mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
6e6fc38935
Commit bc6c183
introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
1296 lines
36 KiB
C
1296 lines
36 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright 2022 Justine Alexandra Roberts Tunney │
|
||
│ │
|
||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
│ any purpose with or without fee is hereby granted, provided that the │
|
||
│ above copyright notice and this permission notice appear in all copies. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/fmt/itoa.h"
|
||
#include "tool/lambda/lib/blc.h"
|
||
|
||
#define FREEBIES u"ɐqɔpǝɟƃɥıɾʞןɯuodbɹsʇnʌʍxʎz"
|
||
|
||
/* clang-format off */
|
||
#define ALPHABET \
|
||
u"abcdefghijklmnopqrsuvwxyz" \
|
||
u"αβγδεζηθιμξπρςστυφχψϑϕ" \
|
||
u"ℵℶℷℸ" \
|
||
u"идџжлђ" \
|
||
u"⅄ℏ℘þæߧ£¥₿" \
|
||
u"𝘢𝘣𝘤𝘥𝘦𝘧𝘨𝘩𝘪𝘫𝘬𝘭𝘮𝘯𝘰𝘱𝘲𝘳𝘴𝘵𝘶𝘷𝘸𝘹𝘺𝘻" \
|
||
u"𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫" \
|
||
u"𝗮𝗯𝗰𝗱𝗲𝗳𝗴𝗵𝗶𝗷𝗸𝗹𝗺𝗻𝗼𝗽𝗾𝗿𝘀𝘁𝘂𝘃𝘄𝘅𝘆𝘇"
|
||
/* clang-format on */
|
||
|
||
static char kFalse[] = {
|
||
ABS, // 0: false
|
||
ABS, // 1: (λ 0)
|
||
VAR, 0, // 2: 0
|
||
};
|
||
|
||
static char kTrue[] = {
|
||
ABS, // 0: true
|
||
ABS, // 1: (λ 1)
|
||
VAR, 1, // 2: 1
|
||
};
|
||
|
||
static char kOne[] = {
|
||
ABS, // 4: (λab.ab)
|
||
ABS, // 5: (λa.ɐa)
|
||
APP, 2, // 6: qɐ
|
||
VAR, 1, // 8: q
|
||
VAR, 0, // 10: ɐ
|
||
};
|
||
|
||
static char kTwo[] = {
|
||
ABS, // 12: (λab.a(ab))
|
||
ABS, // 13: (λa.ɐ(ɐa))
|
||
APP, 2, // 14: q(qɐ)
|
||
VAR, 1, // 16: q
|
||
APP, 2, // 18: qɐ
|
||
VAR, 1, // 20: q
|
||
VAR, 0, // 22: ɐ
|
||
};
|
||
|
||
static char kThree[] = {
|
||
ABS, // 24: (λab.a(a(ab)))
|
||
ABS, // 25: (λa.ɐ(ɐ(ɐa)))
|
||
APP, 2, // 26: q(q(qɐ))
|
||
VAR, 1, // 28: q
|
||
APP, 2, // 30: q(qɐ)
|
||
VAR, 1, // 32: q
|
||
APP, 2, // 34: qɐ
|
||
VAR, 1, // 36: q
|
||
VAR, 0, // 38: ɐ
|
||
};
|
||
|
||
static char kFour[] = {
|
||
ABS, // 40: (λab.a(a(a(ab))))
|
||
ABS, // 41: (λa.ɐ(ɐ(ɐ(ɐa))))
|
||
APP, 2, // 42: q(q(q(qɐ)))
|
||
VAR, 1, // 44: q
|
||
APP, 2, // 46: q(q(qɐ))
|
||
VAR, 1, // 48: q
|
||
APP, 2, // 50: q(qɐ)
|
||
VAR, 1, // 52: q
|
||
APP, 2, // 54: qɐ
|
||
VAR, 1, // 56: q
|
||
VAR, 0, // 58: ɐ
|
||
};
|
||
|
||
static char kFive[] = {
|
||
ABS, // 60: (λab.a(a(a(a(ab)))))
|
||
ABS, // 61: (λa.ɐ(ɐ(ɐ(ɐ(ɐa)))))
|
||
APP, 2, // 62: q(q(q(q(qɐ))))
|
||
VAR, 1, // 64: q
|
||
APP, 2, // 66: q(q(q(qɐ)))
|
||
VAR, 1, // 68: q
|
||
APP, 2, // 70: q(q(qɐ))
|
||
VAR, 1, // 72: q
|
||
APP, 2, // 74: q(qɐ)
|
||
VAR, 1, // 76: q
|
||
APP, 2, // 78: qɐ
|
||
VAR, 1, // 80: q
|
||
VAR, 0, // 82: ɐ
|
||
};
|
||
|
||
static char kSix[] = {
|
||
ABS, // 84: (λab.a(a(a(a(a(ab))))))
|
||
ABS, // 85: (λa.ɐ(ɐ(ɐ(ɐ(ɐ(ɐa))))))
|
||
APP, 2, // 86: q(q(q(q(q(qɐ)))))
|
||
VAR, 1, // 88: q
|
||
APP, 2, // 90: q(q(q(q(qɐ))))
|
||
VAR, 1, // 92: q
|
||
APP, 2, // 94: q(q(q(qɐ)))
|
||
VAR, 1, // 96: q
|
||
APP, 2, // 98: q(q(qɐ))
|
||
VAR, 1, // 100: q
|
||
APP, 2, // 102: q(qɐ)
|
||
VAR, 1, // 104: q
|
||
APP, 2, // 106: qɐ
|
||
VAR, 1, // 108: q
|
||
VAR, 0, // 110: ɐ
|
||
};
|
||
|
||
static char kSeven[] = {
|
||
ABS, // 112: (λab.a(a(a(a(a(a(ab)))))))
|
||
ABS, // 113: (λa.ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐa)))))))
|
||
APP, 2, // 114: q(q(q(q(q(q(qɐ))))))
|
||
VAR, 1, // 116: q
|
||
APP, 2, // 118: q(q(q(q(q(qɐ)))))
|
||
VAR, 1, // 120: q
|
||
APP, 2, // 122: q(q(q(q(qɐ))))
|
||
VAR, 1, // 124: q
|
||
APP, 2, // 126: q(q(q(qɐ)))
|
||
VAR, 1, // 128: q
|
||
APP, 2, // 130: q(q(qɐ))
|
||
VAR, 1, // 132: q
|
||
APP, 2, // 134: q(qɐ)
|
||
VAR, 1, // 136: q
|
||
APP, 2, // 138: qɐ
|
||
VAR, 1, // 140: q
|
||
VAR, 0, // 142: ɐ
|
||
};
|
||
|
||
static char kEight[] = {
|
||
ABS, // 144: (λab.a(a(a(a(a(a(a(ab))))))))
|
||
ABS, // 145: (λa.ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐa))))))))
|
||
APP, 2, // 146: q(q(q(q(q(q(q(qɐ)))))))
|
||
VAR, 1, // 148: q
|
||
APP, 2, // 150: q(q(q(q(q(q(qɐ))))))
|
||
VAR, 1, // 152: q
|
||
APP, 2, // 154: q(q(q(q(q(qɐ)))))
|
||
VAR, 1, // 156: q
|
||
APP, 2, // 158: q(q(q(q(qɐ))))
|
||
