cosmopolitan/libc/calls/clock_nanosleep.c
Justine Tunney 791f79fcb3
Make improvements
- We now serialize the file descriptor table when spawning / executing
  processes on Windows. This means you can now inherit more stuff than
  just standard i/o. It's needed by bash, which duplicates the console
  to file descriptor #255. We also now do a better job serializing the
  environment variables, so you're less likely to encounter E2BIG when
  using your bash shell. We also no longer coerce environ to uppercase

- execve() on Windows now remotely controls its parent process to make
  them spawn a replacement for itself. Then it'll be able to terminate
  immediately once the spawn succeeds, without having to linger around
  for the lifetime as a shell process for proxying the exit code. When
  process worker thread running in the parent sees the child die, it's
  given a handle to the new child, to replace it in the process table.

- execve() and posix_spawn() on Windows will now provide CreateProcess
  an explicit handle list. This allows us to remove handle locks which
  enables better fork/spawn concurrency, with seriously correct thread
  safety. Other codebases like Go use the same technique. On the other
  hand fork() still favors the conventional WIN32 inheritence approach
  which can be a little bit messy, but is *controlled* by guaranteeing
  perfectly clean slates at both the spawning and execution boundaries

- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
  there's no reason to use that and it's only supported by FreeBSD. By
  using the system word size, signal mask manipulation on Windows goes
  very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
  Windows to take advantage of signal masking, now that it's much more
  pleasant to use.

- All the overlapped i/o code on Windows has been rewritten for pretty
  good signal and cancelation safety. We're now able to ensure overlap
  data structures are cleaned up so long as you don't longjmp() out of
  out of a signal handler that interrupted an i/o operation. Latencies
  are also improved thanks to the removal of lots of "busy wait" code.
  Waits should be optimal for everything except poll(), which shall be
  the last and final demon we slay in the win32 i/o horror show.

- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
  as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 08:59:53 -07:00

