mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
b0df6c1fce
Cosmopolitan now supports 104 time zones. They're embedded inside any binary that links the localtime() function. Doing so adds about 100kb to the binary size. This change also gets time zones working properly on Windows for the first time. It's not needed to have /etc/localtime exist on Windows, since we can get this information from WIN32. We're also now updated to the latest version of Paul Eggert's TZ library.
689 lines
26 KiB
C
689 lines
26 KiB
C
/*
|
|
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under both the BSD-style license (found in the
|
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
|
* in the COPYING file in the root directory of this source tree).
|
|
* You may select, at your option, one of the above-listed licenses.
|
|
*/
|
|
|
|
#include "third_party/zstd/programs/platform.h"
|
|
#include "libc/calls/calls.h"
|
|
#include "libc/calls/weirdtypes.h"
|
|
#include "libc/stdio/dprintf.h"
|
|
#include "libc/stdio/stdio.h"
|
|
#include "libc/temp.h"
|
|
#include "third_party/musl/tempnam.h" /* fprintf, open, fdopen, fread, _fileno, stdin, stdout */
|
|
#include "libc/calls/calls.h"
|
|
#include "libc/calls/termios.h"
|
|
#include "libc/fmt/conv.h"
|
|
#include "libc/limits.h"
|
|
#include "libc/mem/alg.h"
|
|
#include "libc/mem/alloca.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "libc/runtime/runtime.h"
|
|
#include "libc/stdio/dprintf.h"
|
|
#include "libc/stdio/rand.h"
|
|
#include "libc/temp.h"
|
|
#include "libc/str/str.h"
|
|
#include "libc/sysv/consts/exit.h"
|
|
#include "third_party/musl/crypt.h"
|
|
#include "third_party/musl/rand48.h" /* malloc, free */
|
|
#include "libc/assert.h"
|
|
#include "libc/errno.h" /* errno */
|
|
|
|
#if defined (_MSC_VER)
|
|
#include "libc/calls/calls.h"
|
|
#include "libc/calls/struct/stat.h"
|
|
#include "libc/calls/struct/stat.macros.h"
|
|
#include "libc/calls/struct/timespec.h"
|
|
#include "libc/calls/weirdtypes.h"
|
|
#include "libc/sysv/consts/s.h"
|
|
#include "libc/sysv/consts/utime.h"
|
|
#include "libc/time.h"
|
|
// MISSING #include <io.h>
|
|
#endif
|
|
|
|
#include "third_party/zstd/programs/fileio_asyncio.h"
|
|
#include "third_party/zstd/programs/fileio_common.h"
|
|
|
|
/* **********************************************************************
|
|
* Sparse write
|
|
************************************************************************/
|
|
|
|
/** AIO_fwriteSparse() :
|
|
* @return : storedSkips,
|
|
* argument for next call to AIO_fwriteSparse() or AIO_fwriteSparseEnd() */
|
|
static unsigned
|
|
AIO_fwriteSparse(FILE* file,
|
|
const void* buffer, size_t bufferSize,
|
|
const FIO_prefs_t* const prefs,
|
|
unsigned storedSkips)
|
|
{
|
|
const size_t* const bufferT = (const size_t*)buffer; /* Buffer is supposed malloc'ed, hence aligned on size_t */
|
|
size_t bufferSizeT = bufferSize / sizeof(size_t);
|
|
const size_t* const bufferTEnd = bufferT + bufferSizeT;
|
|
const size_t* ptrT = bufferT;
|
|
static const size_t segmentSizeT = (32 KB) / sizeof(size_t); /* check every 32 KB */
|
|
|
|
if (prefs->testMode) return 0; /* do not output anything in test mode */
|
|
|
|
if (!prefs->sparseFileSupport) { /* normal write */
|
|
size_t const sizeCheck = fwrite(buffer, 1, bufferSize, file);
|
|
if (sizeCheck != bufferSize)
|
|
EXM_THROW(70, "Write error : cannot write block : %s",
|
|
strerror(errno));
|
|
return 0;
|
|
}
|
|
|
|
/* avoid int overflow */
|
|
if (storedSkips > 1 GB) {
|
|
if (LONG_SEEK(file, 1 GB, SEEK_CUR) != 0)
|
|
EXM_THROW(91, "1 GB skip error (sparse file support)");
|
|
storedSkips -= 1 GB;
|
|
}
|
|
|
|