VAR, 1, // 160: q
|
||
APP, 2, // 162: q(q(q(qɐ)))
|
||
VAR, 1, // 164: q
|
||
APP, 2, // 166: q(q(qɐ))
|
||
VAR, 1, // 168: q
|
||
APP, 2, // 170: q(qɐ)
|
||
VAR, 1, // 172: q
|
||
APP, 2, // 174: qɐ
|
||
VAR, 1, // 176: q
|
||
VAR, 0, // 178: ɐ
|
||
};
|
||
|
||
static char kNine[] = {
|
||
ABS, // 180: (λab.a(a(a(a(a(a(a(a(ab)))))))))
|
||
ABS, // 181: (λa.ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐ(ɐa)))))))))
|
||
APP, 2, // 182: q(q(q(q(q(q(q(q(qɐ))))))))
|
||
VAR, 1, // 184: q
|
||
APP, 2, // 186: q(q(q(q(q(q(q(qɐ)))))))
|
||
VAR, 1, // 188: q
|
||
APP, 2, // 190: q(q(q(q(q(q(qɐ))))))
|
||
VAR, 1, // 192: q
|
||
APP, 2, // 194: q(q(q(q(q(qɐ)))))
|
||
VAR, 1, // 196: q
|
||
APP, 2, // 198: q(q(q(q(qɐ))))
|
||
VAR, 1, // 200: q
|
||
APP, 2, // 202: q(q(q(qɐ)))
|
||
VAR, 1, // 204: q
|
||
APP, 2, // 206: q(q(qɐ))
|
||
VAR, 1, // 208: q
|
||
APP, 2, // 210: q(qɐ)
|
||
VAR, 1, // 212: q
|
||
APP, 2, // 214: qɐ
|
||
VAR, 1, // 216: q
|
||
VAR, 0, // 218: ɐ
|
||
};
|
||
|
||
static char kSelf[] = {
|
||
ABS, // 0: λa.aa
|
||
APP, 2, // 1: ɐɐ
|
||
VAR, 0, // 3: ɐ
|
||
VAR, 0, // 5: ɐ
|
||
};
|
||
|
||
static char kOmega[] = {
|
||
APP, 7, // 0: ω ω
|
||
ABS, // 2: ω
|
||
APP, 2, // 3: ɐ ɐ
|
||
VAR, 0, // 5: ɐ
|
||
VAR, 0, // 7: ɐ
|
||
ABS, // 9: ω
|
||
APP, 2, // 10: ɐ ɐ
|
||
VAR, 0, // 12: ɐ
|
||
VAR, 0, // 14: ɐ
|
||
};
|
||
|
||
static char kIf[] = {
|
||
ABS, // 0: if
|
||
ABS, // 1: (λλ 2 1 0)
|
||
ABS, // 2: (λ 2 1 0)
|
||
APP, 6, // 3: 2 1 0
|
||
APP, 2, // 5: 2 1
|
||
VAR, 2, // 7: 2
|
||
VAR, 1, // 9: 1
|
||
VAR, 0, // 11: 0
|
||
};
|
||
|
||
static char kOr[] = {
|
||
ABS, // 32: λab.bba
|
||
ABS, // 33: λa.aaɐ
|
||
APP, 6, // 34: ɐɐq
|
||
APP, 2, // 36: ɐɐ
|
||
VAR, 0, // 38: ɐ
|
||
VAR, 0, // 40: ɐ
|
||
VAR, 1, // 42: q
|
||
};
|
||
|
||
static char kAnd[] = {
|
||
ABS, // 32: λab.bab
|
||
ABS, // 33: λa.aɐa
|
||
APP, 6, // 34: ɐqɐ
|
||
APP, 2, // 36: ɐq
|
||
VAR, 0, // 38: ɐ
|
||
VAR, 1, // 40: q
|
||
VAR, 0, // 42: ɐ
|
||
};
|
||
|
||
static char kNot[] = {
|
||
ABS, // 32: λabc.acb
|
||
ABS, // 33: λab.ɐba
|
||
ABS, // 34: λa.qaɐ
|
||
APP, 6, // 35: ɔɐq
|
||
APP, 2, // 37: ɔɐ
|
||
VAR, 2, // 39: ɔ
|
||
VAR, 0, // 41: ɐ
|
||
VAR, 1, // 43: q
|
||
};
|
||
|
||
static char kPair[] = {
|
||
ABS, // 0: (λλλ 0 2 1)
|
||
ABS, // 1: (λλ 0 2 1)
|
||
ABS, // 2: (λ 0 2 1)
|
||
APP, 6, // 3: 0 2 1
|
||
APP, 2, // 5: 0 2
|
||
VAR, 0, // 7: 0
|
||
VAR, 2, // 9: 2
|
||
VAR, 1, // 11: 1
|
||
};
|
||
|
||
static char kFirst[] = {
|
||
ABS, // 0: (λ 0 false)
|
||
APP, 2, // 1: 0 false
|
||
VAR, 0, // 3: 0
|
||
ABS, // 5: false
|
||
ABS, // 6: (λ 0)
|
||
VAR, 0, // 7: 0
|
||
};
|
||
|
||
static char kSecond[] = {
|
||
ABS, // 0: (λ 0 true)
|
||
APP, 2, // 1: 0 true
|
||
VAR, 0, // 3: 0
|
||
ABS, // 5: true
|
||
ABS, // 6: (λ 1)
|
||
VAR, 1, // 7: 1
|
||
};
|
||
|
||
static char kSucc[] = {
|
||
ABS, // 0: (λλλ 1 (2 1 0))
|
||
ABS, // 1: (λλ 1 (2 1 0))
|
||
ABS, // 2: (λ 1 (2 1 0))
|
||
APP, 2, // 3: 1 (2 1 0)
|
||
VAR, 1, // 5: 1
|
||
APP, 6, // 7: 2 1 0
|
||
APP, 2, // 9: 2 1
|
||
VAR, 2, // 11: 2
|
||
VAR, 1, // 13: 1
|
||
VAR, 0, // 15: 0
|
||
};
|
||
|
||
static char kCompose[] = {
|
||
ABS, // 0: (λλλ 2 (1 0))
|
||
ABS, // 1: (λλ 2 (1 0))
|
||
ABS, // 2: (λ 2 (1 0))
|
||
APP, 2, // 3: 2 (1 0)
|
||
VAR, 2, // 5: 2
|
||
APP, 2, // 7: 1 0
|
||
VAR, 1, // 9: 1
|
||
VAR, 0, // 11: 0
|
||
};
|
||
|
||
static char kMap[] = {
|
||
ABS, // 0: (λλλλ 2 (compose 1 3) 0)
|
||
ABS, // 1: (λλλ 2 (compose 1 3) 0)
|
||
ABS, // 2: (λλ 2 (compose 1 3) 0)
|
||
ABS, // 3: (λ 2 (compose 1 3) 0)
|
||
APP, 25, // 4: 2 (compose 1 3) 0
|
||
APP, 2, // 6: 2 (compose 1 3)
|
||
VAR, 2, // 8: 2
|
||
APP, 17, // 10: compose 1 3
|
||
APP, 13, // 12: compose 1
|
||
ABS, // 14: compose
|
||
ABS, // 15: (λλ 2 (1 0))
|
||
ABS, // 16: (λ 2 (1 0))
|
||
APP, 2, // 17: 2 (1 0)
|
||
VAR, 2, // 19: 2
|
||
APP, 2, // 21: 1 0
|
||
VAR, 1, // 23: 1
|
||
VAR, 0, // 25: 0
|
||
VAR, 1, // 27: 1
|
||
VAR, 3, // 29: 3
|
||
VAR, 0, // 31: 0
|
||
};
|
||
|
||
static char kCons[] = {
|
||
ABS, // 0: (λλλλ 1 3 (2 1 0))