226 lines
9.2 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2022 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/assert.h"
#include "libc/calls/cp.internal.h"
#include "libc/calls/struct/timespec.internal.h"
#include "libc/dce.h"
#include "libc/errno.h"
#include "libc/intrin/describeflags.internal.h"
#include "libc/intrin/strace.internal.h"
#include "libc/intrin/weaken.h"
#include "libc/nexgen32e/yield.h"
#include "libc/runtime/clktck.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/clock.h"
#include "libc/sysv/consts/timer.h"
#include "libc/sysv/errfuns.h"
#include "libc/thread/thread.h"
static errno_t sys_clock_nanosleep(int clock, int flags,
const struct timespec *req,
struct timespec *rem) {
int e, rc;
BEGIN_CANCELATION_POINT;
e = errno;
if (IsLinux() || IsFreebsd() || IsNetbsd()) {
rc = __sys_clock_nanosleep(clock, flags, req, rem);
} else if (IsXnu()) {
rc = sys_clock_nanosleep_xnu(clock, flags, req, rem);
} else if (IsOpenbsd()) {
rc = sys_clock_nanosleep_openbsd(clock, flags, req, rem);
} else if (IsWindows()) {
rc = sys_clock_nanosleep_nt(clock, flags, req, rem);
} else {
rc = enosys();
}
if (rc == -1) {
rc = errno;
errno = e;
}
END_CANCELATION_POINT;
#if 0
STRACE("sys_clock_nanosleep(%s, %s, %s, [%s]) → %d% m",
DescribeClockName(clock), DescribeSleepFlags(flags),
DescribeTimespec(0, req), DescribeTimespec(rc, rem), rc);
#endif
return rc;
}
// determine how many nanoseconds it takes before clock_nanosleep()
// starts sleeping with 90 percent accuracy; in other words when we
// ask it to sleep 1 second, it (a) must NEVER sleep for less time,
// and (b) does not sleep for longer than 1.1 seconds of time. what
// ever is below that, thanks but no thanks, we'll just spin yield,
static struct timespec GetNanosleepThreshold(void) {
return timespec_fromnanos(1000000000 / CLK_TCK);
}
static errno_t CheckCancel(void) {
if (_weaken(pthread_testcancel_np)) {
return _weaken(pthread_testcancel_np)();
} else {
return 0;
}
}
static errno_t SpinNanosleep(int clock, int flags, const struct timespec *req,
struct timespec *rem) {
errno_t rc;
struct timespec now, start, elapsed;
if ((rc = CheckCancel())) {
if (rc == EINTR && !flags && rem) {
*rem = *req;
}
return rc;
}
unassert(!clock_gettime(CLOCK_REALTIME, &start));
for (;;) {
spin_yield();
unassert(!clock_gettime(CLOCK_REALTIME, &now));
if (flags & TIMER_ABSTIME) {
if (timespec_cmp(now, *req) >= 0) {
return 0;
}
if ((rc = CheckCancel())) {
return rc;
}
} else {
if (timespec_cmp(now, start) < 0) continue;
elapsed = timespec_sub(now, start);
if ((rc = CheckCancel())) {
if (rc == EINTR && rem) {
if (timespec_cmp(elapsed, *req) >= 0) {
bzero(rem, sizeof(*rem));
} else {
*rem = elapsed;
}
}
return rc;
}
if (timespec_cmp(elapsed, *req) >= 0) {
return 0;
}
}
}
}
// clock_gettime() takes a few nanoseconds but sys_clock_nanosleep()
// is incapable of sleeping for less than a millisecond on platforms
// such as windows and it's not much prettior on unix systems either
static bool ShouldUseSpinNanosleep(int clock, int flags,
const struct timespec *req) {
errno_t e;
struct timespec now;
if (clock != CLOCK_REALTIME && //
clock != CLOCK_REALTIME_PRECISE && //
clock != CLOCK_MONOTONIC && //
clock != CLOCK_MONOTONIC_RAW && //
clock != CLOCK_MONOTONIC_PRECISE) {
return false;
}
if (!flags) {
return timespec_cmp(*req, GetNanosleepThreshold()) < 0;
}
e = errno;
if (clock_gettime(clock, &now)) {
// punt to the nanosleep system call
errno = e;
return false;
}
return timespec_cmp(*req, now) < 0 ||
timespec_cmp(timespec_sub(*req, now), GetNanosleepThreshold()) < 0;
}
/**
* Sleeps for particular amount of time.
*
* Here's how you could sleep for one second:
*
* clock_nanosleep(0, 0, &(struct timespec){1}, 0);
*
* Your sleep will be interrupted automatically if you do something like
* press ctrl-c during the wait. That's an `EINTR` error and it lets you
* immediately react to status changes. This is always the case, even if
* you're using `SA_RESTART` since this is a `@norestart` system call.
*
* void OnCtrlC(int sig) {} // EINTR only happens after delivery
* signal(SIGINT, OnCtrlC); // do delivery rather than kill proc
* printf("save me from sleeping forever by pressing ctrl-c\n");
* clock_nanosleep(0, 0, &(struct timespec){INT_MAX}, 0);
* printf("you're my hero\n");
*
* If you want to perform an uninterruptible sleep without having to use
* sigprocmask() to block all signals then this function provides a good
* solution to that problem. For example:
*
* struct timespec rel, now, abs;
* clock_gettime(CLOCK_REALTIME, &now);
* rel = timespec_frommillis(100);
* abs = timespec_add(now, rel);
* while (clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &abs, 0));
*
* will accurately spin on `EINTR` errors. That way you're not impeding
* signal delivery and you're not loosing precision on the wait timeout.
* This function has first-class support on Linux, FreeBSD, and NetBSD;
* on OpenBSD it's good; on XNU it's bad; and on Windows it's ugly.
*
* @param clock should be `CLOCK_REALTIME` and you may consult the docs
* of your preferred platforms to see what other clocks might work
* @param flags can be 0 for relative and `TIMER_ABSTIME` for absolute
* @param req can be a relative or absolute time, depending on `flags`
* @param rem shall be updated with the remainder of unslept time when
* (1) it's non-null; (2) `flags` is 0; and (3) -1 w/ `EINTR` is
* returned; if this function returns 0 then `rem` is undefined;
* if flags is `TIMER_ABSTIME` then `rem` is ignored
* @return 0 on success, or errno on error
* @raise EINTR when a signal got delivered while we were waiting
* @raise ECANCELED if thread was cancelled in masked mode
* @raise ENOTSUP if `clock` is known but we can't use it here
* @raise EFAULT if `req` or null or bad memory was passed
* @raise EINVAL if `clock` is unknown to current platform
* @raise EINVAL if `flags` has an unrecognized value
* @raise EINVAL if `req->tv_nsec ∉ [0,1000000000)`
* @raise ENOSYS on bare metal
* @cancelationpoint
* @returnserrno
* @norestart
*/
errno_t clock_nanosleep(int clock, int flags, const struct timespec *req,
struct timespec *rem) {
int rc;
// threads on win32 stacks call this so we can't asan check *ts
LOCKTRACE("clock_nanosleep(%s, %s, %s) → ...", DescribeClockName(clock),
DescribeSleepFlags(flags), DescribeTimespec(0, req));
if (IsMetal()) {
rc = ENOSYS;
} else if (clock == 127 || //
(flags & ~TIMER_ABSTIME) || //
req->tv_sec < 0 || //
!(0 <= req->tv_nsec && req->tv_nsec <= 999999999)) {
rc = EINVAL;
} else if (ShouldUseSpinNanosleep(clock, flags, req)) {
rc = SpinNanosleep(clock, flags, req, rem);
} else {
rc = sys_clock_nanosleep(clock, flags, req, rem);
}
TIMETRACE("clock_nanosleep(%s, %s, %s, [%s]) → %s", DescribeClockName(clock),
DescribeSleepFlags(flags), DescribeTimespec(0, req),
DescribeTimespec(rc, rem), DescribeErrno(rc));
return rc;
}