while (ptrT < bufferTEnd) {
|
|
size_t nb0T;
|
|
|
|
/* adjust last segment if < 32 KB */
|
|
size_t seg0SizeT = segmentSizeT;
|
|
if (seg0SizeT > bufferSizeT) seg0SizeT = bufferSizeT;
|
|
bufferSizeT -= seg0SizeT;
|
|
|
|
/* count leading zeroes */
|
|
for (nb0T=0; (nb0T < seg0SizeT) && (ptrT[nb0T] == 0); nb0T++) ;
|
|
storedSkips += (unsigned)(nb0T * sizeof(size_t));
|
|
|
|
if (nb0T != seg0SizeT) { /* not all 0s */
|
|
size_t const nbNon0ST = seg0SizeT - nb0T;
|
|
/* skip leading zeros */
|
|
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
|
|
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
|
|
storedSkips = 0;
|
|
/* write the rest */
|
|
if (fwrite(ptrT + nb0T, sizeof(size_t), nbNon0ST, file) != nbNon0ST)
|
|
EXM_THROW(93, "Write error : cannot write block : %s",
|
|
strerror(errno));
|
|
}
|
|
ptrT += seg0SizeT;
|
|
}
|
|
|
|
{ static size_t const maskT = sizeof(size_t)-1;
|
|
if (bufferSize & maskT) {
|
|
/* size not multiple of sizeof(size_t) : implies end of block */
|
|
const char* const restStart = (const char*)bufferTEnd;
|
|
const char* restPtr = restStart;
|
|
const char* const restEnd = (const char*)buffer + bufferSize;
|
|
assert(restEnd > restStart && restEnd < restStart + sizeof(size_t));
|
|
for ( ; (restPtr < restEnd) && (*restPtr == 0); restPtr++) ;
|
|
storedSkips += (unsigned) (restPtr - restStart);
|
|
if (restPtr != restEnd) {
|
|
/* not all remaining bytes are 0 */
|
|
size_t const restSize = (size_t)(restEnd - restPtr);
|
|
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
|
|
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
|
|
if (fwrite(restPtr, 1, restSize, file) != restSize)
|
|
EXM_THROW(95, "Write error : cannot write end of decoded block : %s",
|
|
strerror(errno));
|
|
storedSkips = 0;
|
|
} } }
|
|
|
|
return storedSkips;
|
|
}
|
|
|
|
static void
|
|
AIO_fwriteSparseEnd(const FIO_prefs_t* const prefs, FILE* file, unsigned storedSkips)
|
|
{
|
|
if (prefs->testMode) assert(storedSkips == 0);
|
|
if (storedSkips>0) {
|
|
assert(prefs->sparseFileSupport > 0); /* storedSkips>0 implies sparse support is enabled */
|
|
(void)prefs; /* assert can be disabled, in which case prefs becomes unused */
|
|
if (LONG_SEEK(file, storedSkips-1, SEEK_CUR) != 0)
|
|
EXM_THROW(69, "Final skip error (sparse file support)");
|
|
/* last zero must be explicitly written,
|
|
* so that skipped ones get implicitly translated as zero by FS */
|
|
{ const char lastZeroByte[1] = { 0 };
|
|
if (fwrite(lastZeroByte, 1, 1, file) != 1)
|
|
EXM_THROW(69, "Write error : cannot write last zero : %s", strerror(errno));
|
|
} }
|
|
}
|
|
|
|
|
|
/* **********************************************************************
|
|
* AsyncIO functionality
|
|
************************************************************************/
|
|
|
|
/* AIO_supported:
|
|
* Returns 1 if AsyncIO is supported on the system, 0 otherwise. */
|
|
int AIO_supported(void) {
|
|
#ifdef ZSTD_MULTITHREAD
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* ***********************************
|
|
* Generic IoPool implementation
|
|
*************************************/
|
|
|
|
static IOJob_t *AIO_IOPool_createIoJob(IOPoolCtx_t *ctx, size_t bufferSize) {
|
|
IOJob_t* const job = (IOJob_t*) malloc(sizeof(IOJob_t));
|
|
void* const buffer = malloc(bufferSize);
|
|
if(!job || !buffer)
|
|
EXM_THROW(101, "Allocation error : not enough memory");
|
|
job->buffer = buffer;
|
|
job->bufferSize = bufferSize;
|
|
job->usedBufferSize = 0;
|
|
job->file = NULL;
|
|
job->ctx = ctx;
|
|
job->offset = 0;
|
|
return job;
|
|
}
|
|
|
|
|
|
/* AIO_IOPool_createThreadPool:
|
|
* Creates a thread pool and a mutex for threaded IO pool.