|
||
ABS, // 1: (λλλ 1 3 (2 1 0))
|
||
ABS, // 2: (λλ 1 3 (2 1 0))
|
||
ABS, // 3: (λ 1 3 (2 1 0))
|
||
APP, 6, // 4: 1 3 (2 1 0)
|
||
APP, 2, // 6: 1 3
|
||
VAR, 1, // 8: 1
|
||
VAR, 3, // 10: 3
|
||
APP, 6, // 12: 2 1 0
|
||
APP, 2, // 14: 2 1
|
||
VAR, 2, // 16: 2
|
||
VAR, 1, // 18: 1
|
||
VAR, 0, // 20: 0
|
||
};
|
||
|
||
static char kY[] = {
|
||
ABS, // 32: λa.(λb.bb)(λb.a(bb))
|
||
APP, 7, // 33: (λa.aa)(λa.ɐ(aa))
|
||
ABS, // 35: λa.aa
|
||
APP, 2, // 36: ɐɐ
|
||
VAR, 0, // 38: ɐ
|
||
VAR, 0, // 40: ɐ
|
||
ABS, // 42: λa.ɐ(aa)
|
||
APP, 2, // 43: q(ɐɐ)
|
||
VAR, 1, // 45: q
|
||
APP, 2, // 47: ɐɐ
|
||
VAR, 0, // 49: ɐ
|
||
VAR, 0, // 51: ɐ
|
||
};
|
||
|
||
static char kYCurry[] = {
|
||
ABS, // 0: (λ (λ 1 (0 0)) (λ 1 (0 0)))
|
||
APP, 11, // 1: (λ 1 (0 0)) (λ 1 (0 0))
|
||
ABS, // 3: (λ 1 (0 0))
|
||
APP, 2, // 4: 1 (0 0)
|
||
VAR, 1, // 6: 1
|
||
APP, 2, // 8: 0 0
|
||
VAR, 0, // 10: 0
|
||
VAR, 0, // 12: 0
|
||
ABS, // 14: (λ 1 (0 0))
|
||
APP, 2, // 15: 1 (0 0)
|
||
VAR, 1, // 17: 1
|
||
APP, 2, // 19: 0 0
|
||
VAR, 0, // 21: 0
|
||
VAR, 0, // 23: 0
|
||
};
|
||
|
||
static char kIszero[] = {
|
||
ABS, // 32: λabc.a(λd.c)b
|
||
ABS, // 33: λab.ɐ(λc.b)a
|
||
ABS, // 34: λa.q(λb.a)ɐ
|
||
APP, 7, // 35: ɔ(λa.ɐ)q
|
||
APP, 2, // 37: ɔ(λa.ɐ)
|
||
VAR, 2, // 39: ɔ
|
||
ABS, // 41: λa.ɐ
|
||
VAR, 1, // 42: q
|
||
VAR, 1, // 44: q
|
||
};
|
||
|
||
static char kPred[] = {
|
||
ABS, // 0: λabc.a(λde.e(db))(λd.c)(λd.d)
|
||
ABS, // 1: λab.ɐ(λcd.d(ca))(λc.b)(λc.c)
|
||
ABS, // 2: λa.q(λbc.c(bɐ))(λb.a)(λb.b)
|
||
APP, 21, // 3: ɔ(λab.b(aq))(λa.ɐ)(λa.a)
|
||
APP, 16, // 5: ɔ(λab.b(aq))(λa.ɐ)
|
||
APP, 2, // 7: ɔ(λab.b(aq))
|
||
VAR, 2, // 9: ɔ
|
||
ABS, // 11: λab.b(aq)
|
||
ABS, // 12: λa.a(ɐɔ)
|
||
APP, 2, // 13: ɐ(qp)
|
||
VAR, 0, // 15: ɐ
|
||
APP, 2, // 17: qp
|
||
VAR, 1, // 19: q
|
||
VAR, 3, // 21: p
|
||
ABS, // 23: λa.ɐ
|
||
VAR, 1, // 24: q
|
||
ABS, // 26: λa.a
|
||
VAR, 0, // 27: ɐ
|
||
};
|
||
|
||
static char kXor[] = {
|
||
ABS, // 32: λab.a(λcd.bdc)b
|
||
ABS, // 33: λa.ɐ(λbc.acb)a
|
||
APP, 16, // 34: q(λab.ɐba)ɐ
|
||
APP, 2, // 36: q(λab.ɐba)
|
||
VAR, 1, // 38: q
|
||
ABS, // 40: λab.ɐba
|
||
ABS, // 41: λa.qaɐ
|
||
APP, 6, // 42: ɔɐq
|
||
APP, 2, // 44: ɔɐ
|
||
VAR, 2, // 46: ɔ
|
||
VAR, 0, // 48: ɐ
|
||
VAR, 1, // 50: q
|
||
VAR, 0, // 52: ɐ
|
||
};
|
||
|
||
static char kAdd[] = {
|
||
ABS, // 29: λabcd.ac(bcd)
|
||
ABS, // 30: λabc.ɐb(abc)
|
||
ABS, // 31: λab.qa(ɐab)
|
||
ABS, // 32: λa.ɔɐ(qɐa)
|
||
APP, 6, // 33: pq(ɔqɐ)
|
||
APP, 2, // 35: pq
|
||
VAR, 3, // 37: p
|
||
VAR, 1, // 39: q
|
||
APP, 6, // 41: ɔqɐ
|
||
APP, 2, // 43: ɔq
|
||
VAR, 2, // 45: ɔ
|
||
VAR, 1, // 47: q
|
||
VAR, 0, // 49: ɐ
|
||
};
|
||
|
||
static char kSub[] = {
|
||
ABS, // 51: λab.b(λcde.c(λfg.g(fd))(λf.e)(λf.f))a
|
||
ABS, // 52: λa.a(λbcd.b(λef.f(ec))(λe.d)(λe.e))ɐ
|
||
APP, 33, // 53: ɐ(λabc.a(λde.e(db))(λd.c)(λd.d))q
|
||
APP, 2, // 55: ɐ(λabc.a(λde.e(db))(λd.c)(λd.d))
|
||
VAR, 0, // 57: ɐ
|
||
ABS, // 59: λabc.a(λde.e(db))(λd.c)(λd.d)
|
||
ABS, // 60: λab.ɐ(λcd.d(ca))(λc.b)(λc.c)
|
||
ABS, // 61: λa.q(λbc.c(bɐ))(λb.a)(λb.b)
|
||
APP, 21, // 62: ɔ(λab.b(aq))(λa.ɐ)(λa.a)
|
||
APP, 16, // 64: ɔ(λab.b(aq))(λa.ɐ)
|
||
APP, 2, // 66: ɔ(λab.b(aq))
|
||
VAR, 2, // 68: ɔ
|
||
ABS, // 70: λab.b(aq)
|
||
ABS, // 71: λa.a(ɐɔ)
|
||
APP, 2, // 72: ɐ(qp)
|
||
VAR, 0, // 74: ɐ
|
||
APP, 2, // 76: qp
|
||
VAR, 1, // 78: q
|
||
VAR, 3, // 80: p
|
||
ABS, // 82: λa.ɐ
|
||
VAR, 1, // 83: q
|
||
ABS, // 85: λa.a
|
||
VAR, 0, // 86: ɐ
|
||
VAR, 1, // 88: q
|
||
};
|
||
|
||
static char kLe[] = {
|
||
ABS, // 0: λab.iszero(- a b)
|
||
ABS, // 1: λa.iszero(- ɐ a)
|
||
APP, 16, // 2: iszero(- q ɐ)
|
||
ABS, // 4: iszero
|
||
APP, 9, // 5: ɐ (λabc.c) ⊤
|
||
APP, 2, // 7: ɐ (λabc.c)
|
||
VAR, 0, // 9: ɐ
|
||
ABS, // 11: λabc.c
|
||
ABS, // 12: ⊥
|
||
ABS, // 13: λa.a
|
||
VAR, 0, // 14: ɐ
|
||
ABS, // 16: ⊤
|
||
ABS, // 17: λa.ɐ
|
||
VAR, 1, // 18: q
|
||
APP, 43, // 20: - q ɐ
|
||
APP, 39, // 22: - q
|
||
ABS, // 24: -
|
||
ABS, // 25: λa.a dec ɐ
|
||
APP, 33, // 26: ɐ dec q
