mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
1224 lines
38 KiB
C
1224 lines
38 KiB
C
#include "libc/bits/bits.h"
|
|
#include "libc/limits.h"
|
|
#include "third_party/mbedtls/asn1.h"
|
|
#include "third_party/mbedtls/bignum.h"
|
|
#include "third_party/mbedtls/common.h"
|
|
#include "third_party/mbedtls/error.h"
|
|
#include "third_party/mbedtls/everest.h"
|
|
#include "third_party/mbedtls/platform.h"
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
Everest (Apache 2.0)\\n\
|
|
Copyright 2016-2018 INRIA and Microsoft Corporation\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
|
|
/* clang-format off */
|
|
/*
|
|
* ECDH with curve-optimized implementation multiplexing
|
|
*
|
|
* Copyright 2016-2018 INRIA and Microsoft Corporation
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* This file is part of mbed TLS (https://tls.mbed.org)
|
|
*/
|
|
|
|
#if defined(MBEDTLS_ECDH_C) && defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
|
|
|
|
#ifdef memcpy
|
|
#undef memcpy
|
|
#endif
|
|
#define memcpy(x,y,z) __builtin_memcpy(x,y,z)
|
|
|
|
#define load64_le(b) READ64LE(b)
|
|
#define store64_le(b, i) WRITE64LE(b, i)
|
|
|
|
#define KRML_HOST_EXIT exit
|
|
#define KRML_HOST_PRINTF printf
|
|
|
|
#define KRML_EXIT \
|
|
do { \
|
|
KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
|
|
KRML_HOST_EXIT(254); \
|
|
} while (0)
|
|
|
|
#define _KRML_CHECK_SIZE_PRAGMA \
|
|
_Pragma("GCC diagnostic ignored \"-Wtype-limits\"")
|
|
|
|
#define KRML_CHECK_SIZE(size_elt, sz) \
|
|
do { \
|
|
_KRML_CHECK_SIZE_PRAGMA \
|
|
if (((size_t)(sz)) > ((size_t)(SIZE_MAX / (size_elt)))) { \
|
|
KRML_HOST_PRINTF( \
|
|
"Maximum allocatable size exceeded, aborting before overflow at " \
|
|
"%s:%d\n", \
|
|
__FILE__, __LINE__); \
|
|
KRML_HOST_EXIT(253); \
|
|
} \
|
|
} while (0)
|
|
|
|
typedef const char *Prims_string;
|
|
|
|
typedef struct {
|
|
uint32_t length;
|
|
const char *data;
|
|
} FStar_Bytes_bytes;
|
|
|
|
typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
|
|
krml_checked_int_t;
|
|
|
|
/* Prims_nat not yet in scope */
|
|
inline static int32_t krml_time() {
|
|
return (int32_t)time(NULL);
|
|
}
|
|
|
|
static uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t x = a ^ b;
|
|
uint64_t minus_x = ~x + (uint64_t)1U;
|
|
uint64_t x_or_minus_x = x | minus_x;
|
|
uint64_t xnx = x_or_minus_x >> (uint32_t)63U;
|
|
return xnx - (uint64_t)1U;
|
|
}
|
|
|
|
static uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t x = a;
|
|
uint64_t y = b;
|
|
uint64_t x_xor_y = x ^ y;
|
|
uint64_t x_sub_y = x - y;
|
|
uint64_t x_sub_y_xor_y = x_sub_y ^ y;
|
|
uint64_t q = x_xor_y | x_sub_y_xor_y;
|
|
uint64_t x_xor_q = x ^ q;
|
|
uint64_t x_xor_q_ = x_xor_q >> (uint32_t)63U;
|
|
return x_xor_q_ - (uint64_t)1U;
|
|
}
|
|
|
|
static uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t x = a ^ b;
|
|
uint32_t minus_x = ~x + (uint32_t)1U;
|
|
uint32_t x_or_minus_x = x | minus_x;
|
|
uint32_t xnx = x_or_minus_x >> (uint32_t)31U;
|
|
return xnx - (uint32_t)1U;
|
|
}
|
|
|
|
static uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t x = a;
|
|
uint32_t y = b;
|
|
uint32_t x_xor_y = x ^ y;
|
|
uint32_t x_sub_y = x - y;
|
|
uint32_t x_sub_y_xor_y = x_sub_y ^ y;
|
|
uint32_t q = x_xor_y | x_sub_y_xor_y;
|
|
uint32_t x_xor_q = x ^ q;
|
|
uint32_t x_xor_q_ = x_xor_q >> (uint32_t)31U;
|
|
return x_xor_q_ - (uint32_t)1U;
|
|
}
|
|
|
|
static uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t x = a ^ b;
|
|
uint16_t minus_x = ~x + (uint16_t)1U;
|
|
uint16_t x_or_minus_x = x | minus_x;
|
|
uint16_t xnx = x_or_minus_x >> (uint32_t)15U;
|
|
return xnx - (uint16_t)1U;
|
|
}
|
|
|
|
static uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t x = a;
|
|
uint16_t y = b;
|
|
uint16_t x_xor_y = x ^ y;
|
|
uint16_t x_sub_y = x - y;
|
|
uint16_t x_sub_y_xor_y = x_sub_y ^ y;
|
|
uint16_t q = x_xor_y | x_sub_y_xor_y;
|
|
uint16_t x_xor_q = x ^ q;
|
|
uint16_t x_xor_q_ = x_xor_q >> (uint32_t)15U;
|
|
return x_xor_q_ - (uint16_t)1U;
|
|
}
|
|
|
|
static uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t x = a ^ b;
|
|
uint8_t minus_x = ~x + (uint8_t)1U;
|
|
uint8_t x_or_minus_x = x | minus_x;