|
|
* Displays warning if asyncio is requested but MT isn't available. */
|
|
static void AIO_IOPool_createThreadPool(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs) {
|
|
ctx->threadPool = NULL;
|
|
ctx->threadPoolActive = 0;
|
|
if(prefs->asyncIO) {
|
|
if (ZSTD_pthread_mutex_init(&ctx->ioJobsMutex, NULL))
|
|
EXM_THROW(102,"Failed creating ioJobsMutex mutex");
|
|
/* We want MAX_IO_JOBS-2 queue items because we need to always have 1 free buffer to
|
|
* decompress into and 1 buffer that's actively written to disk and owned by the writing thread. */
|
|
assert(MAX_IO_JOBS >= 2);
|
|
ctx->threadPool = POOL_create(1, MAX_IO_JOBS - 2);
|
|
ctx->threadPoolActive = 1;
|
|
if (!ctx->threadPool)
|
|
EXM_THROW(104, "Failed creating I/O thread pool");
|
|
}
|
|
}
|
|
|
|
/* AIO_IOPool_init:
|
|
* Allocates and sets and a new I/O thread pool including its included availableJobs. */
|
|
static void AIO_IOPool_init(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs, POOL_function poolFunction, size_t bufferSize) {
|
|
int i;
|
|
AIO_IOPool_createThreadPool(ctx, prefs);
|
|
ctx->prefs = prefs;
|
|
ctx->poolFunction = poolFunction;
|
|
ctx->totalIoJobs = ctx->threadPool ? MAX_IO_JOBS : 2;
|
|
ctx->availableJobsCount = ctx->totalIoJobs;
|
|
for(i=0; i < ctx->availableJobsCount; i++) {
|
|
ctx->availableJobs[i] = AIO_IOPool_createIoJob(ctx, bufferSize);
|
|
}
|
|
ctx->jobBufferSize = bufferSize;
|
|
ctx->file = NULL;
|
|
}
|
|
|
|
|
|
/* AIO_IOPool_threadPoolActive:
|
|
* Check if current operation uses thread pool.
|
|
* Note that in some cases we have a thread pool initialized but choose not to use it. */
|
|
static int AIO_IOPool_threadPoolActive(IOPoolCtx_t* ctx) {
|
|
return ctx->threadPool && ctx->threadPoolActive;
|
|
}
|
|
|
|
|
|
/* AIO_IOPool_lockJobsMutex:
|
|
* Locks the IO jobs mutex if threading is active */
|
|
static void AIO_IOPool_lockJobsMutex(IOPoolCtx_t* ctx) {
|
|
if(AIO_IOPool_threadPoolActive(ctx))
|
|
ZSTD_pthread_mutex_lock(&ctx->ioJobsMutex);
|
|
}
|
|
|
|
/* AIO_IOPool_unlockJobsMutex:
|
|
* Unlocks the IO jobs mutex if threading is active */
|
|
static void AIO_IOPool_unlockJobsMutex(IOPoolCtx_t* ctx) {
|
|
if(AIO_IOPool_threadPoolActive(ctx))
|
|
ZSTD_pthread_mutex_unlock(&ctx->ioJobsMutex);
|
|
}
|
|
|
|
/* AIO_IOPool_releaseIoJob:
|
|
* Releases an acquired job back to the pool. Doesn't execute the job. */
|
|
static void AIO_IOPool_releaseIoJob(IOJob_t* job) {
|
|
IOPoolCtx_t* const ctx = (IOPoolCtx_t *) job->ctx;
|
|
AIO_IOPool_lockJobsMutex(ctx);
|
|
assert(ctx->availableJobsCount < ctx->totalIoJobs);
|
|
ctx->availableJobs[ctx->availableJobsCount++] = job;
|
|
AIO_IOPool_unlockJobsMutex(ctx);
|
|
}
|
|
|
|
/* AIO_IOPool_join:
|
|
* Waits for all tasks in the pool to finish executing. */
|
|
static void AIO_IOPool_join(IOPoolCtx_t* ctx) {
|
|
if(AIO_IOPool_threadPoolActive(ctx))
|
|
POOL_joinJobs(ctx->threadPool);
|
|
}
|
|
|
|
/* AIO_IOPool_setThreaded:
|
|
* Allows (de)activating threaded mode, to be used when the expected overhead
|
|
* of threading costs more than the expected gains. */
|
|
static void AIO_IOPool_setThreaded(IOPoolCtx_t* ctx, int threaded) {
|
|
assert(threaded == 0 || threaded == 1);
