mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
5660ec4741
This release is an atomic upgrade to GCC 14.1.0 with C23 and C++23
260 lines
10 KiB
C
260 lines
10 KiB
C
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Copyright (c) Microsoft Corporation.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Copyright 2018 Ulf Adams
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
|
|
// Boost Software License - Version 1.0 - August 17th, 2003
|
|
|
|
// Permission is hereby granted, free of charge, to any person or organization
|
|
// obtaining a copy of the software and accompanying documentation covered by
|
|
// this license (the "Software") to use, reproduce, display, distribute,
|
|
// execute, and transmit the Software, and to prepare derivative works of the
|
|
// Software, and to permit third-parties to whom the Software is furnished to
|
|
// do so, all subject to the following:
|
|
|
|
// The copyright notices in the Software and this entire statement, including
|
|
// the above license grant, this restriction and the following disclaimer,
|
|
// must be included in all copies of the Software, in whole or in part, and
|
|
// all derivative works of the Software, unless such copies or derivative
|
|
// works are solely in the form of machine-executable object code generated by
|
|
// a source language processor.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
#ifndef _LIBCPP_SRC_INCLUDE_RYU_DS2_INTRINSICS_H
|
|
#define _LIBCPP_SRC_INCLUDE_RYU_DS2_INTRINSICS_H
|
|
|
|
// Avoid formatting to keep the changes with the original code minimal.
|
|
// clang-format off
|
|
|
|
#include <__assert>
|
|
#include <__config>
|
|
|
|
#include "third_party/libcxx/ryu/ryu.h"
|
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
|
|
|
#if defined(_M_X64) && defined(_MSC_VER)
|
|
#define _LIBCPP_INTRINSIC128 1
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __ryu_umul128(const uint64_t __a, const uint64_t __b, uint64_t* const __productHi) {
|
|
return _umul128(__a, __b, __productHi);
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __ryu_shiftright128(const uint64_t __lo, const uint64_t __hi, const uint32_t __dist) {
|
|
// For the __shiftright128 intrinsic, the shift value is always
|
|
// modulo 64.
|
|
// In the current implementation of the double-precision version
|
|
// of Ryu, the shift value is always < 64.
|
|
// (The shift value is in the range [49, 58].)
|
|
// Check this here in case a future change requires larger shift
|
|
// values. In this case this function needs to be adjusted.
|
|
_LIBCPP_ASSERT_INTERNAL(__dist < 64, "");
|
|
return __shiftright128(__lo, __hi, static_cast<unsigned char>(__dist));
|
|
}
|
|
|
|
// ^^^ intrinsics available ^^^ / vvv __int128 available vvv
|
|
#elif defined(__SIZEOF_INT128__) && ( \
|
|
(defined(__clang__) && !defined(_MSC_VER)) || \
|
|
(defined(__GNUC__) && !defined(__clang__) && !defined(__CUDACC__)))
|
|
#define _LIBCPP_INTRINSIC128 1
|
|
// We have __uint128 support in clang or gcc
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __ryu_umul128(const uint64_t __a, const uint64_t __b, uint64_t* const __productHi) {
|
|
auto __temp = __a * (unsigned __int128)__b;
|
|
*__productHi = __temp >> 64;
|
|
return static_cast<uint64_t>(__temp);
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __ryu_shiftright128(const uint64_t __lo, const uint64_t __hi, const uint32_t __dist) {
|
|
// In the current implementation of the double-precision version
|
|
// of Ryu, the shift value is always < 64.
|
|
// (The shift value is in the range [49, 58].)
|
|
// Check this here in case a future change requires larger shift
|
|
// values. In this case this function needs to be adjusted.
|
|
_LIBCPP_ASSERT_INTERNAL(__dist < 64, "");
|
|
auto __temp = __lo | ((unsigned __int128)__hi << 64);
|
|
// For x64 128-bit shfits using the `shrd` instruction and two 64-bit
|
|
// registers, the shift value is modulo 64. Thus the `& 63` is free.
