mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
c6d3802d3a
We now have an `#include <cxxabi.h>` header which defines all the APIs Cosmopolitan's implemented so far. The `cosmocc` README.md file is now greatly expanded with documentation.
115 lines
4.7 KiB
C
115 lines
4.7 KiB
C
/*
|
|
* Copyright (C) 2006 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "libc/atomic.h"
|
|
#include "libc/cxxabi.h"
|
|
#include "libc/intrin/atomic.h"
|
|
#include "libc/limits.h"
|
|
#include "third_party/nsync/futex.internal.h"
|
|
|
|
// This file contains C++ ABI support functions for one time
|
|
// constructors as defined in the "Run-time ABI for the ARM Architecture"
|
|
// section 4.4.2
|
|
//
|
|
// ARM C++ ABI and Itanium/x86 C++ ABI has different definition for
|
|
// one time construction:
|
|
//
|
|
// ARM C++ ABI defines the LSB of guard variable should be tested
|
|
// by compiler-generated code before calling __cxa_guard_acquire et al.
|
|
//
|
|
// The Itanium/x86 C++ ABI defines the low-order _byte_ should be
|
|
// tested instead.
|
|
//
|
|
// Meanwhile, guard variable are 32bit aligned for ARM, and 64bit
|
|
// aligned for x86.
|
|
//
|
|
// Reference documentation:
|
|
//
|
|
// section 3.2.3 of ARM IHI 0041C (for ARM)
|
|
// section 3.3.2 of the Itanium C++ ABI specification v1.83 (for x86).
|
|
//
|
|
// There is no C++ ABI available for other ARCH. But the gcc source
|
|
// shows all other ARCH follow the definition of Itanium/x86 C++ ABI.
|
|
|
|
// The Itanium/x86 C++ ABI (used by all architectures that aren't ARM32)
|
|
// mandates guard variables are 64-bit aligned, 64-bit values. The least
|
|
// significant byte is tested by the compiler-generated code before it's
|
|
// calling __cxa_guard_acquire.
|
|
union CxaGuardValue {
|
|
atomic_int state;
|
|
int64_t aligner;
|
|
};
|
|
|
|
// Set construction state values according to reference documentation. 0
|
|
// is the initialization value. Arm requires ((*gv & 1) == 1) after
|
|
// __cxa_guard_release, ((*gv & 3) == 0) after __cxa_guard_abort. X86
|
|
// requires first byte not modified by __cxa_guard_acquire, first byte
|
|
// is non-zero after __cxa_guard_release.
|
|
#define CONSTRUCTION_NOT_YET_STARTED 0
|
|
#define CONSTRUCTION_COMPLETE 1
|
|
#define CONSTRUCTION_UNDERWAY_WITHOUT_WAITER 0x100
|
|
#define CONSTRUCTION_UNDERWAY_WITH_WAITER 0x200
|
|
|
|
int __cxa_guard_acquire(union CxaGuardValue *gv) {
|
|
int old_value = atomic_load_explicit(&gv->state, memory_order_relaxed);
|
|
while (true) {
|
|
if (old_value == CONSTRUCTION_COMPLETE) {
|
|
// A load_acquire operation is needed before exiting with COMPLETE
|
|
// state, as we must ensure that all the stores performed by the
|
|
// construction function are observable on this CPU after we exit.
|
|
atomic_thread_fence(memory_order_acquire);
|
|
return 0;
|
|
} else if (old_value == CONSTRUCTION_NOT_YET_STARTED) {
|
|
if (!atomic_compare_exchange_weak_explicit(
|
|
&gv->state, &old_value, CONSTRUCTION_UNDERWAY_WITHOUT_WAITER,
|
|
memory_order_relaxed, memory_order_relaxed)) {
|
|
continue;
|
|
}
|
|
// The acquire fence may not be needed. But as described in section 3.3.2
|
|
// of the Itanium C++ ABI specification, it probably has to behave like
|
|
// the acquisition of a mutex, which needs an acquire fence.
|
|
atomic_thread_fence(memory_order_acquire);
|
|
return 1;
|
|
} else if (old_value == CONSTRUCTION_UNDERWAY_WITHOUT_WAITER) {
|
|
if (!atomic_compare_exchange_weak_explicit(
|
|
&gv->state, &old_value, CONSTRUCTION_UNDERWAY_WITH_WAITER,
|
|
memory_order_relaxed, memory_order_relaxed)) {
|
|
continue;
|
|
}
|
|
}
|
|
nsync_futex_wait_(&gv->state, CONSTRUCTION_UNDERWAY_WITH_WAITER, 0, 0);
|
|
old_value = atomic_load_explicit(&gv->state, memory_order_relaxed);
|
|
}
|
|
}
|
|
|
|
void __cxa_guard_release(union CxaGuardValue *gv) {
|
|
// Release fence is used to make all stores performed by the construction
|
|
// function visible in other threads.
|
|
int old_value = atomic_exchange_explicit(&gv->state, CONSTRUCTION_COMPLETE,
|
|
memory_order_release);
|
|
if (old_value == CONSTRUCTION_UNDERWAY_WITH_WAITER) {
|
|
nsync_futex_wake_(&gv->state, INT_MAX, 0);
|
|
}
|
|
}
|
|
|
|
void __cxa_guard_abort(union CxaGuardValue *gv) {
|
|
// Release fence is used to make all stores performed by the construction
|
|
// function visible in other threads.
|
|
int old_value = atomic_exchange_explicit(
|
|
&gv->state, CONSTRUCTION_NOT_YET_STARTED, memory_order_release);
|
|
if (old_value == CONSTRUCTION_UNDERWAY_WITH_WAITER) {
|
|
nsync_futex_wake_(&gv->state, INT_MAX, 0);
|
|
}
|
|
}
|