|
|
assert(ctx != NULL);
|
|
if(ctx->threadPoolActive != threaded) {
|
|
AIO_IOPool_join(ctx);
|
|
ctx->threadPoolActive = threaded;
|
|
}
|
|
}
|
|
|
|
/* AIO_IOPool_free:
|
|
* Release a previously allocated IO thread pool. Makes sure all tasks are done and released. */
|
|
static void AIO_IOPool_destroy(IOPoolCtx_t* ctx) {
|
|
int i;
|
|
if(ctx->threadPool) {
|
|
/* Make sure we finish all tasks and then free the resources */
|
|
AIO_IOPool_join(ctx);
|
|
/* Make sure we are not leaking availableJobs */
|
|
assert(ctx->availableJobsCount == ctx->totalIoJobs);
|
|
POOL_free(ctx->threadPool);
|
|
ZSTD_pthread_mutex_destroy(&ctx->ioJobsMutex);
|
|
}
|
|
assert(ctx->file == NULL);
|
|
for(i=0; i<ctx->availableJobsCount; i++) {
|
|
IOJob_t* job = (IOJob_t*) ctx->availableJobs[i];
|
|
free(job->buffer);
|
|
free(job);
|
|
}
|
|
}
|
|
|
|
/* AIO_IOPool_acquireJob:
|
|
* Returns an available io job to be used for a future io. */
|
|
static IOJob_t* AIO_IOPool_acquireJob(IOPoolCtx_t* ctx) {
|
|
IOJob_t *job;
|
|
assert(ctx->file != NULL || ctx->prefs->testMode);
|
|
AIO_IOPool_lockJobsMutex(ctx);
|
|
assert(ctx->availableJobsCount > 0);
|
|
job = (IOJob_t*) ctx->availableJobs[--ctx->availableJobsCount];
|
|
AIO_IOPool_unlockJobsMutex(ctx);
|
|
job->usedBufferSize = 0;
|
|
job->file = ctx->file;
|
|
job->offset = 0;
|
|
return job;
|
|
}
|
|
|
|
|
|
/* AIO_IOPool_setFile:
|
|
* Sets the destination file for future files in the pool.
|
|
* Requires completion of all queued jobs and release of all otherwise acquired jobs. */
|
|
static void AIO_IOPool_setFile(IOPoolCtx_t* ctx, FILE* file) {
|
|
assert(ctx!=NULL);
|
|
AIO_IOPool_join(ctx);
|
|
assert(ctx->availableJobsCount == ctx->totalIoJobs);
|
|
ctx->file = file;
|
|
}
|
|
|
|
static FILE* AIO_IOPool_getFile(const IOPoolCtx_t* ctx) {
|
|
return ctx->file;
|
|
}
|
|
|
|
/* AIO_IOPool_enqueueJob:
|
|
* Enqueues an io job for execution.
|
|
* The queued job shouldn't be used directly after queueing it. */
|
|
static void AIO_IOPool_enqueueJob(IOJob_t* job) {
|
|
IOPoolCtx_t* const ctx = (IOPoolCtx_t *)job->ctx;
|
|
if(AIO_IOPool_threadPoolActive(ctx))
|
|
POOL_add(ctx->threadPool, ctx->poolFunction, job);
|
|
else
|
|
ctx->poolFunction(job);
|
|
}
|
|
|
|
/* ***********************************
|
|
* WritePool implementation
|
|
*************************************/
|
|
|
|
/* AIO_WritePool_acquireJob:
|
|
* Returns an available write job to be used for a future write. */
|
|
IOJob_t* AIO_WritePool_acquireJob(WritePoolCtx_t* ctx) {
|
|
return AIO_IOPool_acquireJob(&ctx->base);
|
|
}
|
|
|
|
/* AIO_WritePool_enqueueAndReacquireWriteJob:
|
|
* Queues a write job for execution and acquires a new one.
|
|
* After execution `job`'s pointed value would change to the newly acquired job.
|
|
* Make sure to set `usedBufferSize` to the wanted length before call.
|
|
* The queued job shouldn't be used directly after queueing it. */
|
|
void AIO_WritePool_enqueueAndReacquireWriteJob(IOJob_t **job) {
|
|
AIO_IOPool_enqueueJob(*job);
|
|
*job = AIO_IOPool_acquireJob((IOPoolCtx_t *)(*job)->ctx);
|
|
}
|
|
|
|
/* AIO_WritePool_sparseWriteEnd:
|
|
* Ends sparse writes to the current file.