|
|
return static_cast<uint64_t>(__temp >> (__dist & 63));
|
|
}
|
|
#else // ^^^ __int128 available ^^^ / vvv intrinsics unavailable vvv
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __ryu_umul128(const uint64_t __a, const uint64_t __b, uint64_t* const __productHi) {
|
|
// TRANSITION, VSO-634761
|
|
// The casts here help MSVC to avoid calls to the __allmul library function.
|
|
const uint32_t __aLo = static_cast<uint32_t>(__a);
|
|
const uint32_t __aHi = static_cast<uint32_t>(__a >> 32);
|
|
const uint32_t __bLo = static_cast<uint32_t>(__b);
|
|
const uint32_t __bHi = static_cast<uint32_t>(__b >> 32);
|
|
|
|
const uint64_t __b00 = static_cast<uint64_t>(__aLo) * __bLo;
|
|
const uint64_t __b01 = static_cast<uint64_t>(__aLo) * __bHi;
|
|
const uint64_t __b10 = static_cast<uint64_t>(__aHi) * __bLo;
|
|
const uint64_t __b11 = static_cast<uint64_t>(__aHi) * __bHi;
|
|
|
|
const uint32_t __b00Lo = static_cast<uint32_t>(__b00);
|
|
const uint32_t __b00Hi = static_cast<uint32_t>(__b00 >> 32);
|
|
|
|
const uint64_t __mid1 = __b10 + __b00Hi;
|
|
const uint32_t __mid1Lo = static_cast<uint32_t>(__mid1);
|
|
const uint32_t __mid1Hi = static_cast<uint32_t>(__mid1 >> 32);
|
|
|
|
const uint64_t __mid2 = __b01 + __mid1Lo;
|
|
const uint32_t __mid2Lo = static_cast<uint32_t>(__mid2);
|
|
const uint32_t __mid2Hi = static_cast<uint32_t>(__mid2 >> 32);
|
|
|
|
const uint64_t __pHi = __b11 + __mid1Hi + __mid2Hi;
|
|
const uint64_t __pLo = (static_cast<uint64_t>(__mid2Lo) << 32) | __b00Lo;
|
|
|
|
*__productHi = __pHi;
|
|
return __pLo;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __ryu_shiftright128(const uint64_t __lo, const uint64_t __hi, const uint32_t __dist) {
|
|
// We don't need to handle the case __dist >= 64 here (see above).
|
|
_LIBCPP_ASSERT_INTERNAL(__dist < 64, "");
|
|
#ifdef _LIBCPP_64_BIT
|
|
_LIBCPP_ASSERT_INTERNAL(__dist > 0, "");
|
|
return (__hi << (64 - __dist)) | (__lo >> __dist);
|
|
#else // ^^^ 64-bit ^^^ / vvv 32-bit vvv
|
|
// Avoid a 64-bit shift by taking advantage of the range of shift values.
|
|
_LIBCPP_ASSERT_INTERNAL(__dist >= 32, "");
|
|
return (__hi << (64 - __dist)) | (static_cast<uint32_t>(__lo >> 32) >> (__dist - 32));
|
|
#endif // ^^^ 32-bit ^^^
|
|
}
|
|
|
|
#endif // ^^^ intrinsics unavailable ^^^
|
|
|
|
#ifndef _LIBCPP_64_BIT
|
|
|
|
// Returns the high 64 bits of the 128-bit product of __a and __b.