|
|
uint8_t xnx = x_or_minus_x >> (uint32_t)7U;
|
|
return xnx - (uint8_t)1U;
|
|
}
|
|
|
|
static uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t x = a;
|
|
uint8_t y = b;
|
|
uint8_t x_xor_y = x ^ y;
|
|
uint8_t x_sub_y = x - y;
|
|
uint8_t x_sub_y_xor_y = x_sub_y ^ y;
|
|
uint8_t q = x_xor_y | x_sub_y_xor_y;
|
|
uint8_t x_xor_q = x ^ q;
|
|
uint8_t x_xor_q_ = x_xor_q >> (uint32_t)7U;
|
|
return x_xor_q_ - (uint8_t)1U;
|
|
}
|
|
|
|
static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
|
|
{
|
|
uint64_t b4 = b[4U];
|
|
uint64_t b0 = b[0U];
|
|
uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
|
|
b[4U] = b4_;
|
|
b[0U] = b0_;
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, uint128_t *input)
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
|
|
{
|
|
uint128_t xi = input[i];
|
|
output[i] = (uint64_t)xi;
|
|
}
|
|
}
|
|
|
|
inline static void
|
|
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint128_t *output, uint64_t *input, uint64_t s)
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
|
|
{
|
|
uint128_t xi = output[i];
|
|
uint64_t yi = input[i];
|
|
output[i] = xi + (uint128_t)yi * s;
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fproduct_carry_wide_(uint128_t *tmp)
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
|
|
{
|
|
uint32_t ctr = i;
|
|
uint128_t tctr = tmp[ctr];
|
|
uint128_t tctrp1 = tmp[ctr + (uint32_t)1U];
|
|
uint64_t r0 = (uint64_t)tctr & (uint64_t)0x7ffffffffffffU;
|
|
uint128_t c = tctr >> (uint32_t)51U;
|
|
tmp[ctr] = (uint128_t)r0;
|
|
tmp[ctr + (uint32_t)1U] = tctrp1 + c;
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
|
|
{
|
|
uint64_t tmp = output[4U];
|
|
uint64_t b0;
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
|
|
{
|
|
uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
|
|
uint64_t z = output[ctr - (uint32_t)1U];
|
|
output[ctr] = z;
|
|
}
|
|
}
|
|
output[0U] = tmp;
|
|
b0 = output[0U];
|
|
output[0U] = (uint64_t)19U * b0;
|
|
}
|
|
|
|
static void
|
|
Hacl_Bignum_Fmul_mul_shift_reduce_(uint128_t *output, uint64_t *input, uint64_t *input2)
|
|
{
|
|
uint32_t i;
|
|
uint64_t input2i;
|
|
{
|
|
uint32_t i0;
|
|
for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
|
|
{
|
|
uint64_t input2i0 = input2[i0];
|
|
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
|
|
Hacl_Bignum_Fmul_shift_reduce(input);
|
|
}
|
|
}
|
|
i = (uint32_t)4U;
|
|
input2i = input2[i];
|
|
Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
|
|
{
|
|
uint64_t tmp[5U] = { 0U };
|
|
memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
|
|
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
|
|
{
|
|
uint128_t t[5U];
|
|
{
|
|
uint32_t _i;
|
|
for (_i = 0U; _i < (uint32_t)5U; ++_i)
|
|
t[_i] = (uint128_t)(uint64_t)0U;
|
|
}
|
|
{
|
|
uint128_t b4;
|
|
uint128_t b0;
|
|
uint128_t b4_;
|
|
uint128_t b0_;
|
|
uint64_t i0;
|
|
uint64_t i1;
|
|
uint64_t i0_;
|
|
uint64_t i1_;
|
|
Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
|
|
Hacl_Bignum_Fproduct_carry_wide_(t);
|
|
b4 = t[4U];
|
|
b0 = t[0U];
|
|
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
|
|
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
|
|
t[4U] = b4_;
|
|
t[0U] = b0_;
|
|
Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
|
|
i0 = output[0U];
|
|
i1 = output[1U];
|
|
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
|
|
i1_ = i1 + (i0 >> (uint32_t)51U);
|
|
output[0U] = i0_;
|
|
output[1U] = i1_;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fsquare_fsquare__(uint128_t *tmp, uint64_t *output)
|
|
{
|
|
uint64_t r0 = output[0U];
|
|
uint64_t r1 = output[1U];
|
|
uint64_t r2 = output[2U];
|
|
uint64_t r3 = output[3U];
|
|
uint64_t r4 = output[4U];
|
|
uint64_t d0 = r0 * (uint64_t)2U;
|
|
uint64_t d1 = r1 * (uint64_t)2U;
|
|
uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
|
|
uint64_t d419 = r4 * (uint64_t)19U;
|
|
uint64_t d4 = d419 * (uint64_t)2U;
|
|
uint128_t s0 = (uint128_t)r0 * r0 + (uint128_t)d4 * r1 + (uint128_t)d2 * r3;
|
|
uint128_t s1 = (uint128_t)d0 * r1 + (uint128_t)d4 * r2 + (uint128_t)(r3 * (uint64_t)19U) * r3;
|
|
uint128_t s2 = (uint128_t)d0 * r2 + (uint128_t)r1 * r1 + (uint128_t)d4 * r3;