|
|
* Blocks on completion of all current write jobs before executing. */
|
|
void AIO_WritePool_sparseWriteEnd(WritePoolCtx_t* ctx) {
|
|
assert(ctx != NULL);
|
|
AIO_IOPool_join(&ctx->base);
|
|
AIO_fwriteSparseEnd(ctx->base.prefs, ctx->base.file, ctx->storedSkips);
|
|
ctx->storedSkips = 0;
|
|
}
|
|
|
|
/* AIO_WritePool_setFile:
|
|
* Sets the destination file for future writes in the pool.
|
|
* Requires completion of all queues write jobs and release of all otherwise acquired jobs.
|
|
* Also requires ending of sparse write if a previous file was used in sparse mode. */
|
|
void AIO_WritePool_setFile(WritePoolCtx_t* ctx, FILE* file) {
|
|
AIO_IOPool_setFile(&ctx->base, file);
|
|
assert(ctx->storedSkips == 0);
|
|
}
|
|
|
|
/* AIO_WritePool_getFile:
|
|
* Returns the file the writePool is currently set to write to. */
|
|
FILE* AIO_WritePool_getFile(const WritePoolCtx_t* ctx) {
|
|
return AIO_IOPool_getFile(&ctx->base);
|
|
}
|
|
|
|
/* AIO_WritePool_releaseIoJob:
|
|
* Releases an acquired job back to the pool. Doesn't execute the job. */
|
|
void AIO_WritePool_releaseIoJob(IOJob_t* job) {
|
|
AIO_IOPool_releaseIoJob(job);
|
|
}
|
|
|
|
/* AIO_WritePool_closeFile:
|
|
* Ends sparse write and closes the writePool's current file and sets the file to NULL.
|
|
* Requires completion of all queues write jobs and release of all otherwise acquired jobs. */
|
|
int AIO_WritePool_closeFile(WritePoolCtx_t* ctx) {
|
|
FILE* const dstFile = ctx->base.file;
|
|
assert(dstFile!=NULL || ctx->base.prefs->testMode!=0);
|
|
AIO_WritePool_sparseWriteEnd(ctx);
|
|
AIO_IOPool_setFile(&ctx->base, NULL);
|
|
return fclose(dstFile);
|
|
}
|
|
|
|
/* AIO_WritePool_executeWriteJob:
|
|
* Executes a write job synchronously. Can be used as a function for a thread pool. */
|
|
static void AIO_WritePool_executeWriteJob(void* opaque){
|
|
IOJob_t* const job = (IOJob_t*) opaque;
|
|
WritePoolCtx_t* const ctx = (WritePoolCtx_t*) job->ctx;
|
|
ctx->storedSkips = AIO_fwriteSparse(job->file, job->buffer, job->usedBufferSize, ctx->base.prefs, ctx->storedSkips);
|
|
AIO_IOPool_releaseIoJob(job);
|
|
}
|
|
|
|
/* AIO_WritePool_create:
|
|
* Allocates and sets and a new write pool including its included jobs. */
|
|
WritePoolCtx_t* AIO_WritePool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
|
|
WritePoolCtx_t* const ctx = (WritePoolCtx_t*) malloc(sizeof(WritePoolCtx_t));
|
|
if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
|
|
AIO_IOPool_init(&ctx->base, prefs, AIO_WritePool_executeWriteJob, bufferSize);
|
|
ctx->storedSkips = 0;
|
|
return ctx;
|
|
}
|
|
|
|
/* AIO_WritePool_free:
|
|
* Frees and releases a writePool and its resources. Closes destination file if needs to. */
|
|
void AIO_WritePool_free(WritePoolCtx_t* ctx) {
|
|
/* Make sure we finish all tasks and then free the resources */
|
|
if(AIO_WritePool_getFile(ctx))
|
|
AIO_WritePool_closeFile(ctx);
|
|
AIO_IOPool_destroy(&ctx->base);
|
|
assert(ctx->storedSkips==0);
|
|
free(ctx);
|
|
}
|
|
|
|
/* AIO_WritePool_setAsync:
|
|
* Allows (de)activating async mode, to be used when the expected overhead
|
|
* of asyncio costs more than the expected gains. */
|
|
void AIO_WritePool_setAsync(WritePoolCtx_t* ctx, int async) {
|
|
AIO_IOPool_setThreaded(&ctx->base, async);
|
|
}
|
|
|
|
|
|
/* ***********************************
|
|
* ReadPool implementation
|
|
*************************************/
|
|
static void AIO_ReadPool_releaseAllCompletedJobs(ReadPoolCtx_t* ctx) {
|
|
int i;
|
|
for(i=0; i<ctx->completedJobsCount; i++) {
|
|
IOJob_t* job = (IOJob_t*) ctx->completedJobs[i];
|
|
AIO_IOPool_releaseIoJob(job);
|
|
}
|
|
ctx->completedJobsCount = 0;
|
|
}
|
|
|
|
static void AIO_ReadPool_addJobToCompleted(IOJob_t* job) {
|
|
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
|
|
AIO_IOPool_lockJobsMutex(&ctx->base);
|
|
assert(ctx->completedJobsCount < MAX_IO_JOBS);
|
|
ctx->completedJobs[ctx->completedJobsCount++] = job;
|
|
if(AIO_IOPool_threadPoolActive(&ctx->base)) {
|
|
ZSTD_pthread_cond_signal(&ctx->jobCompletedCond);
|
|
}
|
|
AIO_IOPool_unlockJobsMutex(&ctx->base);
|
|
}
|
|
|
|
/* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked:
|
|
* Looks through the completed jobs for a job matching the waitingOnOffset and returns it,
|
|
* if job wasn't found returns NULL.
