mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
39bf41f4eb
- Python static hello world now 1.8mb - Python static fully loaded now 10mb - Python HTTPS client now uses MbedTLS - Python REPL now completes import stmts - Increase stack size for Python for now - Begin synthesizing posixpath and ntpath - Restore Python \N{UNICODE NAME} support - Restore Python NFKD symbol normalization - Add optimized code path for Intel SHA-NI - Get more Python unit tests passing faster - Get Python help() pagination working on NT - Python hashlib now supports MbedTLS PBKDF2 - Make memcpy/memmove/memcmp/bcmp/etc. faster - Add Mersenne Twister and Vigna to LIBC_RAND - Provide privileged __printf() for error code - Fix zipos opendir() so that it reports ENOTDIR - Add basic chmod() implementation for Windows NT - Add Cosmo's best functions to Python cosmo module - Pin function trace indent depth to that of caller - Show memory diagram on invalid access in MODE=dbg - Differentiate stack overflow on crash in MODE=dbg - Add stb_truetype and tools for analyzing font files - Upgrade to UNICODE 13 and reduce its binary footprint - COMPILE.COM now logs resource usage of build commands - Start implementing basic poll() support on bare metal - Set getauxval(AT_EXECFN) to GetModuleFileName() on NT - Add descriptions to strerror() in non-TINY build modes - Add COUNTBRANCH() macro to help with micro-optimizations - Make error / backtrace / asan / memory code more unbreakable - Add fast perfect C implementation of μ-Law and a-Law audio codecs - Make strtol() functions consistent with other libc implementations - Improve Linenoise implementation (see also github.com/jart/bestline) - COMPILE.COM now suppresses stdout/stderr of successful build commands
158 lines
6.2 KiB
C
158 lines
6.2 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
|
|
│ │
|
|
│ Redistribution and use in source and binary forms, with or without │
|
|
│ modification, are permitted provided that the following conditions │
|
|
│ are met: │
|
|
│ │
|
|
│ 1. Redistributions of source code must retain the above copyright │
|
|
│ notice, this list of conditions and the following disclaimer. │
|
|
│ │
|
|
│ 2. Redistributions in binary form must reproduce the above copyright │
|
|
│ notice, this list of conditions and the following disclaimer in │
|
|
│ the documentation and/or other materials provided with the │
|
|
│ distribution. │
|
|
│ │
|
|
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
|
|
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
|
|
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
|
|
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
|
|
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
|
|
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
|
|
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
|
|
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
|
|
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
|
|
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
|
|
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "third_party/python/Modules/_decimal/libmpdec/bits.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/constants.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/convolute.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/fnt.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/fourstep.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/sixstep.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/umodarith.h"
|
|
/* clang-format off */
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
libmpdec (BSD-2)\\n\
|
|
Copyright 2008-2016 Stefan Krah\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
|
|
|
|
/* Bignum: Fast convolution using the Number Theoretic Transform.
|
|
Used for the multiplication of very large coefficients. */
|
|
|
|
|
|
/* Convolute the data in c1 and c2. Result is in c1. */
|
|
int
|
|
fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
|
|
{
|
|
int (*fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
mpd_uint_t n_inv, umod;
|
|
mpd_size_t i;
|
|
SETMODULUS(modnum);
|
|
n_inv = POWMOD(n, (umod-2));
|
|
if (ispower2(n)) {
|
|
if (n > SIX_STEP_THRESHOLD) {
|
|
fnt = six_step_fnt;
|
|
inv_fnt = inv_six_step_fnt;
|
|
}
|
|
else {
|
|
fnt = std_fnt;
|
|
inv_fnt = std_inv_fnt;
|
|
}
|
|
}
|
|
else {
|
|
fnt = four_step_fnt;
|
|
inv_fnt = inv_four_step_fnt;
|
|
}
|
|
if (!fnt(c1, n, modnum)) {
|
|
return 0;
|
|
}
|
|
if (!fnt(c2, n, modnum)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < n-1; i += 2) {
|
|
mpd_uint_t x0 = c1[i];
|
|
mpd_uint_t y0 = c2[i];
|
|
mpd_uint_t x1 = c1[i+1];
|
|
mpd_uint_t y1 = c2[i+1];
|
|
MULMOD2(&x0, y0, &x1, y1);
|
|
c1[i] = x0;
|
|
c1[i+1] = x1;
|
|
}
|
|
if (!inv_fnt(c1, n, modnum)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < n-3; i += 4) {
|
|
mpd_uint_t x0 = c1[i];
|
|
mpd_uint_t x1 = c1[i+1];
|
|
mpd_uint_t x2 = c1[i+2];
|
|
mpd_uint_t x3 = c1[i+3];
|
|
MULMOD2C(&x0, &x1, n_inv);
|
|
MULMOD2C(&x2, &x3, n_inv);
|
|
c1[i] = x0;
|
|
c1[i+1] = x1;
|
|
c1[i+2] = x2;
|
|
c1[i+3] = x3;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Autoconvolute the data in c1. Result is in c1. */
|
|
int
|
|
fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
|
|
{
|
|
int (*fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
mpd_uint_t n_inv, umod;
|
|
mpd_size_t i;
|
|
SETMODULUS(modnum);
|
|
n_inv = POWMOD(n, (umod-2));
|
|
if (ispower2(n)) {
|
|
if (n > SIX_STEP_THRESHOLD) {
|
|
fnt = six_step_fnt;
|
|
inv_fnt = inv_six_step_fnt;
|
|
}
|
|
else {
|
|
fnt = std_fnt;
|
|
inv_fnt = std_inv_fnt;
|
|
}
|
|
}
|
|
else {
|
|
fnt = four_step_fnt;
|
|
inv_fnt = inv_four_step_fnt;
|
|
}
|
|
if (!fnt(c1, n, modnum)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < n-1; i += 2) {
|
|
mpd_uint_t x0 = c1[i];
|
|
mpd_uint_t x1 = c1[i+1];
|
|
MULMOD2(&x0, x0, &x1, x1);
|
|
c1[i] = x0;
|
|
c1[i+1] = x1;
|
|
}
|
|
if (!inv_fnt(c1, n, modnum)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < n-3; i += 4) {
|
|
mpd_uint_t x0 = c1[i];
|
|
mpd_uint_t x1 = c1[i+1];
|
|
mpd_uint_t x2 = c1[i+2];
|
|
mpd_uint_t x3 = c1[i+3];
|
|
MULMOD2C(&x0, &x1, n_inv);
|
|
MULMOD2C(&x2, &x3, n_inv);
|
|
c1[i] = x0;
|
|
c1[i+1] = x1;
|
|
c1[i+2] = x2;
|
|
c1[i+3] = x3;
|
|
}
|
|
return 1;
|
|
}
|