|
||
APP, 2, // 28: ɐ dec
|
||
VAR, 0, // 30: ɐ
|
||
ABS, // 32: dec
|
||
ABS, // 33: λab.ɐ (λcd.d(c a)) (λc.b) (λc.c)
|
||
ABS, // 34: λa.q (λbc.c(b ɐ)) (λb.a) (λb.b)
|
||
APP, 21, // 35: ɔ (λab.b(a q)) (λa.ɐ) (λa.a)
|
||
APP, 16, // 37: ɔ (λab.b(a q)) (λa.ɐ)
|
||
APP, 2, // 39: ɔ (λab.b(a q))
|
||
VAR, 2, // 41: ɔ
|
||
ABS, // 43: λab.b(a q)
|
||
ABS, // 44: λa.a(ɐ ɔ)
|
||
APP, 2, // 45: ɐ(q p)
|
||
VAR, 0, // 47: ɐ
|
||
APP, 2, // 49: q p
|
||
VAR, 1, // 51: q
|
||
VAR, 3, // 53: p
|
||
ABS, // 55: λa.ɐ
|
||
VAR, 1, // 56: q
|
||
ABS, // 58: λa.a
|
||
VAR, 0, // 59: ɐ
|
||
VAR, 1, // 61: q
|
||
VAR, 1, // 63: q
|
||
VAR, 0, // 65: ɐ
|
||
};
|
||
|
||
static char kEq[] = {
|
||
ABS, // 0: λab.∧(≤ a b)(≤ b a)
|
||
ABS, // 1: λa.∧(≤ ɐ a)(≤ a ɐ)
|
||
APP, 89, // 2: ∧(≤ q ɐ)(≤ ɐ q)
|
||
APP, 12, // 4: ∧(≤ q ɐ)
|
||
ABS, // 6: ∧
|
||
ABS, // 7: λa.ɐ a ɐ
|
||
APP, 6, // 8: q ɐ q
|
||
APP, 2, // 10: q ɐ
|
||
VAR, 1, // 12: q
|
||
VAR, 0, // 14: ɐ
|
||
VAR, 1, // 16: q
|
||
APP, 71, // 18: ≤ q ɐ
|
||
APP, 67, // 20: ≤ q
|
||
ABS, // 22: ≤
|
||
ABS, // 23: λa.iszero(- ɐ a)
|
||
APP, 16, // 24: iszero(- q ɐ)
|
||
ABS, // 26: iszero
|
||
APP, 9, // 27: ɐ (λabc.c) ⊤
|
||
APP, 2, // 29: ɐ (λabc.c)
|
||
VAR, 0, // 31: ɐ
|
||
ABS, // 33: λabc.c
|
||
ABS, // 34: ⊥
|
||
ABS, // 35: λa.a
|
||
VAR, 0, // 36: ɐ
|
||
ABS, // 38: ⊤
|
||
ABS, // 39: λa.ɐ
|
||
VAR, 1, // 40: q
|
||
APP, 43, // 42: - q ɐ
|
||
APP, 39, // 44: - q
|
||
ABS, // 46: -
|
||
ABS, // 47: λa.a dec ɐ
|
||
APP, 33, // 48: ɐ dec q
|
||
APP, 2, // 50: ɐ dec
|
||
VAR, 0, // 52: ɐ
|
||
ABS, // 54: dec
|
||
ABS, // 55: λab.ɐ (λcd.d(c a)) (λc.b) (λc.c)
|
||
ABS, // 56: λa.q (λbc.c(b ɐ)) (λb.a) (λb.b)
|
||
APP, 21, // 57: ɔ (λab.b(a q)) (λa.ɐ) (λa.a)
|
||
APP, 16, // 59: ɔ (λab.b(a q)) (λa.ɐ)
|
||
APP, 2, // 61: ɔ (λab.b(a q))
|
||
VAR, 2, // 63: ɔ
|
||
ABS, // 65: λab.b(a q)
|
||
ABS, // 66: λa.a(ɐ ɔ)
|
||
APP, 2, // 67: ɐ(q p)
|
||
VAR, 0, // 69: ɐ
|
||
APP, 2, // 71: q p
|
||
VAR, 1, // 73: q
|
||
VAR, 3, // 75: p
|
||
ABS, // 77: λa.ɐ
|
||
VAR, 1, // 78: q
|
||
ABS, // 80: λa.a
|
||
VAR, 0, // 81: ɐ
|
||
VAR, 1, // 83: q
|
||
VAR, 1, // 85: q
|
||
VAR, 0, // 87: ɐ
|
||
VAR, 1, // 89: q
|
||
VAR, 0, // 91: ɐ
|
||
APP, 71, // 93: ≤ ɐ q
|
||
APP, 67, // 95: ≤ ɐ
|
||
ABS, // 97: ≤
|
||
ABS, // 98: λa.iszero(- ɐ a)
|
||
APP, 16, // 99: iszero(- q ɐ)
|
||
ABS, // 101: iszero
|
||
APP, 9, // 102: ɐ (λabc.c) ⊤
|
||
APP, 2, // 104: ɐ (λabc.c)
|
||
VAR, 0, // 106: ɐ
|
||
ABS, // 108: λabc.c
|
||
ABS, // 109: ⊥
|
||
ABS, // 110: λa.a
|
||
VAR, 0, // 111: ɐ
|
||
ABS, // 113: ⊤
|
||
ABS, // 114: λa.ɐ
|
||
VAR, 1, // 115: q
|
||
APP, 43, // 117: - q ɐ
|
||
APP, 39, // 119: - q
|
||
ABS, // 121: -
|
||
ABS, // 122: λa.a dec ɐ
|
||
APP, 33, // 123: ɐ dec q
|
||
APP, 2, // 125: ɐ dec
|
||
VAR, 0, // 127: ɐ
|
||
ABS, // 129: dec
|
||
ABS, // 130: λab.ɐ (λcd.d(c a)) (λc.b) (λc.c)
|
||
ABS, // 131: λa.q (λbc.c(b ɐ)) (λb.a) (λb.b)
|
||
APP, 21, // 132: ɔ (λab.b(a q)) (λa.ɐ) (λa.a)
|
||
APP, 16, // 134: ɔ (λab.b(a q)) (λa.ɐ)
|
||
APP, 2, // 136: ɔ (λab.b(a q))
|
||
VAR, 2, // 138: ɔ
|
||
ABS, // 140: λab.b(a q)
|
||
ABS, // 141: λa.a(ɐ ɔ)
|
||
APP, 2, // 142: ɐ(q p)
|
||
VAR, 0, // 144: ɐ
|
||
APP, 2, // 146: q p
|
||
VAR, 1, // 148: q
|
||
VAR, 3, // 150: p
|
||
ABS, // 152: λa.ɐ
|
||
VAR, 1, // 153: q
|
||
ABS, // 155: λa.a
|
||
VAR, 0, // 156: ɐ
|
||
VAR, 1, // 158: q
|
||
VAR, 1, // 160: q
|
||
VAR, 0, // 162: ɐ
|
||
VAR, 0, // 164: ɐ
|
||
VAR, 1, // 166: q
|
||
};
|
||
|
||
static int termcmp(const int* p, const char* q, size_t n) {
|
||
int c;
|
||
size_t i;
|
||
for (i = 0; i < n; ++i) {
|
||
if ((c = p[i] - q[i])) {
|
||
return c;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void PrintVar(int i, FILE* f) {
|
||
char ibuf[22];
|
||
switch (style) {
|
||
case 0:
|
||
FormatInt64(ibuf, i);
|
||
fputs(ibuf, f);
|
||
break;
|
||
case 1:
|
||
if (0 <= i && i < sizeof(ALPHABET) / sizeof(*ALPHABET) - 1) {
|
||
fputwc(ALPHABET[i], f);
|
||
} else if (i < 0 && ~i < sizeof(FREEBIES) / sizeof(*FREEBIES) - 1) {
|
||
fputwc(FREEBIES[~i], f);