|
|
* IMPORTANT: assumes ioJobsMutex is locked. */
|
|
static IOJob_t* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ReadPoolCtx_t* ctx) {
|
|
IOJob_t *job = NULL;
|
|
int i;
|
|
/* This implementation goes through all completed jobs and looks for the one matching the next offset.
|
|
* While not strictly needed for a single threaded reader implementation (as in such a case we could expect
|
|
* reads to be completed in order) this implementation was chosen as it better fits other asyncio
|
|
* interfaces (such as io_uring) that do not provide promises regarding order of completion. */
|
|
for (i=0; i<ctx->completedJobsCount; i++) {
|
|
job = (IOJob_t *) ctx->completedJobs[i];
|
|
if (job->offset == ctx->waitingOnOffset) {
|
|
ctx->completedJobs[i] = ctx->completedJobs[--ctx->completedJobsCount];
|
|
return job;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* AIO_ReadPool_numReadsInFlight:
|
|
* Returns the number of IO read jobs currently in flight. */
|
|
static size_t AIO_ReadPool_numReadsInFlight(ReadPoolCtx_t* ctx) {
|
|
const size_t jobsHeld = (ctx->currentJobHeld==NULL ? 0 : 1);
|
|
return ctx->base.totalIoJobs - (ctx->base.availableJobsCount + ctx->completedJobsCount + jobsHeld);
|
|
}
|
|
|
|
/* AIO_ReadPool_getNextCompletedJob:
|
|
* Returns a completed IOJob_t for the next read in line based on waitingOnOffset and advances waitingOnOffset.
|
|
* Would block. */
|
|
static IOJob_t* AIO_ReadPool_getNextCompletedJob(ReadPoolCtx_t* ctx) {
|
|
IOJob_t *job = NULL;
|
|
AIO_IOPool_lockJobsMutex(&ctx->base);
|
|
|
|
job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);
|
|
|
|
/* As long as we didn't find the job matching the next read, and we have some reads in flight continue waiting */
|
|
while (!job && (AIO_ReadPool_numReadsInFlight(ctx) > 0)) {
|
|
assert(ctx->base.threadPool != NULL); /* we shouldn't be here if we work in sync mode */
|
|
ZSTD_pthread_cond_wait(&ctx->jobCompletedCond, &ctx->base.ioJobsMutex);
|
|
job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);
|
|
}
|
|
|
|
if(job) {
|
|
assert(job->offset == ctx->waitingOnOffset);
|
|
ctx->waitingOnOffset += job->usedBufferSize;
|
|
}
|
|
|
|
AIO_IOPool_unlockJobsMutex(&ctx->base);
|
|
return job;
|
|
}
|
|
|
|
|
|
/* AIO_ReadPool_executeReadJob:
|
|
* Executes a read job synchronously. Can be used as a function for a thread pool. */
|
|
static void AIO_ReadPool_executeReadJob(void* opaque){
|
|
IOJob_t* const job = (IOJob_t*) opaque;
|
|
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
|
|
if(ctx->reachedEof) {
|
|
job->usedBufferSize = 0;
|
|
AIO_ReadPool_addJobToCompleted(job);
|
|
return;
|
|
}
|
|
job->usedBufferSize = fread(job->buffer, 1, job->bufferSize, job->file);
|
|
if(job->usedBufferSize < job->bufferSize) {
|
|
if(ferror(job->file)) {
|
|
EXM_THROW(37, "Read error");
|
|
} else if(feof(job->file)) {
|
|
ctx->reachedEof = 1;
|
|
} else {
|
|
EXM_THROW(37, "Unexpected short read");
|
|
}
|
|
}
|
|
AIO_ReadPool_addJobToCompleted(job);
|
|
}
|
|
|
|
static void AIO_ReadPool_enqueueRead(ReadPoolCtx_t* ctx) {
|
|
IOJob_t* const job = AIO_IOPool_acquireJob(&ctx->base);
|
|
job->offset = ctx->nextReadOffset;
|
|
ctx->nextReadOffset += job->bufferSize;
|
|
AIO_IOPool_enqueueJob(job);
|
|
}
|
|
|
|
static void AIO_ReadPool_startReading(ReadPoolCtx_t* ctx) {
|
|
int i;
|
|
for (i = 0; i < ctx->base.availableJobsCount; i++) {
|
|
AIO_ReadPool_enqueueRead(ctx);
|
|
}
|
|
}
|
|
|
|
/* AIO_ReadPool_setFile:
|
|
* Sets the source file for future read in the pool. Initiates reading immediately if file is not NULL.
