cosmopolitan/third_party/mbedtls/everest.c
Justine Tunney cc1920749e Add SSL to redbean
Your redbean can now interoperate with clients that require TLS crypto.
This is accomplished using a protocol polyglot that lets us distinguish
between HTTP and HTTPS regardless of the port number. Certificates will
be generated automatically, if none are supplied by the user. Footprint
increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb

- Add lseek() polyfills for ZIP executable
- Automatically polyfill /tmp/FOO paths on NT
- Fix readdir() / ftw() / nftw() bugs on Windows
- Introduce -B flag for slower SSL that's stronger
- Remove mbedtls features Cosmopolitan doesn't need
- Have base64 decoder support the uri-safe alternative
- Remove Truncated HMAC because it's forbidden by the IETF
- Add all the mbedtls test suites and make them go 3x faster
- Support opendir() / readdir() / closedir() on ZIP executable
- Use Everest for ECDHE-ECDSA because it's so good it's so good
- Add tinier implementation of sha1 since it's not worth the rom
- Add chi-square monte-carlo mean correlation tests for getrandom()
- Source entropy on Windows from the proper interface everyone uses

We're continuing to outperform NGINX and other servers on raw message
throughput. Using SSL means that instead of 1,000,000 qps you can get
around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL
handshakes, since redbean can do 2,627 per second and NGINX does 4.3k

Right now, the SSL UX story works best if you give your redbean a key
signing key since that can be easily generated by openssl using a one
liner then redbean will do all the things that are impossibly hard to
do like signing ecdsa and rsa certificates that'll work in chrome. We
should integrate the let's encrypt acme protocol in the future.

Live Demo: https://redbean.justine.lol/
Root Cert: https://redbean.justine.lol/redbean1.crt
2021-06-24 13:20:50 -07:00

1219 lines
38 KiB
C

#include "libc/bits/bits.h"
#include "libc/limits.h"
#include "third_party/mbedtls/asn1.h"
#include "third_party/mbedtls/bignum.h"
#include "third_party/mbedtls/common.h"
#include "third_party/mbedtls/error.h"
#include "third_party/mbedtls/everest.h"
#include "third_party/mbedtls/platform.h"
asm(".ident\t\"\\n\\n\
Everest (Apache 2.0)\\n\
Copyright 2016-2018 INRIA and Microsoft Corporation\"");
asm(".include \"libc/disclaimer.inc\"");
/* clang-format off */
/*
* ECDH with curve-optimized implementation multiplexing
*
* Copyright 2016-2018 INRIA and Microsoft Corporation
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#if defined(MBEDTLS_ECDH_C) && defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
#define load64_le(b) READ64LE(b)
#define store64_le(b, i) WRITE64LE(b, i)
#define KRML_HOST_EXIT exit
#define KRML_HOST_PRINTF printf
#define KRML_EXIT \
do { \
KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
KRML_HOST_EXIT(254); \
} while (0)
#define _KRML_CHECK_SIZE_PRAGMA \
_Pragma("GCC diagnostic ignored \"-Wtype-limits\"")
#define KRML_CHECK_SIZE(size_elt, sz) \
do { \
_KRML_CHECK_SIZE_PRAGMA \
if (((size_t)(sz)) > ((size_t)(SIZE_MAX / (size_elt)))) { \
KRML_HOST_PRINTF( \
"Maximum allocatable size exceeded, aborting before overflow at " \
"%s:%d\n", \
__FILE__, __LINE__); \
KRML_HOST_EXIT(253); \
} \
} while (0)
typedef const char *Prims_string;
typedef struct {
uint32_t length;
const char *data;
} FStar_Bytes_bytes;
typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
krml_checked_int_t;
/* Prims_nat not yet in scope */
inline static int32_t krml_time() {
return (int32_t)time(NULL);
}
static uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b)
{
uint64_t x = a ^ b;
uint64_t minus_x = ~x + (uint64_t)1U;
uint64_t x_or_minus_x = x | minus_x;
uint64_t xnx = x_or_minus_x >> (uint32_t)63U;
