cosmopolitan/libc/intrin/tree.c
Justine Tunney 8c645fa1ee
Make mmap() scalable
It's now possible to create thousands of thousands of sparse independent
memory mappings, without any slowdown. The memory manager is better with
tracking memory protection now, particularly on Windows in a precise way
that can be restored during fork(). You now have the highest quality mem
manager possible. It's even better than some OSes like XNU, where mmap()
is implemented as an O(n) operation which means sadly things aren't much
improved over there. With this change the llamafile HTTP server endpoint
at /tokenize with a prompt of 50 tokens is now able to handle 2.6m r/sec
2024-07-05 23:26:00 -07:00

271 lines
7.7 KiB
C

// Copyright 2024 Justine Alexandra Roberts Tunney
//
// Permission to use, copy, modify, and/or distribute this software for
// any purpose with or without fee is hereby granted, provided that the
// above copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
// PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include "tree.h"
struct Tree *tree_last(struct Tree *node) {
while (node && node->right)
node = node->right;
return node;
}
struct Tree *tree_first(struct Tree *node) {
while (node && tree_get_left(node))
node = tree_get_left(node);
return node;
}
struct Tree *tree_next(struct Tree *node) {
if (!node)
return 0;
if (node->right)
return tree_first(node->right);
struct Tree *parent = node->parent;
while (parent && node == parent->right) {
node = parent;
parent = parent->parent;
}
return parent;
}
struct Tree *tree_prev(struct Tree *node) {
struct Tree *parent;
if (!node)
return 0;
if (tree_get_left(node))
return tree_last(tree_get_left(node));
parent = node->parent;
while (parent && node == tree_get_left(parent)) {
node = parent;
parent = parent->parent;
}
return parent;
}
static void tree_rotate_left(struct Tree **root, struct Tree *x) {
struct Tree *y = x->right;
x->right = tree_get_left(y);
if (tree_get_left(y))
tree_get_left(y)->parent = x;
y->parent = x->parent;
if (!x->parent) {
*root = y;
} else if (x == tree_get_left(x->parent)) {
tree_set_left(x->parent, y);
} else {
x->parent->right = y;
}
tree_set_left(y, x);
x->parent = y;
}
static void tree_rotate_right(struct Tree **root, struct Tree *y) {
struct Tree *x = tree_get_left(y);
tree_set_left(y, x->right);
if (x->right)
x->right->parent = y;
x->parent = y->parent;
if (!y->parent) {
*root = x;
} else if (y == y->parent->right) {
y->parent->right = x;
} else {
tree_set_left(y->parent, x);
}
y->parent = x;
x->right = y;
}
static void tree_rebalance_insert(struct Tree **root, struct Tree *node) {
struct Tree *uncle;
tree_set_red(node, 1);
while (node != *root && tree_get_red(node->parent)) {
if (node->parent == tree_get_left(node->parent->parent)) {
uncle = node->parent->parent->right;
if (uncle && tree_get_red(uncle)) {
tree_set_red(node->parent, 0);
tree_set_red(uncle, 0);
tree_set_red(node->parent->parent, 1);
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
tree_rotate_left(root, node);
}
tree_set_red(node->parent, 0);
tree_set_red(node->parent->parent, 1);
tree_rotate_right(root, node->parent->parent);
}
} else {
uncle = tree_get_left(node->parent->parent);
if (uncle && tree_get_red(uncle)) {
tree_set_red(node->parent, 0);
tree_set_red(uncle, 0);
tree_set_red(node->parent->parent, 1);
node = node->parent->parent;
} else {
if (node == tree_get_left(node->parent)) {
node = node->parent;
tree_rotate_right(root, node);
}
tree_set_red(node->parent, 0);