|
||
} else {
|
||
ibuf[0] = '?';
|
||
FormatInt64(ibuf + 1, i);
|
||
fputs(ibuf, f);
|
||
}
|
||
break;
|
||
default:
|
||
do {
|
||
fputc('1', f);
|
||
} while (i-- > 0);
|
||
fputc('0', f);
|
||
break;
|
||
}
|
||
}
|
||
|
||
void PrintDebruijn(int x, int head, int depth, FILE* f) {
|
||
char ibuf[22];
|
||
if (0 <= x && x < TERMS) {
|
||
if (mem[x] == ABS) {
|
||
if (!noname) {
|
||
if (x == 14) {
|
||
fputs("put", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kTrue) / sizeof(*kTrue) <= end &&
|
||
!termcmp(mem + x, kTrue, sizeof(kTrue))) {
|
||
if (asciiname) {
|
||
fputs("true", f);
|
||
} else {
|
||
fputs("⊤", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kFalse) / sizeof(*kFalse) <= end &&
|
||
!termcmp(mem + x, kFalse, sizeof(kFalse))) {
|
||
if (asciiname) {
|
||
fputs("false", f);
|
||
} else {
|
||
fputs("⊥", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kOmega) / sizeof(*kOmega) <= end &&
|
||
!termcmp(mem + x, kOmega, sizeof(kOmega))) {
|
||
if (asciiname) {
|
||
fputs("omega", f);
|
||
} else {
|
||
fputs("Ω", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kSelf) / sizeof(*kSelf) <= end &&
|
||
!termcmp(mem + x, kSelf, sizeof(kSelf))) {
|
||
if (asciiname) {
|
||
fputs("omega", f);
|
||
} else {
|
||
fputs("ω", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kY) / sizeof(*kY) <= end &&
|
||
!termcmp(mem + x, kY, sizeof(kY))) {
|
||
fputs("Y", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kYCurry) / sizeof(*kYCurry) <= end &&
|
||
!termcmp(mem + x, kYCurry, sizeof(kYCurry))) {
|
||
fputs("Y", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kIf) / sizeof(*kIf) <= end &&
|
||
!termcmp(mem + x, kIf, sizeof(kIf))) {
|
||
fputs("if", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kPair) / sizeof(*kPair) <= end &&
|
||
!termcmp(mem + x, kPair, sizeof(kPair))) {
|
||
fputs("pair", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kNot) / sizeof(*kNot) <= end &&
|
||
!termcmp(mem + x, kNot, sizeof(kNot))) {
|
||
if (asciiname) {
|
||
fputs("not", f);
|
||
} else {
|
||
fputwc(L'¬', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kOr) / sizeof(*kOr) <= end &&
|
||
!termcmp(mem + x, kOr, sizeof(kOr))) {
|
||
if (asciiname) {
|
||
fputs("or", f);
|
||
} else {
|
||
fputwc(L'∨', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kAnd) / sizeof(*kAnd) <= end &&
|
||
!termcmp(mem + x, kAnd, sizeof(kAnd))) {
|
||
if (asciiname) {
|
||
fputs("and", f);
|
||
} else {
|
||
fputwc(L'∧', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kXor) / sizeof(*kXor) <= end &&
|
||
!termcmp(mem + x, kXor, sizeof(kXor))) {
|
||
if (asciiname) {
|
||
fputs("xor", f);
|
||
} else {
|
||
fputwc(L'⊻', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kLe) / sizeof(*kLe) <= end &&
|
||
!termcmp(mem + x, kLe, sizeof(kLe))) {
|
||
if (asciiname) {
|
||
fputs("le", f);
|
||
} else {
|
||
fputwc(L'≤', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kEq) / sizeof(*kEq) <= end &&
|
||
!termcmp(mem + x, kEq, sizeof(kEq))) {
|
||
fputwc(L'=', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kAdd) / sizeof(*kAdd) <= end &&
|
||
!termcmp(mem + x, kAdd, sizeof(kAdd))) {
|
||
fputs("+", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSub) / sizeof(*kSub) <= end &&
|
||
!termcmp(mem + x, kSub, sizeof(kSub))) {
|
||
fputs("-", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kCompose) / sizeof(*kCompose) <= end &&
|
||
!termcmp(mem + x, kCompose, sizeof(kCompose))) {
|
||
fputs("∘", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSucc) / sizeof(*kSucc) <= end &&
|
||
!termcmp(mem + x, kSucc, sizeof(kSucc))) {
|
||
fputs("inc", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kPred) / sizeof(*kPred) <= end &&
|
||
!termcmp(mem + x, kPred, sizeof(kPred))) {
|
||
fputs("dec", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSecond) / sizeof(*kSecond) <= end &&
|
||
!termcmp(mem + x, kSecond, sizeof(kSecond))) {
|
||
fputs("second", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFirst) / sizeof(*kFirst) <= end &&
|
