cosmopolitan/third_party/intel/clang/avxvnniint8intrin.h
Justine Tunney c9152b6f14
Release Cosmopolitan v3.8.0
This change switches c++ exception handling from sjlj to standard dwarf.
It's needed because clang for aarch64 doesn't support sjlj. It turns out
that libunwind had a bare-metal configuration that made this easy to do.

This change gets the new experimental cosmocc -mclang flag in a state of
working so well that it can now be used to build all of llamafile and it
goes 3x faster in terms of build latency, without trading away any perf.

The int_fast16_t and int_fast32_t types are now always defined as 32-bit
in the interest of having more abi consistency between cosmocc -mgcc and
-mclang mode.
2024-08-30 20:14:07 -07:00

471 lines
19 KiB
C

/*===-------- avxvnniint8intrin.h - AVXVNNIINT8 intrinsics -----------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avxvnniint8intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVXVNNIINT8INTRIN_H
#define __AVXVNNIINT8INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \
__min_vector_width__(256)))
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \
__min_vector_width__(128)))
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbssd_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssd_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbssd128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbssd256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbssds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbssds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbssds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbsud_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbsud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbsud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbsuds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbsuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbsuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbuud_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x unsigned char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbuud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x unsigned char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbuud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbuuds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBUUDS instruction.
///
/// \param __A
/// A 128-bit vector of [16 x unsigned char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbuuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBUUDS instruction.
///
/// \param __A
/// A 256-bit vector of [32 x unsigned char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbuuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXVNNIINT8INTRIN_H