int
|
|
_PyTime_gmtime(time_t t, struct tm *tm)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
int error;
|
|
|
|
error = gmtime_s(tm, &t);
|
|
if (error != 0) {
|
|
errno = error;
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#else /* !MS_WINDOWS */
|
|
if (gmtime_r(&t, tm) == NULL) {
|
|
#ifdef EINVAL
|
|
if (errno == 0)
|
|
errno = EINVAL;
|
|
#endif
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#endif /* MS_WINDOWS */
|
|
}
|