|
|
* Waits for all current enqueued tasks to complete if a previous file was set. */
|
|
void AIO_ReadPool_setFile(ReadPoolCtx_t* ctx, FILE* file) {
|
|
assert(ctx!=NULL);
|
|
AIO_IOPool_join(&ctx->base);
|
|
AIO_ReadPool_releaseAllCompletedJobs(ctx);
|
|
if (ctx->currentJobHeld) {
|
|
AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
|
|
ctx->currentJobHeld = NULL;
|
|
}
|
|
AIO_IOPool_setFile(&ctx->base, file);
|
|
ctx->nextReadOffset = 0;
|
|
ctx->waitingOnOffset = 0;
|
|
ctx->srcBuffer = ctx->coalesceBuffer;
|
|
ctx->srcBufferLoaded = 0;
|
|
ctx->reachedEof = 0;
|
|
if(file != NULL)
|
|
AIO_ReadPool_startReading(ctx);
|
|
}
|
|
|
|
/* AIO_ReadPool_create:
|
|
* Allocates and sets and a new readPool including its included jobs.
|
|
* bufferSize should be set to the maximal buffer we want to read at a time, will also be used
|
|
* as our basic read size. */
|
|
ReadPoolCtx_t* AIO_ReadPool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
|
|
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t*) malloc(sizeof(ReadPoolCtx_t));
|
|
if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
|
|
AIO_IOPool_init(&ctx->base, prefs, AIO_ReadPool_executeReadJob, bufferSize);
|
|
|
|
ctx->coalesceBuffer = (U8*) malloc(bufferSize * 2);
|
|
ctx->srcBuffer = ctx->coalesceBuffer;
|
|
ctx->srcBufferLoaded = 0;
|
|
ctx->completedJobsCount = 0;
|
|
ctx->currentJobHeld = NULL;
|
|
|
|
if(ctx->base.threadPool)
|
|
if (ZSTD_pthread_cond_init(&ctx->jobCompletedCond, NULL))
|
|
EXM_THROW(103,"Failed creating jobCompletedCond cond");
|
|
|
|
return ctx;
|
|
}
|
|
|
|
/* AIO_ReadPool_free:
|
|
* Frees and releases a readPool and its resources. Closes source file. */
|
|
void AIO_ReadPool_free(ReadPoolCtx_t* ctx) {
|
|
if(AIO_ReadPool_getFile(ctx))
|
|
AIO_ReadPool_closeFile(ctx);
|
|
if(ctx->base.threadPool)
|
|
ZSTD_pthread_cond_destroy(&ctx->jobCompletedCond);
|
|
AIO_IOPool_destroy(&ctx->base);
|
|
free(ctx->coalesceBuffer);
|
|
free(ctx);
|
|
}
|
|
|
|
/* AIO_ReadPool_consumeBytes:
|
|
* Consumes byes from srcBuffer's beginning and updates srcBufferLoaded accordingly. */
|
|
void AIO_ReadPool_consumeBytes(ReadPoolCtx_t* ctx, size_t n) {
|
|
assert(n <= ctx->srcBufferLoaded);
|
|
ctx->srcBufferLoaded -= n;
|
|
ctx->srcBuffer += n;
|
|
}
|
|
|
|
/* AIO_ReadPool_releaseCurrentlyHeldAndGetNext:
|
|
* Release the current held job and get the next one, returns NULL if no next job available. */
|
|
static IOJob_t* AIO_ReadPool_releaseCurrentHeldAndGetNext(ReadPoolCtx_t* ctx) {
|
|
if (ctx->currentJobHeld) {
|
|
AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
|
|
ctx->currentJobHeld = NULL;
|
|
AIO_ReadPool_enqueueRead(ctx);
|
|
}
|
|
ctx->currentJobHeld = AIO_ReadPool_getNextCompletedJob(ctx);
|
|
return (IOJob_t*) ctx->currentJobHeld;
|
|
}
|
|
|
|
/* AIO_ReadPool_fillBuffer:
|
|
* Tries to fill the buffer with at least n or jobBufferSize bytes (whichever is smaller).