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __umulh(const uint64_t __a, const uint64_t __b) {
|
|
// Reuse the __ryu_umul128 implementation.
|
|
// Optimizers will likely eliminate the instructions used to compute the
|
|
// low part of the product.
|
|
uint64_t __hi;
|
|
(void) __ryu_umul128(__a, __b, &__hi);
|
|
return __hi;
|
|
}
|
|
|
|
// On 32-bit platforms, compilers typically generate calls to library
|
|
// functions for 64-bit divisions, even if the divisor is a constant.
|
|
//
|
|
// TRANSITION, LLVM-37932
|
|
//
|
|
// The functions here perform division-by-constant using multiplications
|
|
// in the same way as 64-bit compilers would do.
|
|
//
|
|
// NB:
|
|
// The multipliers and shift values are the ones generated by clang x64
|
|
// for expressions like x/5, x/10, etc.
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div5(const uint64_t __x) {
|
|
return __umulh(__x, 0xCCCCCCCCCCCCCCCDu) >> 2;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div10(const uint64_t __x) {
|
|
return __umulh(__x, 0xCCCCCCCCCCCCCCCDu) >> 3;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div100(const uint64_t __x) {
|
|
return __umulh(__x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div1e8(const uint64_t __x) {
|
|
return __umulh(__x, 0xABCC77118461CEFDu) >> 26;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div1e9(const uint64_t __x) {
|
|
return __umulh(__x >> 9, 0x44B82FA09B5A53u) >> 11;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mod1e9(const uint64_t __x) {
|
|
// Avoid 64-bit math as much as possible.
|
|
// Returning static_cast<uint32_t>(__x - 1000000000 * __div1e9(__x)) would
|
|
// perform 32x64-bit multiplication and 64-bit subtraction.
|
|
// __x and 1000000000 * __div1e9(__x) are guaranteed to differ by
|
|
// less than 10^9, so their highest 32 bits must be identical,
|
|
// so we can truncate both sides to uint32_t before subtracting.
|
|
// We can also simplify static_cast<uint32_t>(1000000000 * __div1e9(__x)).
|
|
// We can truncate before multiplying instead of after, as multiplying
|
|
// the highest 32 bits of __div1e9(__x) can't affect the lowest 32 bits.
|
|
return static_cast<uint32_t>(__x) - 1000000000 * static_cast<uint32_t>(__div1e9(__x));
|
|
}
|
|
|
|
#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div5(const uint64_t __x) {
|
|
return __x / 5;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div10(const uint64_t __x) {
|
|
return __x / 10;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div100(const uint64_t __x) {
|
|
return __x / 100;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div1e8(const uint64_t __x) {
|
|
return __x / 100000000;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __div1e9(const uint64_t __x) {
|
|
return __x / 1000000000;
|
|
}
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mod1e9(const uint64_t __x) {
|
|
return static_cast<uint32_t>(__x - 1000000000 * __div1e9(__x));
|
|
}
|
|
|
|
#endif // ^^^ 64-bit ^^^
|
|
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint64_t __value) {
|
|
uint32_t __count = 0;
|
|
for (;;) {
|
|
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
|
|
const uint64_t __q = __div5(__value);
|
|
const uint32_t __r = static_cast<uint32_t>(__value) - 5 * static_cast<uint32_t>(__q);
|
|
if (__r != 0) {
|
|
break;
|
|
}
|
|
__value = __q;
|
|
++__count;
|
|
}
|
|
return __count;
|
|
}
|
|
|
|
// Returns true if __value is divisible by 5^__p.
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint64_t __value, const uint32_t __p) {
|
|
// I tried a case distinction on __p, but there was no performance difference.
|
|
return __pow5Factor(__value) >= __p;
|
|
}
|
|
|
|
// Returns true if __value is divisible by 2^__p.
|
|
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint64_t __value, const uint32_t __p) {
|
|
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
|
|
_LIBCPP_ASSERT_INTERNAL(__p < 64, "");
|
|
// __builtin_ctzll doesn't appear to be faster here.
|
|
return (__value & ((1ull << __p) - 1)) == 0;
|
|
}
|
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
// clang-format on
|
|
|
|
#endif // _LIBCPP_SRC_INCLUDE_RYU_DS2_INTRINSICS_H
|