||
!termcmp(mem + x, kFirst, sizeof(kFirst))) {
|
||
fputs("first", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kMap) / sizeof(*kMap) <= end &&
|
||
!termcmp(mem + x, kMap, sizeof(kMap))) {
|
||
fputs("map", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kIszero) / sizeof(*kIszero) <= end &&
|
||
!termcmp(mem + x, kIszero, sizeof(kIszero))) {
|
||
fputs("iszero", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kCons) / sizeof(*kCons) <= end &&
|
||
!termcmp(mem + x, kCons, sizeof(kCons))) {
|
||
fputs("cons", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kOne) / sizeof(*kOne) <= end &&
|
||
!termcmp(mem + x, kOne, sizeof(kOne))) {
|
||
fputs("one", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kTwo) / sizeof(*kTwo) <= end &&
|
||
!termcmp(mem + x, kTwo, sizeof(kTwo))) {
|
||
fputs("two", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kThree) / sizeof(*kThree) <= end &&
|
||
!termcmp(mem + x, kThree, sizeof(kThree))) {
|
||
fputs("three", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFour) / sizeof(*kFour) <= end &&
|
||
!termcmp(mem + x, kFour, sizeof(kFour))) {
|
||
fputs("four", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFive) / sizeof(*kFive) <= end &&
|
||
!termcmp(mem + x, kFive, sizeof(kFive))) {
|
||
fputs("five", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSix) / sizeof(*kSix) <= end &&
|
||
!termcmp(mem + x, kSix, sizeof(kSix))) {
|
||
fputs("six", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSeven) / sizeof(*kSeven) <= end &&
|
||
!termcmp(mem + x, kSeven, sizeof(kSeven))) {
|
||
fputs("seven", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kEight) / sizeof(*kEight) <= end &&
|
||
!termcmp(mem + x, kEight, sizeof(kEight))) {
|
||
fputs("eight", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kNine) / sizeof(*kNine) <= end &&
|
||
!termcmp(mem + x, kNine, sizeof(kNine))) {
|
||
fputs("nine", f);
|
||
return;
|
||
}
|
||
}
|
||
do {
|
||
++x;
|
||
if (asciiname) {
|
||
fputc('\\', f);
|
||
} else {
|
||
fputwc(L'λ', f);
|
||
}
|
||
if (!(0 <= x && x < TERMS))
|
||
goto Overflow;
|
||
} while (mem[x] == ABS);
|
||
fputc(' ', f);
|
||
}
|
||
if (!(0 <= (x + 1) && (x + 1) < TERMS))
|
||
goto Overflow;
|
||
if (mem[x] == APP) {
|
||
fputc('[', f);
|
||
PrintDebruijn(x + 2, 1, depth, f);
|
||
fputc(' ', f);
|
||
PrintDebruijn(x + 2 + mem[x + 1], 0, depth, f);
|
||
fputc(']', f);
|
||
} else if (mem[x] == VAR) {
|
||
if (0 <= x + 1 && x + 1 < TERMS) {
|
||
PrintVar(mem[x + 1], f);
|
||
} else {
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
} else if (mem[x] == IOP) {
|
||
if (x < 22) {
|
||
if (mem[x + 1] & 1) {
|
||
fputs("put", f);
|
||
} else if (x & 1) {
|
||
fputs("wr1", f);
|
||
} else {
|
||
fputs("wr0", f);
|
||
}
|
||
} else if (x == end) {
|
||
fputs(asciiname ? "gro" : "⋯", f);
|
||
} else {
|
||
fputc(L'!', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
} else {
|
||
fputc(L'!', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
return;
|
||
}
|
||
Overflow:
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
|
||
void PrintLambda(int x, int head, int depth, int apps, FILE* f) {
|
||
int close = 0;
|
||
char ibuf[22];
|
||
if (0 <= x && x < TERMS) {
|
||
if (mem[x] == ABS) {
|
||
if (!noname) {
|
||
if (x == 14) {
|
||
if (asciiname) {
|
||
fputs("put", f);
|
||
} else {
|
||
fputs("⍆", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kTrue) / sizeof(*kTrue) <= end &&
|
||
!termcmp(mem + x, kTrue, sizeof(kTrue))) {
|
||
if (asciiname) {
|
||
fputs("true", f);
|
||
} else {
|
||
fputs("⊤", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kFalse) / sizeof(*kFalse) <= end &&
|
||
!termcmp(mem + x, kFalse, sizeof(kFalse))) {
|
||
if (asciiname) {
|
||
fputs("false", f);
|
||
} else {
|
||
fputs("⊥", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kY) / sizeof(*kY) <= end &&
|
||
!termcmp(mem + x, kY, sizeof(kY))) {
|
||
fputs("Y", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kYCurry) / sizeof(*kYCurry) <= end &&
|
||
!termcmp(mem + x, kYCurry, sizeof(kYCurry))) {
