cosmopolitan/third_party/mbedtls/rsa_internal.c
Justine Tunney 957c61cbbf
Release Cosmopolitan v3.3
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.

This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.

Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.

OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().

This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.

We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 13:27:59 -08:00

504 lines
16 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:4;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright The Mbed TLS Contributors │
│ │
│ Licensed under the Apache License, Version 2.0 (the "License"); │
│ you may not use this file except in compliance with the License. │
│ You may obtain a copy of the License at │
│ │
│ http://www.apache.org/licenses/LICENSE-2.0 │
│ │
│ Unless required by applicable law or agreed to in writing, software │
│ distributed under the License is distributed on an "AS IS" BASIS, │
│ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │
│ See the License for the specific language governing permissions and │
│ limitations under the License. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/mbedtls/bignum.h"
#include "third_party/mbedtls/common.h"
#include "third_party/mbedtls/profile.h"
#include "third_party/mbedtls/rsa.h"
#include "third_party/mbedtls/rsa_internal.h"
__static_yoink("mbedtls_notice");
/*
* Helper functions for the RSA module
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#if defined(MBEDTLS_RSA_C)
/*
* Compute RSA prime factors from public and private exponents
*
* Summary of algorithm:
* Setting F := lcm(P-1,Q-1), the idea is as follows:
*
* (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
* is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
* square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
* possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
* or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
* factors of N.
*
* (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
* construction still applies since (-)^K is the identity on the set of
* roots of 1 in Z/NZ.
*
* The public and private key primitives (-)^E and (-)^D are mutually inverse
* bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
* if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
* Splitting L = 2^t * K with K odd, we have
*
* DE - 1 = FL = (F/2) * (2^(t+1)) * K,
*
* so (F / 2) * K is among the numbers
*
* (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
*
* where ord is the order of 2 in (DE - 1).
* We can therefore iterate through these numbers apply the construction
* of (a) and (b) above to attempt to factor N.
*
*/
int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
mbedtls_mpi const *E, mbedtls_mpi const *D,
mbedtls_mpi *P, mbedtls_mpi *Q )
{
int ret = 0;
uint16_t attempt; /* Number of current attempt */
uint16_t iter; /* Number of squares computed in the current attempt */
uint16_t order; /* Order of 2 in DE - 1 */
mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
mbedtls_mpi K; /* Temporary holding the current candidate */
const unsigned char primes[] = { 2,
3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251
};
const size_t num_primes = sizeof( primes ) / sizeof( *primes );
if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
{
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
}
/*
* Initializations and temporary changes
*/
mbedtls_mpi_init( &K );
mbedtls_mpi_init( &T );
/* T := DE - 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
{
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
/* After this operation, T holds the largest odd divisor of DE - 1. */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
/*
* Actual work
*/
/* Skip trying 2 if N == 1 mod 8 */
attempt = 0;
if( N->p[0] % 8 == 1 )
attempt = 1;
for( ; attempt < num_primes; ++attempt )
{
mbedtls_mpi_lset( &K, primes[attempt] );
/* Check if gcd(K,N) = 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
if( !mbedtls_mpi_is_one( P ) )
continue;
/* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
* and check whether they have nontrivial GCD with N. */
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
Q /* temporarily use Q for storing Montgomery
* multiplication helper values */ ) );
for( iter = 1; iter <= order; ++iter )
{
/* If we reach 1 prematurely, there's no point
* in continuing to square K */
if( mbedtls_mpi_is_one( &K ) )
break;
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
if( mbedtls_mpi_cmp_int( P, 1 ) == 1 &&
mbedtls_mpi_cmp_mpi( P, N ) == -1 )
{
/*
* Have found a nontrivial divisor P of N.