|
|
uint128_t s3 = (uint128_t)d0 * r3 + (uint128_t)d1 * r2 + (uint128_t)r4 * d419;
|
|
uint128_t s4 = (uint128_t)d0 * r4 + (uint128_t)d1 * r3 + (uint128_t)r2 * r2;
|
|
tmp[0U] = s0;
|
|
tmp[1U] = s1;
|
|
tmp[2U] = s2;
|
|
tmp[3U] = s3;
|
|
tmp[4U] = s4;
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fsquare_fsquare_(uint128_t *tmp, uint64_t *output)
|
|
{
|
|
uint128_t b4;
|
|
uint128_t b0;
|
|
uint128_t b4_;
|
|
uint128_t b0_;
|
|
uint64_t i0;
|
|
uint64_t i1;
|
|
uint64_t i0_;
|
|
uint64_t i1_;
|
|
Hacl_Bignum_Fsquare_fsquare__(tmp, output);
|
|
Hacl_Bignum_Fproduct_carry_wide_(tmp);
|
|
b4 = tmp[4U];
|
|
b0 = tmp[0U];
|
|
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
|
|
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
|
|
tmp[4U] = b4_;
|
|
tmp[0U] = b0_;
|
|
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
|
|
i0 = output[0U];
|
|
i1 = output[1U];
|
|
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
|
|
i1_ = i1 + (i0 >> (uint32_t)51U);
|
|
output[0U] = i0_;
|
|
output[1U] = i1_;
|
|
}
|
|
|
|
static void
|
|
Hacl_Bignum_Fsquare_fsquare_times_(uint64_t *input, uint128_t *tmp, uint32_t count1)
|
|
{
|
|
uint32_t i;
|
|
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
|
|
for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
|
|
Hacl_Bignum_Fsquare_fsquare_(tmp, input);
|
|
}
|
|
|
|
inline static void
|
|
Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
|
|
{
|
|
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
|
|
{
|
|
uint128_t t[5U];
|
|
{
|
|
uint32_t _i;
|
|
for (_i = 0U; _i < (uint32_t)5U; ++_i)
|
|
t[_i] = (uint128_t)(uint64_t)0U;
|
|
}
|
|
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
|
|
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
|
|
{
|
|
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
|
|
{
|
|
uint128_t t[5U];
|
|
{
|
|
uint32_t _i;
|
|
for (_i = 0U; _i < (uint32_t)5U; ++_i)
|
|
t[_i] = (uint128_t)(uint64_t)0U;
|
|
}
|
|
Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
|
|
{
|
|
uint64_t buf[20U] = { 0U };
|
|
uint64_t *a0 = buf;
|
|
uint64_t *t00 = buf + (uint32_t)5U;
|
|
uint64_t *b0 = buf + (uint32_t)10U;
|
|
uint64_t *t01;
|
|
uint64_t *b1;
|
|
uint64_t *c0;
|
|
uint64_t *a;
|
|
uint64_t *t0;
|
|
uint64_t *b;
|
|
uint64_t *c;
|
|
Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
|
|
Hacl_Bignum_Fmul_fmul(b0, t00, z);
|
|
Hacl_Bignum_Fmul_fmul(a0, b0, a0);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
|
|
Hacl_Bignum_Fmul_fmul(b0, t00, b0);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
|
|
t01 = buf + (uint32_t)5U;
|
|
b1 = buf + (uint32_t)10U;
|
|
c0 = buf + (uint32_t)15U;
|
|
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
|
|
Hacl_Bignum_Fmul_fmul(c0, t01, b1);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
|
|
Hacl_Bignum_Fmul_fmul(t01, t01, c0);
|
|
Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
|
|
Hacl_Bignum_Fmul_fmul(b1, t01, b1);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
|
|
a = buf;
|
|
t0 = buf + (uint32_t)5U;
|
|
b = buf + (uint32_t)10U;
|
|
c = buf + (uint32_t)15U;
|
|
Hacl_Bignum_Fmul_fmul(c, t0, b);
|
|
Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
|
|
Hacl_Bignum_Fmul_fmul(t0, t0, c);
|
|
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
|
|
Hacl_Bignum_Fmul_fmul(t0, t0, b);
|
|
Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
|
|
Hacl_Bignum_Fmul_fmul(out, t0, a);
|
|
}
|
|
|
|
inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
|
|
{
|
|
uint64_t xi = a[i];
|
|
uint64_t yi = b[i];
|
|
a[i] = xi + yi;
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
|
|
{
|
|
uint64_t tmp[5U] = { 0U };
|
|
uint64_t b0;
|
|
uint64_t b1;
|
|
uint64_t b2;
|
|
uint64_t b3;
|
|
uint64_t b4;
|
|
memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
|
|
b0 = tmp[0U];
|
|
b1 = tmp[1U];
|
|
b2 = tmp[2U];
|
|
b3 = tmp[3U];
|
|
b4 = tmp[4U];
|
|
tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
|
|
tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
|
|
tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
|
|
tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
|
|
tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
