mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-01 03:53:33 +00:00
420f889ac3
The sincosf() function is now twice as fast, thanks to ARM Limited. The same might also be true of logf() and expm1f() which have been updated.
103 lines
5 KiB
C
103 lines
5 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|
│ │
|
|
│ Optimized Routines │
|
|
│ Copyright (c) 1999-2022, Arm Limited. │
|
|
│ │
|
|
│ Permission is hereby granted, free of charge, to any person obtaining │
|
|
│ a copy of this software and associated documentation files (the │
|
|
│ "Software"), to deal in the Software without restriction, including │
|
|
│ without limitation the rights to use, copy, modify, merge, publish, │
|
|
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
|
│ permit persons to whom the Software is furnished to do so, subject to │
|
|
│ the following conditions: │
|
|
│ │
|
|
│ The above copyright notice and this permission notice shall be │
|
|
│ included in all copies or substantial portions of the Software. │
|
|
│ │
|
|
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
|
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
|
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
|
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
|
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
|
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
|
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
|
│ │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/math.h"
|
|
#include "libc/tinymath/hornerf.internal.h"
|
|
#include "libc/tinymath/internal.h"
|
|
#include "third_party/libcxx/math.h"
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
Optimized Routines (MIT License)\\n\
|
|
Copyright 2022 ARM Limited\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
/* clang-format off */
|
|
|
|
#define Shift (0x1.8p23f)
|
|
#define InvLn2 (0x1.715476p+0f)
|
|
#define Ln2hi (0x1.62e4p-1f)
|
|
#define Ln2lo (0x1.7f7d1cp-20f)
|
|
#define AbsMask (0x7fffffff)
|
|
#define InfLimit \
|
|
(0x1.644716p6) /* Smallest value of x for which expm1(x) overflows. */
|
|
#define NegLimit \
|
|
(-0x1.9bbabcp+6) /* Largest value of x for which expm1(x) rounds to 1. */
|
|
|
|
#define C(i) __expm1f_poly[i]
|
|
|
|
/* Generated using fpminimax, see tools/expm1f.sollya for details. */
|
|
const float __expm1f_poly[] = {0x1.fffffep-2, 0x1.5554aep-3, 0x1.555736p-5,
|
|
0x1.12287cp-7, 0x1.6b55a2p-10};
|
|
|
|
/* Approximation for exp(x) - 1 using polynomial on a reduced interval.
|
|
The maximum error is 1.51 ULP:
|
|
expm1f(0x1.8baa96p-2) got 0x1.e2fb9p-2
|
|
want 0x1.e2fb94p-2. */
|
|
float
|
|
expm1f (float x)
|
|
{
|
|
uint32_t ix = asuint (x);
|
|
uint32_t ax = ix & AbsMask;
|
|
|
|
/* Tiny: |x| < 0x1p-23. expm1(x) is closely approximated by x.
|
|
Inf: x == +Inf => expm1(x) = x. */
|
|
if (ax <= 0x34000000 || (ix == 0x7f800000))
|
|
return x;
|
|
|
|
/* +/-NaN. */
|
|
if (ax > 0x7f800000)
|
|
return __math_invalidf (x);
|
|
|
|
if (x >= InfLimit)
|
|
return __math_oflowf (0);
|
|
|
|
if (x <= NegLimit || ix == 0xff800000)
|
|
return -1;
|
|
|
|
/* Reduce argument to smaller range:
|
|
Let i = round(x / ln2)
|
|
and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
|
|
exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
|
|
where 2^i is exact because i is an integer. */
|
|
float j = fmaf (InvLn2, x, Shift) - Shift;
|
|
int32_t i = j;
|
|
float f = fmaf (j, -Ln2hi, x);
|
|
f = fmaf (j, -Ln2lo, f);
|
|
|
|
/* Approximate expm1(f) using polynomial.
|
|
Taylor expansion for expm1(x) has the form:
|
|
x + ax^2 + bx^3 + cx^4 ....
|
|
So we calculate the polynomial P(f) = a + bf + cf^2 + ...
|
|
and assemble the approximation expm1(f) ~= f + f^2 * P(f). */
|
|
float p = fmaf (f * f, HORNER_4 (f, C), f);
|
|
/* Assemble the result, using a slight rearrangement to achieve acceptable
|
|
accuracy.
|
|
expm1(x) ~= 2^i * (p + 1) - 1
|
|
Let t = 2^(i - 1). */
|
|
float t = ldexpf (0.5f, i);
|
|
/* expm1(x) ~= 2 * (p * t + (t - 1/2)). */
|
|
return 2 * fmaf (p, t, t - 0.5f);
|
|
}
|