return xnx - (uint64_t)1U;
}
static uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b)
{
uint64_t x = a;
uint64_t y = b;
uint64_t x_xor_y = x ^ y;
uint64_t x_sub_y = x - y;
uint64_t x_sub_y_xor_y = x_sub_y ^ y;
uint64_t q = x_xor_y | x_sub_y_xor_y;
uint64_t x_xor_q = x ^ q;
uint64_t x_xor_q_ = x_xor_q >> (uint32_t)63U;
return x_xor_q_ - (uint64_t)1U;
}
static uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b)
{
uint32_t x = a ^ b;
uint32_t minus_x = ~x + (uint32_t)1U;
uint32_t x_or_minus_x = x | minus_x;
uint32_t xnx = x_or_minus_x >> (uint32_t)31U;
return xnx - (uint32_t)1U;
}
static uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b)
{
uint32_t x = a;
uint32_t y = b;
uint32_t x_xor_y = x ^ y;
uint32_t x_sub_y = x - y;
uint32_t x_sub_y_xor_y = x_sub_y ^ y;
uint32_t q = x_xor_y | x_sub_y_xor_y;
uint32_t x_xor_q = x ^ q;
uint32_t x_xor_q_ = x_xor_q >> (uint32_t)31U;
return x_xor_q_ - (uint32_t)1U;
}
static uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b)
{
uint16_t x = a ^ b;
uint16_t minus_x = ~x + (uint16_t)1U;
uint16_t x_or_minus_x = x | minus_x;
uint16_t xnx = x_or_minus_x >> (uint32_t)15U;
return xnx - (uint16_t)1U;
}
static uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b)
{
uint16_t x = a;
uint16_t y = b;
uint16_t x_xor_y = x ^ y;
uint16_t x_sub_y = x - y;
uint16_t x_sub_y_xor_y = x_sub_y ^ y;
uint16_t q = x_xor_y | x_sub_y_xor_y;
uint16_t x_xor_q = x ^ q;
uint16_t x_xor_q_ = x_xor_q >> (uint32_t)15U;
return x_xor_q_ - (uint16_t)1U;
}
static uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b)
{
uint8_t x = a ^ b;
uint8_t minus_x = ~x + (uint8_t)1U;
uint8_t x_or_minus_x = x | minus_x;
uint8_t xnx = x_or_minus_x >> (uint32_t)7U;
return xnx - (uint8_t)1U;
}
static uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b)
{
uint8_t x = a;
uint8_t y = b;
uint8_t x_xor_y = x ^ y;
uint8_t x_sub_y = x - y;
uint8_t x_sub_y_xor_y = x_sub_y ^ y;
uint8_t q = x_xor_y | x_sub_y_xor_y;
uint8_t x_xor_q = x ^ q;
uint8_t x_xor_q_ = x_xor_q >> (uint32_t)7U;
return x_xor_q_ - (uint8_t)1U;
}
static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
{
uint64_t b4 = b[4U];
uint64_t b0 = b[0U];
uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
b[4U] = b4_;
b[0U] = b0_;
}
inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, uint128_t *input)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint128_t xi = input[i];
output[i] = (uint64_t)xi;
}
}
inline static void
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint128_t *output, uint64_t *input, uint64_t s)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint128_t xi = output[i];
uint64_t yi = input[i];
output[i] = xi + (uint128_t)yi * s;
}
}
inline static void Hacl_Bignum_Fproduct_carry_wide_(uint128_t *tmp)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = i;
uint128_t tctr = tmp[ctr];
uint128_t tctrp1 = tmp[ctr + (uint32_t)1U];
uint64_t r0 = (uint64_t)tctr & (uint64_t)0x7ffffffffffffU;
uint128_t c = tctr >> (uint32_t)51U;
tmp[ctr] = (uint128_t)r0;
tmp[ctr + (uint32_t)1U] = tctrp1 + c;
}
}
inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
{
uint64_t tmp = output[4U];
uint64_t b0;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
{
uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
uint64_t z = output[ctr - (uint32_t)1U];
output[ctr] = z;
}
}
output[0U] = tmp;
b0 = output[0U];
output[0U] = (uint64_t)19U * b0;
}
static void
Hacl_Bignum_Fmul_mul_shift_reduce_(uint128_t *output, uint64_t *input, uint64_t *input2)
{
uint32_t i;
uint64_t input2i;
{
uint32_t i0;
for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
{
uint64_t input2i0 = input2[i0];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
Hacl_Bignum_Fmul_shift_reduce(input);
}
}
i = (uint32_t)4U;
input2i = input2[i];
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