|
|
{
|
|
uint64_t xi = a[i];
|
|
uint64_t yi = tmp[i];
|
|
a[i] = yi - xi;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
|
|
{
|
|
KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
|
|
{
|
|
uint128_t tmp[5U];
|
|
{
|
|
uint32_t _i;
|
|
for (_i = 0U; _i < (uint32_t)5U; ++_i)
|
|
tmp[_i] = (uint128_t)(uint64_t)0U;
|
|
}
|
|
{
|
|
uint128_t b4;
|
|
uint128_t b0;
|
|
uint128_t b4_;
|
|
uint128_t b0_;
|
|
{
|
|
uint32_t i;
|
|
for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
|
|
{
|
|
uint64_t xi = b[i];
|
|
tmp[i] = (uint128_t)xi * s;
|
|
}
|
|
}
|
|
Hacl_Bignum_Fproduct_carry_wide_(tmp);
|
|
b4 = tmp[4U];
|
|
b0 = tmp[0U];
|
|
b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
|
|
b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
|
|
tmp[4U] = b4_;
|
|
tmp[0U] = b0_;
|
|
Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
|
|
{
|
|
Hacl_Bignum_Fmul_fmul(output, a, b);
|
|
}
|
|
|
|
inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
|
|
{
|
|
Hacl_Bignum_Crecip_crecip(output, input);
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
|
|
{
|
|
uint32_t i = ctr - (uint32_t)1U;
|
|
uint64_t ai = a[i];
|
|
uint64_t bi = b[i];
|
|
uint64_t x = swap1 & (ai ^ bi);
|
|
uint64_t ai1 = ai ^ x;
|
|
uint64_t bi1 = bi ^ x;
|
|
a[i] = ai1;
|
|
b[i] = bi1;
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
|
|
{
|
|
if (!(ctr == (uint32_t)0U))
|
|
{
|
|
uint32_t i;
|
|
Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
|
|
i = ctr - (uint32_t)1U;
|
|
Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
|
|
}
|
|
}
|
|
|
|
static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
|
|
{
|
|
uint64_t swap1 = (uint64_t)0U - iswap;
|
|
Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
|
|
Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
|
|
}
|
|
|
|
static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
|
|
{
|
|
memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
|
|
memcpy(output + (uint32_t)5U,
|
|
input + (uint32_t)5U,
|
|
(uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
|
|
}
|
|
|
|
static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
|
|
{
|
|
uint64_t i0 = load64_le(input);
|
|
uint8_t *x00 = input + (uint32_t)6U;
|
|
uint64_t i1 = load64_le(x00);
|
|
uint8_t *x01 = input + (uint32_t)12U;
|
|
uint64_t i2 = load64_le(x01);
|
|
uint8_t *x02 = input + (uint32_t)19U;
|
|
uint64_t i3 = load64_le(x02);
|
|
uint8_t *x0 = input + (uint32_t)24U;
|
|
uint64_t i4 = load64_le(x0);
|
|
uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
|
|
output[0U] = output0;
|
|
output[1U] = output1;
|
|
output[2U] = output2;
|
|
output[3U] = output3;
|
|
output[4U] = output4;
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
|
|
{
|
|
uint64_t t0 = input[0U];
|
|
uint64_t t1 = input[1U];
|
|
uint64_t t2 = input[2U];
|
|
uint64_t t3 = input[3U];
|
|
uint64_t t4 = input[4U];
|
|
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
|
|
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
|
|
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
|
|
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
|
|
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
|
|
input[0U] = t0_;
|
|
input[1U] = t1__;
|
|
input[2U] = t2__;
|
|
input[3U] = t3__;
|
|
input[4U] = t4_;
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
|
|
{
|
|
Hacl_EC_Format_fcontract_first_carry_pass(input);
|
|
Hacl_Bignum_Modulo_carry_top(input);
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
|
|
{
|
|
uint64_t t0 = input[0U];
|
|
uint64_t t1 = input[1U];
|
|
uint64_t t2 = input[2U];
|
|
uint64_t t3 = input[3U];
|
|
uint64_t t4 = input[4U];
|
|
uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
|
|
uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
|
|
uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
|
|
uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
|
|
uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
|
|
uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
|
|
input[0U] = t0_;
|
|
input[1U] = t1__;
|
|
input[2U] = t2__;
|
|
input[3U] = t3__;
|
|
input[4U] = t4_;
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