tree_set_red(node->parent->parent, 1);
tree_rotate_left(root, node->parent->parent);
}
}
}
tree_set_red(*root, 0);
}
void tree_insert(struct Tree **root, struct Tree *node, tree_cmp_f *cmp) {
struct Tree *search, *parent;
node->word = 0;
node->right = 0;
node->parent = 0;
if (!*root) {
*root = node;
} else {
search = *root;
parent = 0;
do {
parent = search;
if (cmp(node, search) < 0) {
search = tree_get_left(search);
} else {
search = search->right;
}
} while (search);
if (cmp(node, parent) < 0) {
tree_set_left(parent, node);
} else {
parent->right = node;
}
node->parent = parent;
tree_rebalance_insert(root, node);
}
}
static void tree_transplant(struct Tree **root, struct Tree *u,
struct Tree *v) {
if (!u->parent) {
*root = v;
} else if (u == tree_get_left(u->parent)) {
tree_set_left(u->parent, v);
} else {
u->parent->right = v;
}
if (v)
v->parent = u->parent;
}
static void tree_rebalance_remove(struct Tree **root, struct Tree *node,
struct Tree *parent) {
struct Tree *sibling;
while (node != *root && (!node || !tree_get_red(node))) {
if (node == tree_get_left(parent)) {
sibling = parent->right;
if (tree_get_red(sibling)) {
tree_set_red(sibling, 0);
tree_set_red(parent, 1);
tree_rotate_left(root, parent);
sibling = parent->right;
}
if ((!tree_get_left(sibling) || !tree_get_red(tree_get_left(sibling))) &&
(!sibling->right || !tree_get_red(sibling->right))) {
tree_set_red(sibling, 1);
node = parent;
parent = node->parent;
} else {
if (!sibling->right || !tree_get_red(sibling->right)) {
tree_set_red(tree_get_left(sibling), 0);
tree_set_red(sibling, 1);
tree_rotate_right(root, sibling);
sibling = parent->right;
}
tree_set_red(sibling, tree_get_red(parent));
tree_set_red(parent, 0);
tree_set_red(sibling->right, 0);
tree_rotate_left(root, parent);
node = *root;
break;
}
} else {
sibling = tree_get_left(parent);
if (tree_get_red(sibling)) {
tree_set_red(sibling, 0);
tree_set_red(parent, 1);
tree_rotate_right(root, parent);
sibling = tree_get_left(parent);
}
if ((!sibling->right || !tree_get_red(sibling->right)) &&
(!tree_get_left(sibling) || !tree_get_red(tree_get_left(sibling)))) {
tree_set_red(sibling, 1);
node = parent;
parent = node->parent;
} else {
if (!tree_get_left(sibling) || !tree_get_red(tree_get_left(sibling))) {
tree_set_red(sibling->right, 0);
tree_set_red(sibling, 1);
tree_rotate_left(root, sibling);
sibling = tree_get_left(parent);
}
tree_set_red(sibling, tree_get_red(parent));
tree_set_red(parent, 0);
tree_set_red(tree_get_left(sibling), 0);
tree_rotate_right(root, parent);
node = *root;
break;
}
}
}
if (node)
tree_set_red(node, 0);
}
void tree_remove(struct Tree **root, struct Tree *node) {
struct Tree *x = 0;
struct Tree *y = node;
struct Tree *x_parent = 0;
int y_original_color = tree_get_red(y);
if (!tree_get_left(node)) {
x = node->right;
tree_transplant(root, node, node->right);
x_parent = node->parent;
} else if (!node->right) {
x = tree_get_left(node);
tree_transplant(root, node, tree_get_left(node));
x_parent = node->parent;
} else {
y = tree_first(node->right);
y_original_color = tree_get_red(y);
x = y->right;
if (y->parent == node) {
if (x)
x->parent = y;
x_parent = y;
} else {
tree_transplant(root, y, y->right);
y->right = node->right;
y->right->parent = y;
x_parent = y->parent;
}
tree_transplant(root, node, y);
tree_set_left(y, tree_get_left(node));
tree_get_left(y)->parent = y;
tree_set_red(y, tree_get_red(node));
}
if (!y_original_color)
tree_rebalance_remove(root, x, x_parent);
}