mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-07 23:13:34 +00:00
- Python static hello world now 1.8mb - Python static fully loaded now 10mb - Python HTTPS client now uses MbedTLS - Python REPL now completes import stmts - Increase stack size for Python for now - Begin synthesizing posixpath and ntpath - Restore Python \N{UNICODE NAME} support - Restore Python NFKD symbol normalization - Add optimized code path for Intel SHA-NI - Get more Python unit tests passing faster - Get Python help() pagination working on NT - Python hashlib now supports MbedTLS PBKDF2 - Make memcpy/memmove/memcmp/bcmp/etc. faster - Add Mersenne Twister and Vigna to LIBC_RAND - Provide privileged __printf() for error code - Fix zipos opendir() so that it reports ENOTDIR - Add basic chmod() implementation for Windows NT - Add Cosmo's best functions to Python cosmo module - Pin function trace indent depth to that of caller - Show memory diagram on invalid access in MODE=dbg - Differentiate stack overflow on crash in MODE=dbg - Add stb_truetype and tools for analyzing font files - Upgrade to UNICODE 13 and reduce its binary footprint - COMPILE.COM now logs resource usage of build commands - Start implementing basic poll() support on bare metal - Set getauxval(AT_EXECFN) to GetModuleFileName() on NT - Add descriptions to strerror() in non-TINY build modes - Add COUNTBRANCH() macro to help with micro-optimizations - Make error / backtrace / asan / memory code more unbreakable - Add fast perfect C implementation of μ-Law and a-Law audio codecs - Make strtol() functions consistent with other libc implementations - Improve Linenoise implementation (see also github.com/jart/bestline) - COMPILE.COM now suppresses stdout/stderr of successful build commands
241 lines
8.9 KiB
C
241 lines
8.9 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
||
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
|
||
│ │
|
||
│ Redistribution and use in source and binary forms, with or without │
|
||
│ modification, are permitted provided that the following conditions │
|
||
│ are met: │
|
||
│ │
|
||
│ 1. Redistributions of source code must retain the above copyright │
|
||
│ notice, this list of conditions and the following disclaimer. │
|
||
│ │
|
||
│ 2. Redistributions in binary form must reproduce the above copyright │
|
||
│ notice, this list of conditions and the following disclaimer in │
|
||
│ the documentation and/or other materials provided with the │
|
||
│ distribution. │
|
||
│ │
|
||
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
|
||
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
|
||
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
|
||
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
|
||
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
|
||
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
|
||
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
|
||
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
|
||
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
|
||
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
|
||
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "third_party/python/Modules/_decimal/libmpdec/bits.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/difradix2.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/sixstep.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/transpose.h"
|
||
#include "third_party/python/Modules/_decimal/libmpdec/umodarith.h"
|
||
/* clang-format off */
|
||
|
||
asm(".ident\t\"\\n\\n\
|
||
libmpdec (BSD-2)\\n\
|
||
Copyright 2008-2016 Stefan Krah\"");
|
||
asm(".include \"libc/disclaimer.inc\"");
|
||
|
||
/*
|
||
Cache Efficient Matrix Fourier Transform
|
||
for arrays of form 2ⁿ
|
||
|
||
|
||
The Six Step Transform
|
||
══════════════════════
|
||
|
||
In libmpdec, the six-step transform is the Matrix Fourier Transform in
|
||
disguise. It is called six-step transform after a variant that appears
|
||
in [1]. The algorithm requires that the input array can be viewed as an
|
||
R×C matrix.
|
||
|
||
|
||
Algorithm six-step (forward transform)
|
||
──────────────────────────────────────
|
||
|
||
1a) Transpose the matrix.
|
||
|
||
1b) Apply a length R FNT to each row.
|
||
|
||
1c) Transpose the matrix.
|
||
|
||
2) Multiply each matrix element (addressed by j×C+m) by r**(j×m).
|
||
|
||
3) Apply a length C FNT to each row.
|
||
|
||
4) Transpose the matrix.
|
||
|
||
Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix
|
||
Fourier Transform. For large R, it is faster to transpose twice and do
|
||
a transform on the rows than to perform a column transpose directly.
|
||
|
||
|
||
Algorithm six-step (inverse transform)
|
||
──────────────────────────────────────
|
||
|
||
0) View the matrix as a C×R matrix.
|
||
|
||
1) Transpose the matrix, producing an R×C matrix.
|
||
|
||
2) Apply a length C FNT to each row.
|
||
|
||
3) Multiply each matrix element (addressed by i×C+n) by r**(i×n).
|
||
|
||
4a) Transpose the matrix.
|
||
|
||
4b) Apply a length R FNT to each row.
|
||
|
||
4c) Transpose the matrix.
|
||
|
||
Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier
|
||
Transform.