|
|
{
|
|
uint64_t i0;
|
|
uint64_t i1;
|
|
uint64_t i0_;
|
|
uint64_t i1_;
|
|
Hacl_EC_Format_fcontract_second_carry_pass(input);
|
|
Hacl_Bignum_Modulo_carry_top(input);
|
|
i0 = input[0U];
|
|
i1 = input[1U];
|
|
i0_ = i0 & (uint64_t)0x7ffffffffffffU;
|
|
i1_ = i1 + (i0 >> (uint32_t)51U);
|
|
input[0U] = i0_;
|
|
input[1U] = i1_;
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
|
|
{
|
|
uint64_t a0 = input[0U];
|
|
uint64_t a1 = input[1U];
|
|
uint64_t a2 = input[2U];
|
|
uint64_t a3 = input[3U];
|
|
uint64_t a4 = input[4U];
|
|
uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
|
|
uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
|
|
uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
|
|
uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
|
|
uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
|
|
uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
|
|
uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
|
|
uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
|
|
uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
|
|
uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
|
|
uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
|
|
input[0U] = a0_;
|
|
input[1U] = a1_;
|
|
input[2U] = a2_;
|
|
input[3U] = a3_;
|
|
input[4U] = a4_;
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
|
|
{
|
|
uint64_t t0 = input[0U];
|
|
uint64_t t1 = input[1U];
|
|
uint64_t t2 = input[2U];
|
|
uint64_t t3 = input[3U];
|
|
uint64_t t4 = input[4U];
|
|
uint64_t o0 = t1 << (uint32_t)51U | t0;
|
|
uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
|
|
uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
|
|
uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
|
|
uint8_t *b0 = output;
|
|
uint8_t *b1 = output + (uint32_t)8U;
|
|
uint8_t *b2 = output + (uint32_t)16U;
|
|
uint8_t *b3 = output + (uint32_t)24U;
|
|
store64_le(b0, o0);
|
|
store64_le(b1, o1);
|
|
store64_le(b2, o2);
|
|
store64_le(b3, o3);
|
|
}
|
|
|
|
static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
|
|
{
|
|
Hacl_EC_Format_fcontract_first_carry_full(input);
|
|
Hacl_EC_Format_fcontract_second_carry_full(input);
|
|
Hacl_EC_Format_fcontract_trim(input);
|
|
Hacl_EC_Format_fcontract_store(output, input);
|
|
}
|
|
|
|
static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
|
|
{
|
|
uint64_t *x = point;
|
|
uint64_t *z = point + (uint32_t)5U;
|
|
uint64_t buf[10U] = { 0U };
|
|
uint64_t *zmone = buf;
|
|
uint64_t *sc = buf + (uint32_t)5U;
|
|
Hacl_Bignum_crecip(zmone, z);
|
|
Hacl_Bignum_fmul(sc, x, zmone);
|
|
Hacl_EC_Format_fcontract(scalar, sc);
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_AddAndDouble_fmonty(
|
|
uint64_t *pp,
|
|
uint64_t *ppq,
|
|
uint64_t *p,
|
|
uint64_t *pq,
|
|
uint64_t *qmqp
|
|
)
|
|
{
|
|
uint64_t *qx = qmqp;
|
|
uint64_t *x2 = pp;
|
|
uint64_t *z2 = pp + (uint32_t)5U;
|
|
uint64_t *x3 = ppq;
|
|
uint64_t *z3 = ppq + (uint32_t)5U;
|
|
uint64_t *x = p;
|
|
uint64_t *z = p + (uint32_t)5U;
|
|
uint64_t *xprime = pq;
|
|
uint64_t *zprime = pq + (uint32_t)5U;
|
|
uint64_t buf[40U] = { 0U };
|
|
uint64_t *origx = buf;
|
|
uint64_t *origxprime0 = buf + (uint32_t)5U;
|
|
uint64_t *xxprime0 = buf + (uint32_t)25U;
|
|
uint64_t *zzprime0 = buf + (uint32_t)30U;
|
|
uint64_t *origxprime;
|
|
uint64_t *xx0;
|
|
uint64_t *zz0;
|
|
uint64_t *xxprime;
|
|
uint64_t *zzprime;
|
|
uint64_t *zzzprime;
|
|
uint64_t *zzz;
|
|
uint64_t *xx;
|
|
uint64_t *zz;
|
|
uint64_t scalar;
|
|
memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
|
|
Hacl_Bignum_fsum(x, z);
|
|
Hacl_Bignum_fdifference(z, origx);
|
|
memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
|
|
Hacl_Bignum_fsum(xprime, zprime);
|
|
Hacl_Bignum_fdifference(zprime, origxprime0);
|
|
Hacl_Bignum_fmul(xxprime0, xprime, z);
|
|
Hacl_Bignum_fmul(zzprime0, x, zprime);
|
|
origxprime = buf + (uint32_t)5U;
|
|
xx0 = buf + (uint32_t)15U;
|
|
zz0 = buf + (uint32_t)20U;
|
|
xxprime = buf + (uint32_t)25U;
|
|
zzprime = buf + (uint32_t)30U;
|
|
zzzprime = buf + (uint32_t)35U;
|
|
memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
|
|
Hacl_Bignum_fsum(xxprime, zzprime);
|
|