}
inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
{
uint64_t tmp[5U] = { 0U };
memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
Hacl_Bignum_Fproduct_carry_wide_(t);
b4 = t[4U];
b0 = t[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
t[4U] = b4_;
t[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
}
}
inline static void Hacl_Bignum_Fsquare_fsquare__(uint128_t *tmp, uint64_t *output)
{
uint64_t r0 = output[0U];
uint64_t r1 = output[1U];
uint64_t r2 = output[2U];
uint64_t r3 = output[3U];
uint64_t r4 = output[4U];
uint64_t d0 = r0 * (uint64_t)2U;
uint64_t d1 = r1 * (uint64_t)2U;
uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
uint64_t d419 = r4 * (uint64_t)19U;
uint64_t d4 = d419 * (uint64_t)2U;
uint128_t s0 = (uint128_t)r0 * r0 + (uint128_t)d4 * r1 + (uint128_t)d2 * r3;
uint128_t s1 = (uint128_t)d0 * r1 + (uint128_t)d4 * r2 + (uint128_t)(r3 * (uint64_t)19U) * r3;
uint128_t s2 = (uint128_t)d0 * r2 + (uint128_t)r1 * r1 + (uint128_t)d4 * r3;
uint128_t s3 = (uint128_t)d0 * r3 + (uint128_t)d1 * r2 + (uint128_t)r4 * d419;
uint128_t s4 = (uint128_t)d0 * r4 + (uint128_t)d1 * r3 + (uint128_t)r2 * r2;
tmp[0U] = s0;
tmp[1U] = s1;
tmp[2U] = s2;
tmp[3U] = s3;
tmp[4U] = s4;
}
inline static void Hacl_Bignum_Fsquare_fsquare_(uint128_t *tmp, uint64_t *output)
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_Bignum_Fsquare_fsquare__(tmp, output);
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
i0 = output[0U];
i1 = output[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
output[0U] = i0_;
output[1U] = i1_;
}
static void
Hacl_Bignum_Fsquare_fsquare_times_(uint64_t *input, uint128_t *tmp, uint32_t count1)
{
uint32_t i;
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
}
inline static void
Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t t[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
t[_i] = (uint128_t)(uint64_t)0U;
}
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
}
}
inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
{
uint64_t buf[20U] = { 0U };
uint64_t *a0 = buf;
uint64_t *t00 = buf + (uint32_t)5U;
uint64_t *b0 = buf + (uint32_t)10U;
uint64_t *t01;
uint64_t *b1;
uint64_t *c0;
uint64_t *a;
uint64_t *t0;
uint64_t *b;
uint64_t *c;
Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
Hacl_Bignum_Fmul_fmul(b0, t00, z);
Hacl_Bignum_Fmul_fmul(a0, b0, a0);
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
Hacl_Bignum_Fmul_fmul(b0, t00, b0);
Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
t01 = buf + (uint32_t)5U;
b1 = buf + (uint32_t)10U;
c0 = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(c0, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
Hacl_Bignum_Fmul_fmul(t01, t01, c0);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
a = buf;
t0 = buf + (uint32_t)5U;
b = buf + (uint32_t)10U;
c = buf + (uint32_t)15U;
Hacl_Bignum_Fmul_fmul(c, t0, b);
Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
Hacl_Bignum_Fmul_fmul(t0, t0, c);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
Hacl_Bignum_Fmul_fmul(t0, t0, b);
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
Hacl_Bignum_Fmul_fmul(out, t0, a);
}
inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = b[i];
a[i] = xi + yi;
}
}
inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
{
uint64_t tmp[5U] = { 0U };
uint64_t b0;
uint64_t b1;
uint64_t b2;
uint64_t b3;
uint64_t b4;
memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
b0 = tmp[0U];
b1 = tmp[1U];
b2 = tmp[2U];
b3 = tmp[3U];
b4 = tmp[4U];
tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = a[i];
uint64_t yi = tmp[i];
a[i] = yi - xi;
}
}
}
inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
{
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
{
uint128_t tmp[5U];
{
uint32_t _i;