|
||
|
||
|
||
──
|
||
|
||
[1] David H. Bailey: FFTs in External or Hierarchical Memory
|
||
http://crd.lbl.gov/~dhbailey/dhbpapers/
|
||
*/
|
||
|
||
/* forward transform with sign = -1 */
|
||
int
|
||
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
||
{
|
||
struct fnt_params *tparams;
|
||
mpd_size_t log2n, C, R;
|
||
mpd_uint_t kernel;
|
||
mpd_uint_t umod;
|
||
mpd_uint_t *x, w0, w1, wstep;
|
||
mpd_size_t i, k;
|
||
assert(ispower2(n));
|
||
assert(n >= 16);
|
||
assert(n <= MPD_MAXTRANSFORM_2N);
|
||
log2n = mpd_bsr(n);
|
||
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
||
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
||
/* Transpose the matrix. */
|
||
if (!transpose_pow2(a, R, C)) {
|
||
return 0;
|
||
}
|
||
/* Length R transform on the rows. */
|
||
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
|
||
return 0;
|
||
}
|
||
for (x = a; x < a+n; x += R) {
|
||
fnt_dif2(x, R, tparams);
|
||
}
|
||
/* Transpose the matrix. */
|
||
if (!transpose_pow2(a, C, R)) {
|
||
mpd_free(tparams);
|
||
return 0;
|
||
}
|
||
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
||
SETMODULUS(modnum);
|
||
kernel = _mpd_getkernel(n, -1, modnum);
|
||
for (i = 1; i < R; i++) {
|
||
w0 = 1; /* r**(i*0): initial value for k=0 */
|
||
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
|
||
wstep = MULMOD(w1, w1); /* r**(2*i) */
|
||
for (k = 0; k < C; k += 2) {
|
||
mpd_uint_t x0 = a[i*C+k];
|
||
mpd_uint_t x1 = a[i*C+k+1];
|
||
MULMOD2(&x0, w0, &x1, w1);
|
||
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
|
||
a[i*C+k] = x0;
|
||
a[i*C+k+1] = x1;
|
||
}
|
||
}
|
||
/* Length C transform on the rows. */
|
||
if (C != R) {
|
||
mpd_free(tparams);
|
||
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
|
||
return 0;
|
||
}
|
||
}
|
||
for (x = a; x < a+n; x += C) {
|
||
fnt_dif2(x, C, tparams);
|
||
}
|
||
mpd_free(tparams);
|
||
#if 0
|
||
/* An unordered transform is sufficient for convolution. */
|
||
/* Transpose the matrix. */
|
||
if (!transpose_pow2(a, R, C)) {
|
||
return 0;
|
||
}
|
||
#endif
|
||
return 1;
|
||
}
|
||
|
||
/* reverse transform, sign = 1 */
|
||
int
|
||
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
||
{
|
||
struct fnt_params *tparams;
|
||
mpd_size_t log2n, C, R;
|
||
mpd_uint_t kernel;
|
||
mpd_uint_t umod;
|
||
mpd_uint_t *x, w0, w1, wstep;
|
||
mpd_size_t i, k;
|
||
assert(ispower2(n));
|
||
assert(n >= 16);
|
||
assert(n <= MPD_MAXTRANSFORM_2N);
|
||
log2n = mpd_bsr(n);
|
||
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
||
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
||
#if 0
|
||
/* An unordered transform is sufficient for convolution. */
|
||
/* Transpose the matrix, producing an R*C matrix. */
|
||
if (!transpose_pow2(a, C, R)) {
|
||
return 0;
|
||
}
|
||
#endif
|
||
/* Length C transform on the rows. */
|
||
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
|
||
return 0;
|
||
}
|
||
for (x = a; x < a+n; x += C) {
|
||
fnt_dif2(x, C, tparams);
|
||
}
|
||
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
||
SETMODULUS(modnum);
|
||
kernel = _mpd_getkernel(n, 1, modnum);
|
||
for (i = 1; i < R; i++) {
|
||
w0 = 1;
|
||
w1 = POWMOD(kernel, i);
|
||
wstep = MULMOD(w1, w1);
|
||
for (k = 0; k < C; k += 2) {
|
||
mpd_uint_t x0 = a[i*C+k];
|
||
mpd_uint_t x1 = a[i*C+k+1];
|
||
MULMOD2(&x0, w0, &x1, w1);
|
||
MULMOD2C(&w0, &w1, wstep);
|
||
a[i*C+k] = x0;
|
||
a[i*C+k+1] = x1;
|
||
}
|
||
}
|
||
/* Transpose the matrix. */
|
||
if (!transpose_pow2(a, R, C)) {
|
||
mpd_free(tparams);
|
||
return 0;
|
||
}
|
||
/* Length R transform on the rows. */
|
||
if (R != C) {
|
||
mpd_free(tparams);
|
||
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
|
||
return 0;
|
||
}
|
||
}
|
||
for (x = a; x < a+n; x += R) {
|
||
fnt_dif2(x, R, tparams);
|
||
}
|
||
mpd_free(tparams);
|
||
/* Transpose the matrix. */
|
||
if (!transpose_pow2(a, C, R)) {
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|