Hacl_Bignum_fdifference(zzprime, origxprime);
|
|
Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
|
|
Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
|
|
Hacl_Bignum_fmul(z3, zzzprime, qx);
|
|
Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
|
|
Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
|
|
zzz = buf + (uint32_t)10U;
|
|
xx = buf + (uint32_t)15U;
|
|
zz = buf + (uint32_t)20U;
|
|
Hacl_Bignum_fmul(x2, xx, zz);
|
|
Hacl_Bignum_fdifference(zz, xx);
|
|
scalar = (uint64_t)121665U;
|
|
Hacl_Bignum_fscalar(zzz, zz, scalar);
|
|
Hacl_Bignum_fsum(zzz, xx);
|
|
Hacl_Bignum_fmul(z2, zzz, zz);
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
|
|
uint64_t *nq,
|
|
uint64_t *nqpq,
|
|
uint64_t *nq2,
|
|
uint64_t *nqpq2,
|
|
uint64_t *q,
|
|
uint8_t byt
|
|
)
|
|
{
|
|
uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
|
|
uint64_t bit;
|
|
Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
|
|
Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
|
|
bit = (uint64_t)(byt >> (uint32_t)7U);
|
|
Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
|
|
uint64_t *nq,
|
|
uint64_t *nqpq,
|
|
uint64_t *nq2,
|
|
uint64_t *nqpq2,
|
|
uint64_t *q,
|
|
uint8_t byt
|
|
)
|
|
{
|
|
uint8_t byt1;
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
|
|
byt1 = byt << (uint32_t)1U;
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
|
|
uint64_t *nq,
|
|
uint64_t *nqpq,
|
|
uint64_t *nq2,
|
|
uint64_t *nqpq2,
|
|
uint64_t *q,
|
|
uint8_t byt,
|
|
uint32_t i
|
|
)
|
|
{
|
|
if (!(i == (uint32_t)0U))
|
|
{
|
|
uint32_t i_ = i - (uint32_t)1U;
|
|
uint8_t byt_;
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
|
|
byt_ = byt << (uint32_t)2U;
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
|
|
}
|
|
}
|
|
|
|
static void
|
|
Hacl_EC_Ladder_BigLoop_cmult_big_loop(
|
|
uint8_t *n1,
|
|
uint64_t *nq,
|
|
uint64_t *nqpq,
|
|
uint64_t *nq2,
|
|
uint64_t *nqpq2,
|
|
uint64_t *q,
|
|
uint32_t i
|
|
)
|
|
{
|
|
if (!(i == (uint32_t)0U))
|
|
{
|
|
uint32_t i1 = i - (uint32_t)1U;
|
|
uint8_t byte = n1[i1];
|
|
Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
|
|
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
|
|
}
|
|
}
|
|
|
|
static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
|
|
{
|
|
uint64_t point_buf[40U] = { 0U };
|
|
uint64_t *nq = point_buf;
|
|
uint64_t *nqpq = point_buf + (uint32_t)10U;
|
|
uint64_t *nq2 = point_buf + (uint32_t)20U;
|
|
uint64_t *nqpq2 = point_buf + (uint32_t)30U;
|
|
Hacl_EC_Point_copy(nqpq, q);
|
|
nq[0U] = (uint64_t)1U;
|
|
Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
|
|
Hacl_EC_Point_copy(result, nq);
|
|
}
|
|
|
|
static void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
|
|
{
|
|
uint64_t buf0[10U] = { 0U };
|
|
uint64_t *x0 = buf0;
|
|
uint64_t *z = buf0 + (uint32_t)5U;
|
|
uint64_t *q;
|
|
Hacl_EC_Format_fexpand(x0, basepoint);
|
|
z[0U] = (uint64_t)1U;
|
|
q = buf0;
|
|
{
|
|
uint8_t e[32U] = { 0U };
|
|
uint8_t e0;
|
|
uint8_t e31;
|
|
uint8_t e01;
|
|
uint8_t e311;
|
|
uint8_t e312;
|
|
uint8_t *scalar;
|
|
memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
|
|
e0 = e[0U];
|
|
e31 = e[31U];
|
|
e01 = e0 & (uint8_t)248U;
|
|
e311 = e31 & (uint8_t)127U;
|
|
e312 = e311 | (uint8_t)64U;
|
|
e[0U] = e01;
|
|
e[31U] = e312;
|
|
scalar = e;
|
|
{
|
|
uint64_t buf[15U] = { 0U };
|
|
uint64_t *nq = buf;
|
|
uint64_t *x = nq;
|
|
x[0U] = (uint64_t)1U;
|
|
Hacl_EC_Ladder_cmult(nq, scalar, q);
|
|
Hacl_EC_Format_scalar_of_point(mypublic, nq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mbedtls_x25519_init( mbedtls_x25519_context *ctx )
|
|
{
|
|
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_x25519_context ) );
|
|
}
|
|
|
|
static void mbedtls_x25519_free( mbedtls_x25519_context *ctx )
|
|
{
|
|
if( ctx == NULL )
|
|
return;
|
|
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
mbedtls_platform_zeroize( ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
}
|
|
|
|
static int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret = 0;
|
|
uint8_t base[MBEDTLS_X25519_KEY_SIZE_BYTES] = {0};
|
|
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
|
|
return ret;
|
|
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 4;