|
||
fputs("Y", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kOmega) / sizeof(*kOmega) <= end &&
|
||
!termcmp(mem + x, kOmega, sizeof(kOmega))) {
|
||
if (asciiname) {
|
||
fputs("OMEGA", f);
|
||
} else {
|
||
fputs("Ω", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kSelf) / sizeof(*kSelf) <= end &&
|
||
!termcmp(mem + x, kSelf, sizeof(kSelf))) {
|
||
if (asciiname) {
|
||
fputs("omega", f);
|
||
} else {
|
||
fputs("ω", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kNot) / sizeof(*kNot) <= end &&
|
||
!termcmp(mem + x, kNot, sizeof(kNot))) {
|
||
if (asciiname) {
|
||
fputs("not", f);
|
||
} else {
|
||
fputwc(L'¬', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kOr) / sizeof(*kOr) <= end &&
|
||
!termcmp(mem + x, kOr, sizeof(kOr))) {
|
||
if (asciiname) {
|
||
fputs("or", f);
|
||
} else {
|
||
fputwc(L'∨', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kXor) / sizeof(*kXor) <= end &&
|
||
!termcmp(mem + x, kXor, sizeof(kXor))) {
|
||
if (asciiname) {
|
||
fputs("xor", f);
|
||
} else {
|
||
fputwc(L'⊻', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kLe) / sizeof(*kLe) <= end &&
|
||
!termcmp(mem + x, kLe, sizeof(kLe))) {
|
||
if (asciiname) {
|
||
fputs("le", f);
|
||
} else {
|
||
fputwc(L'≤', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kEq) / sizeof(*kEq) <= end &&
|
||
!termcmp(mem + x, kEq, sizeof(kEq))) {
|
||
fputwc(L'=', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kAnd) / sizeof(*kAnd) <= end &&
|
||
!termcmp(mem + x, kAnd, sizeof(kAnd))) {
|
||
if (asciiname) {
|
||
fputs("and", f);
|
||
} else {
|
||
fputwc(L'∧', f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kAdd) / sizeof(*kAdd) <= end &&
|
||
!termcmp(mem + x, kAdd, sizeof(kAdd))) {
|
||
fputs("+", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSub) / sizeof(*kSub) <= end &&
|
||
!termcmp(mem + x, kSub, sizeof(kSub))) {
|
||
fputs("-", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kCompose) / sizeof(*kCompose) <= end &&
|
||
!termcmp(mem + x, kCompose, sizeof(kCompose))) {
|
||
if (asciiname) {
|
||
fputs("compose", f);
|
||
} else {
|
||
fputs("∘", f);
|
||
}
|
||
return;
|
||
}
|
||
if (x + sizeof(kOne) / sizeof(*kOne) <= end &&
|
||
!termcmp(mem + x, kOne, sizeof(kOne))) {
|
||
fputc('1', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kTwo) / sizeof(*kTwo) <= end &&
|
||
!termcmp(mem + x, kTwo, sizeof(kTwo))) {
|
||
fputc('2', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kThree) / sizeof(*kThree) <= end &&
|
||
!termcmp(mem + x, kThree, sizeof(kThree))) {
|
||
fputc('3', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFour) / sizeof(*kFour) <= end &&
|
||
!termcmp(mem + x, kFour, sizeof(kFour))) {
|
||
fputc('4', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFive) / sizeof(*kFive) <= end &&
|
||
!termcmp(mem + x, kFive, sizeof(kFive))) {
|
||
fputc('5', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSix) / sizeof(*kSix) <= end &&
|
||
!termcmp(mem + x, kSix, sizeof(kSix))) {
|
||
fputc('6', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSeven) / sizeof(*kSeven) <= end &&
|
||
!termcmp(mem + x, kSeven, sizeof(kSeven))) {
|
||
fputc('7', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kEight) / sizeof(*kEight) <= end &&
|
||
!termcmp(mem + x, kEight, sizeof(kEight))) {
|
||
fputc('8', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kNine) / sizeof(*kNine) <= end &&
|
||
!termcmp(mem + x, kNine, sizeof(kNine))) {
|
||
fputc('9', f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kIf) / sizeof(*kIf) <= end &&
|
||
!termcmp(mem + x, kIf, sizeof(kIf))) {
|
||
fputs("if", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kPair) / sizeof(*kPair) <= end &&
|
||
!termcmp(mem + x, kPair, sizeof(kPair))) {
|
||
fputs("pair", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSucc) / sizeof(*kSucc) <= end &&
|
||
!termcmp(mem + x, kSucc, sizeof(kSucc))) {
|
||
fputs("inc", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kPred) / sizeof(*kPred) <= end &&
|
||