* Set Q := N / P.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
}
/*
* If we get here, then either we prematurely aborted the loop because
* we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
* be 1 if D,E,N were consistent.
* Check if that's the case and abort if not, to avoid very long,
* yet eventually failing, computations if N,D,E were not sane.
*/
if( !mbedtls_mpi_is_one( &K ) )
{
break;
}
}
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
cleanup:
mbedtls_mpi_free( &K );
mbedtls_mpi_free( &T );
return( ret );
}
/*
* Given P, Q and the public exponent E, deduce D.
* This is essentially a modular inversion.
*/
int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
mbedtls_mpi const *Q,
mbedtls_mpi const *E,
mbedtls_mpi *D )
{
int ret = 0;
mbedtls_mpi K, L;
if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
mbedtls_mpi_cmp_int( E, 0 ) == 0 )
{
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
}
mbedtls_mpi_init( &K );
mbedtls_mpi_init( &L );
/* Temporarily put K := P-1 and L := Q-1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
/* Temporarily put D := gcd(P-1, Q-1) */
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
/* K := LCM(P-1, Q-1) */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
/* Compute modular inverse of E in LCM(P-1, Q-1) */
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
cleanup:
mbedtls_mpi_free( &K );
mbedtls_mpi_free( &L );
return( ret );
}
/*
* Check that RSA CRT parameters are in accordance with core parameters.
*/
int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
const mbedtls_mpi *D, const mbedtls_mpi *DP,
const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
{
int ret = 0;
mbedtls_mpi K, L;
mbedtls_mpi_init( &K );
mbedtls_mpi_init( &L );
/* Check that DP - D == 0 mod P - 1 */
if( DP != NULL )
{
if( P == NULL )
{
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/* Check that DQ - D == 0 mod Q - 1 */
if( DQ != NULL )
{
if( Q == NULL )
{
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/* Check that QP * Q - 1 == 0 mod P */
if( QP != NULL )
{
if( P == NULL || Q == NULL )
{
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
cleanup:
/* Wrap MPI error codes by RSA check failure error code */
if( ret != 0 &&
ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
{
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
mbedtls_mpi_free( &K );
mbedtls_mpi_free( &L );
return( ret );
}
/*
* Check that core RSA parameters are sane.
*/
int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
const mbedtls_mpi *Q, const mbedtls_mpi *D,
const mbedtls_mpi *E,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = 0;
mbedtls_mpi K, L;
mbedtls_mpi_init( &K );
mbedtls_mpi_init( &L );
/*
* Step 1: If PRNG provided, check that P and Q are prime
*/
#if defined(MBEDTLS_GENPRIME)
/*
* When generating keys, the strongest security we support aims for an error
* rate of at most 2^-100 and we are aiming for the same certainty here as
* well.
*/
if( f_rng != NULL && P != NULL &&
( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
if( f_rng != NULL && Q != NULL &&
( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
#else
((void) f_rng);
((void) p_rng);
#endif /* MBEDTLS_GENPRIME */
/*
* Step 2: Check that 1 < N = P * Q
*/
if( P != NULL && Q != NULL && N != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ||
mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/*
* Step 3: Check and 1 < D, E < N if present.
*/
if( N != NULL && D != NULL && E != NULL )
{
if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/*
* Step 4: Check that D, E are inverse modulo P-1 and Q-1
*/
if( P != NULL && Q != NULL && D != NULL && E != NULL )
{
if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
/* Compute DE-1 mod P-1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
/* Compute DE-1 mod Q-1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
{
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
cleanup:
mbedtls_mpi_free( &K );
mbedtls_mpi_free( &L );
/* Wrap MPI error codes by RSA check failure error code */
if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
{
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
return( ret );
}
int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
const mbedtls_mpi *D, mbedtls_mpi *DP,
mbedtls_mpi *DQ, mbedtls_mpi *QP )
{
int ret = 0;
mbedtls_mpi K;
mbedtls_mpi_init( &K );
/* DP = D mod P-1 */
if( DP != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
}
/* DQ = D mod Q-1 */
if( DQ != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
}
/* QP = Q^{-1} mod P */
if( QP != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
}
cleanup:
mbedtls_mpi_free( &K );
return( ret );
}
#endif /* MBEDTLS_RSA_C */