|
|
if( blen < *olen )
|
|
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
|
|
*buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
|
|
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 >> 8;
|
|
*buf++ = MBEDTLS_ECP_TLS_CURVE25519 & 0xFF;
|
|
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
|
|
base[0] = 9;
|
|
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
|
|
base[0] = 0;
|
|
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
|
|
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
|
|
return( 0 );
|
|
}
|
|
|
|
static int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
|
|
const unsigned char **buf, const unsigned char *end )
|
|
{
|
|
if( end - *buf < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
|
|
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
|
|
if( ( *(*buf)++ != MBEDTLS_X25519_KEY_SIZE_BYTES ) )
|
|
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
|
|
memcpy( ctx->peer_point, *buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
*buf += MBEDTLS_X25519_KEY_SIZE_BYTES;
|
|
return( 0 );
|
|
}
|
|
|
|
static int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
|
|
mbedtls_x25519_ecdh_side side )
|
|
{
|
|
size_t olen = 0;
|
|
switch( side ) {
|
|
case MBEDTLS_X25519_ECDH_THEIRS:
|
|
return mbedtls_ecp_point_write_binary( &key->grp, &key->Q, MBEDTLS_ECP_PF_COMPRESSED, &olen, ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
case MBEDTLS_X25519_ECDH_OURS:
|
|
return mbedtls_mpi_write_binary_le( &key->d, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
default:
|
|
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
}
|
|
|
|
static int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
/* f_rng and p_rng are not used here because this implementation does not
|
|
need blinding since it has constant trace. */
|
|
(( void )f_rng);
|
|
(( void )p_rng);
|
|
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES;
|
|
if( blen < *olen )
|
|
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
|
|
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, ctx->peer_point);
|
|
/* Wipe the DH secret and don't let the peer chose a small subgroup point */
|
|
mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
if( memcmp( buf, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
|
|
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
|
|
return( 0 );
|
|
}
|
|
|
|
static int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret = 0;
|
|
unsigned char base[MBEDTLS_X25519_KEY_SIZE_BYTES] = { 0 };
|
|
if( ctx == NULL )
|
|
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
|
|
if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
|
|
return ret;
|
|
*olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 1;
|
|
if( blen < *olen )
|
|
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
|
|
*buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
|
|
base[0] = 9;
|
|
Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
|
|
base[0] = 0;
|
|
if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES ) == 0 )
|
|
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
|
|
return( ret );
|
|
}
|
|
|
|
static int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
|
|
const unsigned char *buf, size_t blen )
|
|
{
|
|
if( blen < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
|
|
return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
|
|
if( (*buf++ != MBEDTLS_X25519_KEY_SIZE_BYTES) )
|
|
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
|
|
memcpy( ctx->peer_point, buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
|
|
return( 0 );
|
|
}
|
|
|
|
/**
|
|
* \brief This function sets up the ECDH context with the information
|
|
* given.
|
|
*
|
|
* This function should be called after mbedtls_ecdh_init() but
|
|
* before mbedtls_ecdh_make_params(). There is no need to call
|
|
* this function before mbedtls_ecdh_read_params().
|
|
*
|
|
* This is the first function used by a TLS server for ECDHE
|
|
* ciphersuites.
|
|
*
|
|
* \param ctx The ECDH context to set up.
|
|
* \param grp_id The group id of the group to set up the context for.
|
|
*
|
|
* \return \c 0 on success.
