mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
592f6ebc20
- Write some more unit tests - memcpy() on ARM is now faster - Address the Musl complex math FIXME comments - Some libm funcs like pow() now support setting errno - Import the latest and greatest math functions from ARM - Use more accurate atan2f() and log1pf() implementations - atoi() and atol() will no longer saturate or clobber errno
165 lines
7.2 KiB
C
165 lines
7.2 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||
│ │
|
||
│ Optimized Routines │
|
||
│ Copyright (c) 2018-2024, Arm Limited. │
|
||
│ │
|
||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||
│ a copy of this software and associated documentation files (the │
|
||
│ "Software"), to deal in the Software without restriction, including │
|
||
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||
│ permit persons to whom the Software is furnished to do so, subject to │
|
||
│ the following conditions: │
|
||
│ │
|
||
│ The above copyright notice and this permission notice shall be │
|
||
│ included in all copies or substantial portions of the Software. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||
│ │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/tinymath/arm.internal.h"
|
||
__static_yoink("arm_optimized_routines_notice");
|
||
|
||
#define N (1 << EXP_TABLE_BITS)
|
||
#define Shift __exp_data.exp2_shift
|
||
#define T __exp_data.tab
|
||
#define C1 __exp_data.exp2_poly[0]
|
||
#define C2 __exp_data.exp2_poly[1]
|
||
#define C3 __exp_data.exp2_poly[2]
|
||
#define C4 __exp_data.exp2_poly[3]
|
||
#define C5 __exp_data.exp2_poly[4]
|
||
#define C6 __exp_data.exp2_poly[5]
|
||
|
||
/* Handle cases that may overflow or underflow when computing the result that
|
||
is scale*(1+TMP) without intermediate rounding. The bit representation of
|
||
scale is in SBITS, however it has a computed exponent that may have
|
||
overflown into the sign bit so that needs to be adjusted before using it as
|
||
a double. (int32_t)KI is the k used in the argument reduction and exponent
|
||
adjustment of scale, positive k here means the result may overflow and
|
||
negative k means the result may underflow. */
|
||
static inline double
|
||
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
|
||
{
|
||
double_t scale, y;
|
||
|
||
if ((ki & 0x80000000) == 0)
|
||
{
|
||
/* k > 0, the exponent of scale might have overflowed by 1. */
|
||
sbits -= 1ull << 52;
|
||
scale = asdouble (sbits);
|
||
y = 2 * (scale + scale * tmp);
|
||
return check_oflow (eval_as_double (y));
|
||
}
|
||
/* k < 0, need special care in the subnormal range. */
|
||
sbits += 1022ull << 52;
|
||
scale = asdouble (sbits);
|
||
y = scale + scale * tmp;
|
||
if (y < 1.0)
|
||
{
|
||
/* Round y to the right precision before scaling it into the subnormal
|
||
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
||
E is the worst-case ulp error outside the subnormal range. So this
|
||
is only useful if the goal is better than 1 ulp worst-case error. */
|
||
double_t hi, lo;
|
||
lo = scale - y + scale * tmp;
|
||
hi = 1.0 + y;
|
||
lo = 1.0 - hi + y + lo;
|
||
y = eval_as_double (hi + lo) - 1.0;
|
||
/* Avoid -0.0 with downward rounding. */
|
||
if (WANT_ROUNDING && y == 0.0)
|
||
y = 0.0;
|
||
/* The underflow exception needs to be signaled explicitly. */
|
||
force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
|
||
}
|
||
y = 0x1p-1022 * y;
|
||
return check_uflow (eval_as_double (y));
|
||
}
|
||
|
||
/* Top 12 bits of a double (sign and exponent bits). */
|
||
static inline uint32_t
|
||
top12 (double x)
|
||
{
|
||
return asuint64 (x) >> 52;
|
||
}
|
||
|
||
/**
|
||
* Returns 2^𝑥.
|
||
*/
|
||
double
|
||
exp2 (double x)
|
||
{
|
||
uint32_t abstop;
|
||
uint64_t ki, idx, top, sbits;
|
||
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
||
double_t kd, r, r2, scale, tail, tmp;
|
||
|
||
abstop = top12 (x) & 0x7ff;
|
||
if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
|
||
{
|
||
if (abstop - top12 (0x1p-54) >= 0x80000000)
|
||
/* Avoid spurious underflow for tiny x. */
|
||
/* Note: 0 is common input. */
|
||
return WANT_ROUNDING ? 1.0 + x : 1.0;
|
||
if (abstop >= top12 (1024.0))
|
||
{
|
||
if (asuint64 (x) == asuint64 (-INFINITY))
|
||
return 0.0;
|
||
if (abstop >= top12 (INFINITY))
|
||
return 1.0 + x;
|
||
if (!(asuint64 (x) >> 63))
|
||
return __math_oflow (0);
|
||
else if (asuint64 (x) >= asuint64 (-1075.0))
|
||
return __math_uflow (0);
|
||
}
|
||
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
|
||
/* Large x is special cased below. */
|
||
abstop = 0;
|
||
}
|
||
|
||
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
|
||
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
|
||
kd = eval_as_double (x + Shift);
|
||
ki = asuint64 (kd); /* k. */
|
||
kd -= Shift; /* k/N for int k. */
|
||
r = x - kd;
|
||
/* 2^(k/N) ~= scale * (1 + tail). */
|
||
idx = 2 * (ki % N);
|
||
top = ki << (52 - EXP_TABLE_BITS);
|
||
tail = asdouble (T[idx]);
|
||
/* This is only a valid scale when -1023*N < k < 1024*N. */
|
||
sbits = T[idx + 1] + top;
|
||
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
|
||
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
||
r2 = r * r;
|
||
/* Without fma the worst case error is 0.5/N ulp larger. */
|
||
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
|
||
#if EXP2_POLY_ORDER == 4
|
||
tmp = tail + r * C1 + r2 * C2 + r * r2 * (C3 + r * C4);
|
||
#elif EXP2_POLY_ORDER == 5
|
||
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
||
#elif EXP2_POLY_ORDER == 6
|
||
tmp = tail + r * C1 + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
|
||
#endif
|
||
if (unlikely (abstop == 0))
|
||
return specialcase (tmp, sbits, ki);
|
||
scale = asdouble (sbits);
|
||
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
|
||
is no spurious underflow here even without fma. */
|
||
return eval_as_double (scale + scale * tmp);
|
||
}
|
||
|
||
#if USE_GLIBC_ABI
|
||
strong_alias (exp2, __exp2_finite)
|
||
hidden_alias (exp2, __ieee754_exp2)
|
||
# if LDBL_MANT_DIG == 53
|
||
long double exp2l (long double x) { return exp2 (x); }
|
||
# endif
|
||
#endif
|