for (_i = 0U; _i < (uint32_t)5U; ++_i)
tmp[_i] = (uint128_t)(uint64_t)0U;
}
{
uint128_t b4;
uint128_t b0;
uint128_t b4_;
uint128_t b0_;
{
uint32_t i;
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
{
uint64_t xi = b[i];
tmp[i] = (uint128_t)xi * s;
}
}
Hacl_Bignum_Fproduct_carry_wide_(tmp);
b4 = tmp[4U];
b0 = tmp[0U];
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
tmp[4U] = b4_;
tmp[0U] = b0_;
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
}
}
}
inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
{
Hacl_Bignum_Fmul_fmul(output, a, b);
}
inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
{
Hacl_Bignum_Crecip_crecip(output, input);
}
static void
Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
uint32_t i = ctr - (uint32_t)1U;
uint64_t ai = a[i];
uint64_t bi = b[i];
uint64_t x = swap1 & (ai ^ bi);
uint64_t ai1 = ai ^ x;
uint64_t bi1 = bi ^ x;
a[i] = ai1;
b[i] = bi1;
}
static void
Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
{
if (!(ctr == (uint32_t)0U))
{
uint32_t i;
Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
i = ctr - (uint32_t)1U;
Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
}
}
static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
{
uint64_t swap1 = (uint64_t)0U - iswap;
Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
}
static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
{
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
memcpy(output + (uint32_t)5U,
input + (uint32_t)5U,
(uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
}
static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
{
uint64_t i0 = load64_le(input);
uint8_t *x00 = input + (uint32_t)6U;
uint64_t i1 = load64_le(x00);
uint8_t *x01 = input + (uint32_t)12U;
uint64_t i2 = load64_le(x01);
uint8_t *x02 = input + (uint32_t)19U;
uint64_t i3 = load64_le(x02);
uint8_t *x0 = input + (uint32_t)24U;
uint64_t i4 = load64_le(x0);
uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
output[0U] = output0;
output[1U] = output1;
output[2U] = output2;
output[3U] = output3;
output[4U] = output4;
}
static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
}
static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
input[0U] = t0_;
input[1U] = t1__;
input[2U] = t2__;
input[3U] = t3__;
input[4U] = t4_;
}
static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
{
uint64_t i0;
uint64_t i1;
uint64_t i0_;
uint64_t i1_;
Hacl_EC_Format_fcontract_second_carry_pass(input);
Hacl_Bignum_Modulo_carry_top(input);
i0 = input[0U];
i1 = input[1U];
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
i1_ = i1 + (i0 >> (uint32_t)51U);
input[0U] = i0_;
input[1U] = i1_;
}
static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
{
uint64_t a0 = input[0U];
uint64_t a1 = input[1U];
uint64_t a2 = input[2U];
uint64_t a3 = input[3U];
uint64_t a4 = input[4U];
uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
input[0U] = a0_;
input[1U] = a1_;
input[2U] = a2_;
input[3U] = a3_;
input[4U] = a4_;
}
static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
{
uint64_t t0 = input[0U];
uint64_t t1 = input[1U];
uint64_t t2 = input[2U];
uint64_t t3 = input[3U];
uint64_t t4 = input[4U];
uint64_t o0 = t1 << (uint32_t)51U | t0;
uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
uint8_t *b0 = output;
uint8_t *b1 = output + (uint32_t)8U;
uint8_t *b2 = output + (uint32_t)16U;
uint8_t *b3 = output + (uint32_t)24U;
store64_le(b0, o0);
store64_le(b1, o1);
store64_le(b2, o2);
store64_le(b3, o3);
}
static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
{
Hacl_EC_Format_fcontract_first_carry_full(input);
Hacl_EC_Format_fcontract_second_carry_full(input);
Hacl_EC_Format_fcontract_trim(input);
Hacl_EC_Format_fcontract_store(output, input);
}
static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
{
