mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
592f6ebc20
- Write some more unit tests - memcpy() on ARM is now faster - Address the Musl complex math FIXME comments - Some libm funcs like pow() now support setting errno - Import the latest and greatest math functions from ARM - Use more accurate atan2f() and log1pf() implementations - atoi() and atol() will no longer saturate or clobber errno
187 lines
7 KiB
C
187 lines
7 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||
│ │
|
||
│ Optimized Routines │
|
||
│ Copyright (c) 2018-2024, Arm Limited. │
|
||
│ │
|
||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||
│ a copy of this software and associated documentation files (the │
|
||
│ "Software"), to deal in the Software without restriction, including │
|
||
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||
│ permit persons to whom the Software is furnished to do so, subject to │
|
||
│ the following conditions: │
|
||
│ │
|
||
│ The above copyright notice and this permission notice shall be │
|
||
│ included in all copies or substantial portions of the Software. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||
│ │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/tinymath/arm.internal.h"
|
||
__static_yoink("arm_optimized_routines_notice");
|
||
|
||
#define T __log_data.tab
|
||
#define T2 __log_data.tab2
|
||
#define B __log_data.poly1
|
||
#define A __log_data.poly
|
||
#define Ln2hi __log_data.ln2hi
|
||
#define Ln2lo __log_data.ln2lo
|
||
#define N (1 << LOG_TABLE_BITS)
|
||
#define OFF 0x3fe6000000000000
|
||
|
||
/* Top 16 bits of a double. */
|
||
static inline uint32_t
|
||
top16 (double x)
|
||
{
|
||
return asuint64 (x) >> 48;
|
||
}
|
||
|
||
/**
|
||
* Returns natural logarithm of 𝑥.
|
||
*
|
||
* @raise EDOM and FE_INVALID if x is negative
|
||
* @raise ERANGE and FE_DIVBYZERO if x is zero
|
||
*/
|
||
double
|
||
log (double x)
|
||
{
|
||
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
||
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
|
||
uint64_t ix, iz, tmp;
|
||
uint32_t top;
|
||
int k, i;
|
||
|
||
ix = asuint64 (x);
|
||
top = top16 (x);
|
||
|
||
#if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11
|
||
# define LO asuint64 (1.0 - 0x1p-5)
|
||
# define HI asuint64 (1.0 + 0x1.1p-5)
|
||
#elif LOG_POLY1_ORDER == 12
|
||
# define LO asuint64 (1.0 - 0x1p-4)
|
||
# define HI asuint64 (1.0 + 0x1.09p-4)
|
||
#endif
|
||
if (unlikely (ix - LO < HI - LO))
|
||
{
|
||
/* Handle close to 1.0 inputs separately. */
|
||
/* Fix sign of zero with downward rounding when x==1. */
|
||
if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
|
||
return 0;
|
||
r = x - 1.0;
|
||
r2 = r * r;
|
||
r3 = r * r2;
|
||
#if LOG_POLY1_ORDER == 10
|
||
/* Worst-case error is around 0.516 ULP. */
|
||
y = r3 * (B[1] + r * B[2] + r2 * B[3]
|
||
+ r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8])));
|
||
w = B[0] * r2; /* B[0] == -0.5. */
|
||
hi = r + w;
|
||
y += r - hi + w;
|
||
y += hi;
|
||
#elif LOG_POLY1_ORDER == 11
|
||
/* Worst-case error is around 0.516 ULP. */
|
||
y = r3 * (B[1] + r * B[2]
|
||
+ r2 * (B[3] + r * B[4] + r2 * B[5]
|
||
+ r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9])));
|
||
w = B[0] * r2; /* B[0] == -0.5. */
|
||
hi = r + w;
|
||
y += r - hi + w;
|
||
y += hi;
|
||
#elif LOG_POLY1_ORDER == 12
|
||
y = r3 * (B[1] + r * B[2] + r2 * B[3]
|
||
+ r3 * (B[4] + r * B[5] + r2 * B[6]
|
||
+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
|
||
# if N <= 64
|
||
/* Worst-case error is around 0.532 ULP. */
|
||
w = B[0] * r2; /* B[0] == -0.5. */
|
||
hi = r + w;
|
||
y += r - hi + w;
|
||
y += hi;
|
||
# else
|
||
/* Worst-case error is around 0.507 ULP. */
|
||
w = r * 0x1p27;
|
||
double_t rhi = r + w - w;
|
||
double_t rlo = r - rhi;
|
||
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
|
||
hi = r + w;
|
||
lo = r - hi + w;
|
||
lo += B[0] * rlo * (rhi + r);
|
||
y += lo;
|
||
y += hi;
|
||
# endif
|
||
#endif
|
||
return eval_as_double (y);
|
||
}
|
||
if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
|
||
{
|
||
/* x < 0x1p-1022 or inf or nan. */
|
||
if (ix * 2 == 0)
|
||
return __math_divzero (1);
|
||
if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */
|
||
return x;
|
||
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
|
||
return __math_invalid (x);
|
||
/* x is subnormal, normalize it. */
|
||
ix = asuint64 (x * 0x1p52);
|
||
ix -= 52ULL << 52;
|
||
}
|
||
|
||
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
||
The range is split into N subintervals.
|
||
The ith subinterval contains z and c is near its center. */
|
||
tmp = ix - OFF;
|
||
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
|
||
k = (int64_t) tmp >> 52; /* arithmetic shift */
|
||
iz = ix - (tmp & 0xfffULL << 52);
|
||
invc = T[i].invc;
|
||
logc = T[i].logc;
|
||
z = asdouble (iz);
|
||
|
||
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
|
||
/* r ~= z/c - 1, |r| < 1/(2*N). */
|
||
#if HAVE_FAST_FMA
|
||
/* rounding error: 0x1p-55/N. */
|
||
r = fma (z, invc, -1.0);
|
||
#else
|
||
/* rounding error: 0x1p-55/N + 0x1p-66. */
|
||
r = (z - T2[i].chi - T2[i].clo) * invc;
|
||
#endif
|
||
kd = (double_t) k;
|
||
|
||
/* hi + lo = r + log(c) + k*Ln2. */
|
||
w = kd * Ln2hi + logc;
|
||
hi = w + r;
|
||
lo = w - hi + r + kd * Ln2lo;
|
||
|
||
/* log(x) = lo + (log1p(r) - r) + hi. */
|
||
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
|
||
/* Worst case error if |y| > 0x1p-5:
|
||
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
|
||
Worst case error if |y| > 0x1p-4:
|
||
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
|
||
#if LOG_POLY_ORDER == 6
|
||
y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
|
||
#elif LOG_POLY_ORDER == 7
|
||
y = lo
|
||
+ r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3])
|
||
+ r2 * r2 * (A[4] + r * A[5]))
|
||
+ hi;
|
||
#endif
|
||
return eval_as_double (y);
|
||
}
|
||
|
||
#if USE_GLIBC_ABI
|
||
strong_alias (log, __log_finite)
|
||
hidden_alias (log, __ieee754_log)
|
||
# if LDBL_MANT_DIG == 53
|
||
long double logl (long double x) { return log (x); }
|
||
# endif
|
||
#endif
|