!termcmp(mem + x, kPred, sizeof(kPred))) {
|
||
fputs("dec", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kSecond) / sizeof(*kSecond) <= end &&
|
||
!termcmp(mem + x, kSecond, sizeof(kSecond))) {
|
||
fputs("second", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kFirst) / sizeof(*kFirst) <= end &&
|
||
!termcmp(mem + x, kFirst, sizeof(kFirst))) {
|
||
fputs("first", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kMap) / sizeof(*kMap) <= end &&
|
||
!termcmp(mem + x, kMap, sizeof(kMap))) {
|
||
fputs("map", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kIszero) / sizeof(*kIszero) <= end &&
|
||
!termcmp(mem + x, kIszero, sizeof(kIszero))) {
|
||
fputs("iszero", f);
|
||
return;
|
||
}
|
||
if (x + sizeof(kCons) / sizeof(*kCons) <= end &&
|
||
!termcmp(mem + x, kCons, sizeof(kCons))) {
|
||
fputs("cons", f);
|
||
return;
|
||
}
|
||
}
|
||
if (apps) {
|
||
fputc('(', f);
|
||
close = 1;
|
||
}
|
||
if (asciiname) {
|
||
fputc('\\', f);
|
||
} else {
|
||
fputwc(L'λ', f);
|
||
}
|
||
if (safer) {
|
||
fputwc(ALPHABET[depth++], f);
|
||
fputc('.', f);
|
||
PrintLambda(x + 1, head, depth, apps + 1, f);
|
||
if (close) {
|
||
fputc(')', f);
|
||
}
|
||
return;
|
||
}
|
||
do {
|
||
++x;
|
||
fputwc(ALPHABET[depth++], f);
|
||
if (!(0 <= x && x < TERMS))
|
||
goto Overflow;
|
||
} while (mem[x] == ABS);
|
||
fputc('.', f);
|
||
}
|
||
if (!(0 <= (x + 1) && (x + 1) < TERMS))
|
||
goto Overflow;
|
||
if (mem[x] == VAR) {
|
||
if (0 <= x + 1 && x + 1 < TERMS) {
|
||
PrintVar(depth - 1 - mem[x + 1], f);
|
||
} else {
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
} else if (mem[x] == APP) {
|
||
if (!close && !head) {
|
||
fputc('(', f);
|
||
close = 1;
|
||
}
|
||
PrintLambda(x + 2, 1, depth, apps + 1, f);
|
||
if (!(x + 2 + mem[x + 1] < TERMS && mem[x + 2 + mem[x + 1]] == APP)) {
|
||
if (safer || !noname)
|
||
fputc(' ', f);
|
||
}
|
||
PrintLambda(x + 2 + mem[x + 1], 0, depth, apps + 1, f);
|
||
} else if (mem[x] == IOP) {
|
||
if (x < 22) {
|
||
if (mem[x + 1] & 1) {
|
||
fputs(asciiname ? "put" : "⍆", f);
|
||
} else if (x & 1) {
|
||
fputs(asciiname ? "wr1" : "⍆₁", f);
|
||
} else {
|
||
fputs(asciiname ? "wr0" : "⍆₀", f);
|
||
}
|
||
} else if (x == end) {
|
||
fputs(asciiname ? "gro" : "⋯", f);
|
||
} else {
|
||
fputc(L'!', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
} else {
|
||
fputc(L'!', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
if (close) {
|
||
fputc(')', f);
|
||
}
|
||
return;
|
||
}
|
||
Overflow:
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
|
||
void PrintBinary(int x, int head, int depth, FILE* f) {
|
||
char ibuf[22];
|
||
if (0 <= x && x < TERMS) {
|
||
if (mem[x] == ABS) {
|
||
if (x == 14) {
|
||
fputs("⍆", f);
|
||
return;
|
||
}
|
||
do {
|
||
++x;
|
||
++depth;
|
||
fputc('0', f);
|
||
fputc('0', f);
|
||
if (!(0 <= x && x < TERMS))
|
||
goto Overflow;
|
||
} while (mem[x] == ABS);
|
||
}
|
||
if (!(0 <= (x + 1) && (x + 1) < TERMS))
|
||
goto Overflow;
|
||
if (mem[x] == VAR) {
|
||
if (0 <= x + 1 && x + 1 < TERMS) {
|
||
PrintVar(mem[x + 1], f);
|
||
} else {
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
} else if (mem[x] == APP) {
|
||
fputc('0', f);
|
||
fputc('1', f);
|
||
PrintBinary(x + 2, 0, 0, f);
|
||
PrintBinary(x + 2 + mem[x + 1], 0, 0, f);
|
||
} else if (mem[x] == IOP) {
|
||
if (x < 22) {
|
||
if (mem[x + 1] & 1) {
|
||
fputs("⍆", f);
|
||
} else if (x & 1) {
|
||
fputs("⍆₁", f);
|
||
} else {
|
||
fputs("⍆₀", f);
|
||
}
|
||
} else {
|
||
fputwc(L'⋯', f);
|
||
}
|
||
} else if (mem[x] == -1) {
|
||
fputwc(L'⋯', f);
|
||
} else {
|
||
fputc(L'!', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
return;
|
||
}
|
||
Overflow:
|
||
fputc(L'‼', f);
|
||
FormatInt64(ibuf, x);
|
||
fputs(ibuf, f);
|
||
}
|
||
|
||
void Print(int x, int head, int depth, FILE* f) {
|
||
switch (style) {
|
||
case 0:
|
||
PrintDebruijn(x, head, depth, f);
|
||
break;
|
||
case 1:
|
||
PrintLambda(x, head, depth, 0, f);
|
||
break;
|
||
default:
|
||
PrintBinary(x, head, depth, f);
|
||
break;
|
||
}
|
||
}
|