uint64_t *x = point;
uint64_t *z = point + (uint32_t)5U;
uint64_t buf[10U] = { 0U };
uint64_t *zmone = buf;
uint64_t *sc = buf + (uint32_t)5U;
Hacl_Bignum_crecip(zmone, z);
Hacl_Bignum_fmul(sc, x, zmone);
Hacl_EC_Format_fcontract(scalar, sc);
}
static void
Hacl_EC_AddAndDouble_fmonty(
uint64_t *pp,
uint64_t *ppq,
uint64_t *p,
uint64_t *pq,
uint64_t *qmqp
)
{
uint64_t *qx = qmqp;
uint64_t *x2 = pp;
uint64_t *z2 = pp + (uint32_t)5U;
uint64_t *x3 = ppq;
uint64_t *z3 = ppq + (uint32_t)5U;
uint64_t *x = p;
uint64_t *z = p + (uint32_t)5U;
uint64_t *xprime = pq;
uint64_t *zprime = pq + (uint32_t)5U;
uint64_t buf[40U] = { 0U };
uint64_t *origx = buf;
uint64_t *origxprime0 = buf + (uint32_t)5U;
uint64_t *xxprime0 = buf + (uint32_t)25U;
uint64_t *zzprime0 = buf + (uint32_t)30U;
uint64_t *origxprime;
uint64_t *xx0;
uint64_t *zz0;
uint64_t *xxprime;
uint64_t *zzprime;
uint64_t *zzzprime;
uint64_t *zzz;
uint64_t *xx;
uint64_t *zz;
uint64_t scalar;
memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
Hacl_Bignum_fsum(x, z);
Hacl_Bignum_fdifference(z, origx);
memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
Hacl_Bignum_fsum(xprime, zprime);
Hacl_Bignum_fdifference(zprime, origxprime0);
Hacl_Bignum_fmul(xxprime0, xprime, z);
Hacl_Bignum_fmul(zzprime0, x, zprime);
origxprime = buf + (uint32_t)5U;
xx0 = buf + (uint32_t)15U;
zz0 = buf + (uint32_t)20U;
xxprime = buf + (uint32_t)25U;
zzprime = buf + (uint32_t)30U;
zzzprime = buf + (uint32_t)35U;
memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
Hacl_Bignum_fsum(xxprime, zzprime);
Hacl_Bignum_fdifference(zzprime, origxprime);
Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
Hacl_Bignum_fmul(z3, zzzprime, qx);
Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
zzz = buf + (uint32_t)10U;
xx = buf + (uint32_t)15U;
zz = buf + (uint32_t)20U;
Hacl_Bignum_fmul(x2, xx, zz);
Hacl_Bignum_fdifference(zz, xx);
scalar = (uint64_t)121665U;
Hacl_Bignum_fscalar(zzz, zz, scalar);
Hacl_Bignum_fsum(zzz, xx);
Hacl_Bignum_fmul(z2, zzz, zz);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
uint64_t bit;
Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
bit = (uint64_t)(byt >> (uint32_t)7U);
Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt
)
{
uint8_t byt1;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
byt1 = byt << (uint32_t)1U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
}
static void
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint8_t byt,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i_ = i - (uint32_t)1U;
uint8_t byt_;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
byt_ = byt << (uint32_t)2U;
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
}
}
static void
Hacl_EC_Ladder_BigLoop_cmult_big_loop(
uint8_t *n1,
uint64_t *nq,
uint64_t *nqpq,
uint64_t *nq2,
uint64_t *nqpq2,
uint64_t *q,
uint32_t i
)
{
if (!(i == (uint32_t)0U))
{
uint32_t i1 = i - (uint32_t)1U;
uint8_t byte = n1[i1];
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
}
}
static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
{
uint64_t point_buf[40U] = { 0U };
uint64_t *nq = point_buf;
uint64_t *nqpq = point_buf + (uint32_t)10U;
uint64_t *nq2 = point_buf + (uint32_t)20U;
uint64_t *nqpq2 = point_buf + (uint32_t)30U;
Hacl_EC_Point_copy(nqpq, q);
nq[0U] = (uint64_t)1U;
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
Hacl_EC_Point_copy(result, nq);
}
static void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
{
uint64_t buf0[10U] = { 0U };
uint64_t *x0 = buf0;
uint64_t *z = buf0 + (uint32_t)5U;
uint64_t *q;
Hacl_EC_Format_fexpand(x0, basepoint);
z[0U] = (uint64_t)1U;
q = buf0;
{
uint8_t e[32U] = { 0U };
uint8_t e0;
uint8_t e31;
uint8_t e01;
uint8_t e311;
uint8_t e312;
uint8_t *scalar;
memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
e0 = e[0U];