|
|
* Returns if srcBuffer has at least the expected number of bytes loaded or if we've reached the end of the file.
|
|
* Return value is the number of bytes added to the buffer.
|
|
* Note that srcBuffer might have up to 2 times jobBufferSize bytes. */
|
|
size_t AIO_ReadPool_fillBuffer(ReadPoolCtx_t* ctx, size_t n) {
|
|
IOJob_t *job;
|
|
int useCoalesce = 0;
|
|
if(n > ctx->base.jobBufferSize)
|
|
n = ctx->base.jobBufferSize;
|
|
|
|
/* We are good, don't read anything */
|
|
if (ctx->srcBufferLoaded >= n)
|
|
return 0;
|
|
|
|
/* We still have bytes loaded, but not enough to satisfy caller. We need to get the next job
|
|
* and coalesce the remaining bytes with the next job's buffer */
|
|
if (ctx->srcBufferLoaded > 0) {
|
|
useCoalesce = 1;
|
|
memcpy(ctx->coalesceBuffer, ctx->srcBuffer, ctx->srcBufferLoaded);
|
|
ctx->srcBuffer = ctx->coalesceBuffer;
|
|
}
|
|
|
|
/* Read the next chunk */
|
|
job = AIO_ReadPool_releaseCurrentHeldAndGetNext(ctx);
|
|
if(!job)
|
|
return 0;
|
|
if(useCoalesce) {
|
|
assert(ctx->srcBufferLoaded + job->usedBufferSize <= 2*ctx->base.jobBufferSize);
|
|
memcpy(ctx->coalesceBuffer + ctx->srcBufferLoaded, job->buffer, job->usedBufferSize);
|
|
ctx->srcBufferLoaded += job->usedBufferSize;
|
|
}
|
|
else {
|
|
ctx->srcBuffer = (U8 *) job->buffer;
|
|
ctx->srcBufferLoaded = job->usedBufferSize;
|
|
}
|
|
return job->usedBufferSize;
|
|
}
|
|
|
|
/* AIO_ReadPool_consumeAndRefill:
|
|
* Consumes the current buffer and refills it with bufferSize bytes. */
|
|
size_t AIO_ReadPool_consumeAndRefill(ReadPoolCtx_t* ctx) {
|
|
AIO_ReadPool_consumeBytes(ctx, ctx->srcBufferLoaded);
|
|
return AIO_ReadPool_fillBuffer(ctx, ctx->base.jobBufferSize);
|
|
}
|
|
|
|
/* AIO_ReadPool_getFile:
|
|
* Returns the current file set for the read pool. */
|
|
FILE* AIO_ReadPool_getFile(const ReadPoolCtx_t* ctx) {
|
|
return AIO_IOPool_getFile(&ctx->base);
|
|
}
|
|
|
|
/* AIO_ReadPool_closeFile:
|
|
* Closes the current set file. Waits for all current enqueued tasks to complete and resets state. */
|
|
int AIO_ReadPool_closeFile(ReadPoolCtx_t* ctx) {
|
|
FILE* const file = AIO_ReadPool_getFile(ctx);
|
|
AIO_ReadPool_setFile(ctx, NULL);
|
|
return fclose(file);
|
|
}
|
|
|
|
/* AIO_ReadPool_setAsync:
|
|
* Allows (de)activating async mode, to be used when the expected overhead
|
|
* of asyncio costs more than the expected gains. */
|
|
void AIO_ReadPool_setAsync(ReadPoolCtx_t* ctx, int async) {
|
|
AIO_IOPool_setThreaded(&ctx->base, async);
|
|
}
|