|
|
*/
|
|
int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id )
|
|
{
|
|
if( grp_id != MBEDTLS_ECP_DP_CURVE25519 )
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
mbedtls_x25519_init( &ctx->ctx );
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* \brief This function frees a context.
|
|
*
|
|
* \param ctx The context to free.
|
|
*/
|
|
void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx )
|
|
{
|
|
mbedtls_x25519_free( &ctx->ctx );
|
|
}
|
|
|
|
/**
|
|
* \brief This function generates a public key and a TLS
|
|
* ServerKeyExchange payload.
|
|
*
|
|
* This is the second function used by a TLS server for ECDHE
|
|
* ciphersuites. (It is called after mbedtls_ecdh_setup().)
|
|
*
|
|
* \note This function assumes that the ECP group (grp) of the
|
|
* \p ctx context has already been properly set,
|
|
* for example, using mbedtls_ecp_group_load().
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context.
|
|
* \param olen The number of characters written.
|
|
* \param buf The destination buffer.
|
|
* \param blen The length of the destination buffer.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*/
|
|
int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )( void *, unsigned char *, size_t ),
|
|
void *p_rng )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
return mbedtls_x25519_make_params( x25519_ctx, olen, buf, blen, f_rng, p_rng );
|
|
}
|
|
|
|
/**
|
|
* \brief This function parses and processes a TLS ServerKeyExhange
|
|
* payload.
|
|
*
|
|
* This is the first function used by a TLS client for ECDHE
|
|
* ciphersuites.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context.
|
|
* \param buf The pointer to the start of the input buffer.
|
|
* \param end The address for one Byte past the end of the buffer.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*
|
|
*/
|
|
int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
|
|
const unsigned char **buf,
|
|
const unsigned char *end )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
return mbedtls_x25519_read_params( x25519_ctx, buf, end );
|
|
}
|
|
|
|
/**
|
|
* \brief This function sets up an ECDH context from an EC key.
|
|
*
|
|
* It is used by clients and servers in place of the
|
|
* ServerKeyEchange for static ECDH, and imports ECDH
|
|
* parameters from the EC key information of a certificate.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context to set up.
|
|
* \param key The EC key to use.
|
|
* \param side Defines the source of the key: 1: Our key, or
|
|
* 0: The key of the peer.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*
|
|
*/
|
|
int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx,
|
|
const mbedtls_ecp_keypair *key,
|
|
mbedtls_everest_ecdh_side side )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
mbedtls_x25519_ecdh_side s = side == MBEDTLS_EVEREST_ECDH_OURS ?
|
|
MBEDTLS_X25519_ECDH_OURS :
|
|
MBEDTLS_X25519_ECDH_THEIRS;
|
|
return mbedtls_x25519_get_params( x25519_ctx, key, s );
|
|
}
|
|
|
|
/**
|
|
* \brief This function generates a public key and a TLS
|
|
* ClientKeyExchange payload.
|
|
*
|
|
* This is the second function used by a TLS client for ECDH(E)
|
|
* ciphersuites.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context.
|
|
* \param olen The number of Bytes written.
|
|
* \param buf The destination buffer.
|
|
* \param blen The size of the destination buffer.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*/
|
|
int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )( void *, unsigned char *, size_t ),
|
|
void *p_rng )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
return mbedtls_x25519_make_public( x25519_ctx, olen, buf, blen, f_rng, p_rng );
|
|
}
|
|
|
|
/**
|
|
* \brief This function parses and processes a TLS ClientKeyExchange
|
|
* payload.
|
|
*
|
|
* This is the third function used by a TLS server for ECDH(E)
|
|
* ciphersuites. (It is called after mbedtls_ecdh_setup() and
|
|
* mbedtls_ecdh_make_params().)
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context.
|
|
* \param buf The start of the input buffer.
|
|
* \param blen The length of the input buffer.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*/
|
|
int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
|
|
const unsigned char *buf, size_t blen )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
return mbedtls_x25519_read_public ( x25519_ctx, buf, blen );
|
|
}
|
|
|
|
/**
|
|
* \brief This function derives and exports the shared secret.
|
|
*
|
|
* This is the last function used by both TLS client
|
|
* and servers.
|
|
*
|
|
* \note If \p f_rng is not NULL, it is used to implement
|
|
* countermeasures against side-channel attacks.
|
|
* For more information, see mbedtls_ecp_mul().
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDH context.
|
|
* \param olen The number of Bytes written.
|
|
* \param buf The destination buffer.
|
|
* \param blen The length of the destination buffer.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
|
|
*/
|
|
int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
|
|
unsigned char *buf, size_t blen,
|
|
int( *f_rng )( void *, unsigned char *, size_t ),
|
|
void *p_rng )
|
|
{
|
|
mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
|
|
return mbedtls_x25519_calc_secret( x25519_ctx, olen, buf, blen, f_rng, p_rng );
|
|
}
|
|
|
|
#endif /* MBEDTLS_ECDH_C && MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */
|