e31 = e[31U];
e01 = e0 & (uint8_t)248U;
e311 = e31 & (uint8_t)127U;
e312 = e311 | (uint8_t)64U;
e[0U] = e01;
e[31U] = e312;
scalar = e;
{
uint64_t buf[15U] = { 0U };
uint64_t *nq = buf;
uint64_t *x = nq;
x[0U] = (uint64_t)1U;
Hacl_EC_Ladder_cmult(nq, scalar, q);
Hacl_EC_Format_scalar_of_point(mypublic, nq);
}
}
}
static void mbedtls_x25519_init( mbedtls_x25519_context *ctx )
{
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_x25519_context ) );
}
static void mbedtls_x25519_free( mbedtls_x25519_context *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
mbedtls_platform_zeroize( ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
}
static int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = 0;
uint8_t base[MBEDTLS_X25519_KEY_SIZE_BYTES] = {0};
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
return ret;
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 4;
if( blen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
*buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 >> 8;
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 & 0xFF;
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
base[0] = 9;
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
base[0] = 0;
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( 0 );
}
static int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
const unsigned char **buf, const unsigned char *end )
{
if( end - *buf < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( ( *(*buf)++ != MBEDTLS_X25519_KEY_SIZE_BYTES ) )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
memcpy( ctx->peer_point, *buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
*buf += MBEDTLS_X25519_KEY_SIZE_BYTES;
return( 0 );
}
static int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
mbedtls_x25519_ecdh_side side )
{
size_t olen = 0;
switch( side ) {
case MBEDTLS_X25519_ECDH_THEIRS:
return mbedtls_ecp_point_write_binary( &key->grp, &key->Q, MBEDTLS_ECP_PF_COMPRESSED, &olen, ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
case MBEDTLS_X25519_ECDH_OURS:
return mbedtls_mpi_write_binary_le( &key->d, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
default:
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
}
static int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
/* f_rng and p_rng are not used here because this implementation does not
need blinding since it has constant trace. */
(( void )f_rng);
(( void )p_rng);
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES;
if( blen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, ctx->peer_point);
/* Wipe the DH secret and don't let the peer chose a small subgroup point */
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
if( memcmp( buf, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( 0 );
}
static int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = 0;
unsigned char base[MBEDTLS_X25519_KEY_SIZE_BYTES] = { 0 };
if( ctx == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
return ret;
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 1;
if( blen < *olen )
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
base[0] = 9;
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
base[0] = 0;
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES ) == 0 )
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
return( ret );
}
static int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
const unsigned char *buf, size_t blen )
{
if( blen < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
if( (*buf++ != MBEDTLS_X25519_KEY_SIZE_BYTES) )
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
memcpy( ctx->peer_point, buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
return( 0 );
}
/**
* \brief This function sets up the ECDH context with the information
* given.
*
* This function should be called after mbedtls_ecdh_init() but
* before mbedtls_ecdh_make_params(). There is no need to call
* this function before mbedtls_ecdh_read_params().
*
* This is the first function used by a TLS server for ECDHE
* ciphersuites.
*
* \param ctx The ECDH context to set up.
* \param grp_id The group id of the group to set up the context for.
*
* \return \c 0 on success.
*/
int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id )
{
if( grp_id != MBEDTLS_ECP_DP_CURVE25519 )
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
mbedtls_x25519_init( &ctx->ctx );
return 0;
}
/**
* \brief This function frees a context.
*
* \param ctx The context to free.
*/
void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx )
{
mbedtls_x25519_free( &ctx->ctx );
}
/**
* \brief This function generates a public key and a TLS
* ServerKeyExchange payload.
*
* This is the second function used by a TLS server for ECDHE
* ciphersuites. (It is called after mbedtls_ecdh_setup().)
*
* \note This function assumes that the ECP group (grp) of the
* \p ctx context has already been properly set,
* for example, using mbedtls_ecp_group_load().
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of characters written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_make_params( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
/**
* \brief This function parses and processes a TLS ServerKeyExhange
* payload.
*
* This is the first function used by a TLS client for ECDHE
* ciphersuites.
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param buf The pointer to the start of the input buffer.
* \param end The address for one Byte past the end of the buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
const unsigned char **buf,
const unsigned char *end )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_read_params( x25519_ctx, buf, end );
}
/**
* \brief This function sets up an ECDH context from an EC key.
*
* It is used by clients and servers in place of the
* ServerKeyEchange for static ECDH, and imports ECDH
* parameters from the EC key information of a certificate.
*
* \see ecp.h
*
* \param ctx The ECDH context to set up.
* \param key The EC key to use.
* \param side Defines the source of the key: 1: Our key, or
* 0: The key of the peer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*
*/
int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx,
const mbedtls_ecp_keypair *key,
mbedtls_everest_ecdh_side side )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
mbedtls_x25519_ecdh_side s = side == MBEDTLS_EVEREST_ECDH_OURS ?
MBEDTLS_X25519_ECDH_OURS :
MBEDTLS_X25519_ECDH_THEIRS;
return mbedtls_x25519_get_params( x25519_ctx, key, s );
}
/**
* \brief This function generates a public key and a TLS
* ClientKeyExchange payload.
*
* This is the second function used by a TLS client for ECDH(E)
* ciphersuites.
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The size of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_make_public( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
/**
* \brief This function parses and processes a TLS ClientKeyExchange
* payload.
*
* This is the third function used by a TLS server for ECDH(E)
* ciphersuites. (It is called after mbedtls_ecdh_setup() and
* mbedtls_ecdh_make_params().)
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param buf The start of the input buffer.
* \param blen The length of the input buffer.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
const unsigned char *buf, size_t blen )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_read_public ( x25519_ctx, buf, blen );
}
/**
* \brief This function derives and exports the shared secret.
*
* This is the last function used by both TLS client
* and servers.
*
* \note If \p f_rng is not NULL, it is used to implement
* countermeasures against side-channel attacks.
* For more information, see mbedtls_ecp_mul().
*
* \see ecp.h
*
* \param ctx The ECDH context.
* \param olen The number of Bytes written.
* \param buf The destination buffer.
* \param blen The length of the destination buffer.
* \param f_rng The RNG function.
* \param p_rng The RNG context.
*
* \return \c 0 on success.
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
*/
int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
unsigned char *buf, size_t blen,
int( *f_rng )( void *, unsigned char *, size_t ),
void *p_rng )
{
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
return mbedtls_x25519_calc_secret( x25519_ctx, olen, buf, blen, f_rng, p_rng );
}
#endif /* MBEDTLS_ECDH_C && MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */