cosmopolitan/third_party/mbedtls/pkcs5.c
Justine Tunney 957c61cbbf
Release Cosmopolitan v3.3
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.

This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.

Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.

OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().

This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.

We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 13:27:59 -08:00

358 lines
14 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:4;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright The Mbed TLS Contributors │
│ │
│ Licensed under the Apache License, Version 2.0 (the "License"); │
│ you may not use this file except in compliance with the License. │
│ You may obtain a copy of the License at │
│ │
│ http://www.apache.org/licenses/LICENSE-2.0 │
│ │
│ Unless required by applicable law or agreed to in writing, software │
│ distributed under the License is distributed on an "AS IS" BASIS, │
│ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │
│ See the License for the specific language governing permissions and │
│ limitations under the License. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/mbedtls/asn1.h"
#include "third_party/mbedtls/cipher.h"
#include "third_party/mbedtls/common.h"
#include "third_party/mbedtls/error.h"
#include "third_party/mbedtls/oid.h"
#include "third_party/mbedtls/pkcs5.h"
#include "third_party/mbedtls/platform.h"
__static_yoink("mbedtls_notice");
/**
* @fileoverview PKCS#5 functions, e.g. PBKDF2
* @see http://tools.ietf.org/html/rfc2898 (Specification)
* @see http://tools.ietf.org/html/rfc6070 (Test vectors)
* @author Mathias Olsson <mathias@kompetensum.com>
*/
#if defined(MBEDTLS_PKCS5_C)
#if defined(MBEDTLS_ASN1_PARSE_C)
static int pkcs5_parse_pbkdf2_params( const mbedtls_asn1_buf *params,
mbedtls_asn1_buf *salt, int *iterations,
int *keylen, mbedtls_md_type_t *md_type )
{
int ret = MBEDTLS_ERR_THIS_CORRUPTION;
mbedtls_asn1_buf prf_alg_oid;
unsigned char *p = params->p;
const unsigned char *end = params->p + params->len;
if( params->tag != ( MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT +
MBEDTLS_ERR_ASN1_UNEXPECTED_TAG );
/*
* PBKDF2-params ::= SEQUENCE {
* salt OCTET STRING,
* iterationCount INTEGER,
* keyLength INTEGER OPTIONAL
* prf AlgorithmIdentifier DEFAULT algid-hmacWithSHA1
* }
*
*/
if( ( ret = mbedtls_asn1_get_tag( &p, end, &salt->len,
MBEDTLS_ASN1_OCTET_STRING ) ) != 0 )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
salt->p = p;
p += salt->len;
if( ( ret = mbedtls_asn1_get_int( &p, end, iterations ) ) != 0 )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
if( p == end )
return( 0 );
if( ( ret = mbedtls_asn1_get_int( &p, end, keylen ) ) != 0 )
{
if( ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
}
if( p == end )
return( 0 );
if( ( ret = mbedtls_asn1_get_alg_null( &p, end, &prf_alg_oid ) ) != 0 )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
if( mbedtls_oid_get_md_hmac( &prf_alg_oid, md_type ) != 0 )
return( MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE );
if( p != end )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT +
MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
return( 0 );
}
/**
* \brief PKCS#5 PBES2 function
*
* \param pbe_params the ASN.1 algorithm parameters
* \param mode either MBEDTLS_PKCS5_DECRYPT or MBEDTLS_PKCS5_ENCRYPT
* \param pwd password to use when generating key
* \param pwdlen length of password
* \param data data to process
* \param datalen length of data
* \param output output buffer
*
* \returns 0 on success, or MBEDTLS_ERR_XXX if verification fails.
*/
int mbedtls_pkcs5_pbes2( const mbedtls_asn1_buf *pbe_params, int mode,
const unsigned char *pwd, size_t pwdlen,
const unsigned char *data, size_t datalen,
unsigned char *output )
{
int ret, iterations = 0, keylen = 0;
unsigned char *p, *end;
mbedtls_asn1_buf kdf_alg_oid, enc_scheme_oid, kdf_alg_params, enc_scheme_params;
mbedtls_asn1_buf salt;
mbedtls_md_type_t md_type = MBEDTLS_MD_SHA1;
unsigned char key[32], iv[32];
size_t olen = 0;
const mbedtls_md_info_t *md_info;
const mbedtls_cipher_info_t *cipher_info;
mbedtls_md_context_t md_ctx;
mbedtls_cipher_type_t cipher_alg;
mbedtls_cipher_context_t cipher_ctx;
p = pbe_params->p;
end = p + pbe_params->len;
/*
* PBES2-params ::= SEQUENCE {
* keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
* encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
* }
*/
if( pbe_params->tag != ( MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT +
MBEDTLS_ERR_ASN1_UNEXPECTED_TAG );
if( ( ret = mbedtls_asn1_get_alg( &p, end, &kdf_alg_oid,
&kdf_alg_params ) ) != 0 )
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
/* Only PBKDF2 supported at the moment */
if( MBEDTLS_OID_CMP( MBEDTLS_OID_PKCS5_PBKDF2, &kdf_alg_oid ) != 0 )
return( MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE );
if( ( ret = pkcs5_parse_pbkdf2_params( &kdf_alg_params,
&salt, &iterations, &keylen,
&md_type ) ) != 0 )
{
return( ret );
}
md_info = mbedtls_md_info_from_type( md_type );
if( md_info == NULL )
return( MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE );
if( ( ret = mbedtls_asn1_get_alg( &p, end, &enc_scheme_oid,
&enc_scheme_params ) ) != 0 )
{
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT + ret );
}
if( mbedtls_oid_get_cipher_alg( &enc_scheme_oid, &cipher_alg ) != 0 )
return( MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE );
cipher_info = mbedtls_cipher_info_from_type( cipher_alg );
if( cipher_info == NULL )
return( MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE );
/*
* The value of keylen from pkcs5_parse_pbkdf2_params() is ignored
* since it is optional and we don't know if it was set or not
*/
keylen = cipher_info->key_bitlen / 8;
if( enc_scheme_params.tag != MBEDTLS_ASN1_OCTET_STRING ||
enc_scheme_params.len != cipher_info->iv_size )
{
return( MBEDTLS_ERR_PKCS5_INVALID_FORMAT );
}
mbedtls_md_init( &md_ctx );
mbedtls_cipher_init( &cipher_ctx );
memcpy( iv, enc_scheme_params.p, enc_scheme_params.len );
if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 1 ) ) != 0 )
goto exit;
if( ( ret = mbedtls_pkcs5_pbkdf2_hmac( &md_ctx, pwd, pwdlen, salt.p, salt.len,
iterations, keylen, key ) ) != 0 )
{
goto exit;
}
if( ( ret = mbedtls_cipher_setup( &cipher_ctx, cipher_info ) ) != 0 )
goto exit;
if( ( ret = mbedtls_cipher_setkey( &cipher_ctx, key, 8 * keylen,
(mbedtls_operation_t) mode ) ) != 0 )
goto exit;
if( ( ret = mbedtls_cipher_crypt( &cipher_ctx, iv, enc_scheme_params.len,
data, datalen, output, &olen ) ) != 0 )
ret = MBEDTLS_ERR_PKCS5_PASSWORD_MISMATCH;
exit:
mbedtls_md_free( &md_ctx );
mbedtls_cipher_free( &cipher_ctx );
return( ret );
}
#endif /* MBEDTLS_ASN1_PARSE_C */
/**
* \brief PKCS#5 PBKDF2 using HMAC
*
* \param ctx Generic HMAC context
* \param password Password to use when generating key
* \param plen Length of password
* \param salt Salt to use when generating key
* \param slen Length of salt
* \param c Iteration count
* \param dklen Length of generated key in bytes
* \param output Generated key. Must be at least as big as dklen
*
* \returns 0 on success, or a MBEDTLS_ERR_XXX code if verification fails.
*/
int mbedtls_pkcs5_pbkdf2_hmac( mbedtls_md_context_t *ctx,
const void *password, size_t plen,
const void *salt, size_t slen,
unsigned c, uint32_t dklen,
unsigned char *output )
{
int j;
int ret = MBEDTLS_ERR_THIS_CORRUPTION;
unsigned int i;
unsigned char md1[MBEDTLS_MD_MAX_SIZE];
unsigned char work[MBEDTLS_MD_MAX_SIZE];
unsigned char md_size = mbedtls_md_get_size( ctx->md_info );
size_t use_len;
unsigned char *out_p = output;
unsigned char counter[4];
memset( counter, 0, 4 );
counter[3] = 1;
#if UINT_MAX > 0xFFFFFFFF
if( c > 0xFFFFFFFF )
return( MBEDTLS_ERR_PKCS5_BAD_INPUT_DATA );
#endif
if( ( ret = mbedtls_md_hmac_starts( ctx, password, plen ) ) != 0 )
return( ret );
while( dklen )
{
// U1 ends up in work
//
if( ( ret = mbedtls_md_hmac_update( ctx, salt, slen ) ) != 0 )
goto cleanup;
if( ( ret = mbedtls_md_hmac_update( ctx, counter, 4 ) ) != 0 )
goto cleanup;
if( ( ret = mbedtls_md_hmac_finish( ctx, work ) ) != 0 )
goto cleanup;
if( ( ret = mbedtls_md_hmac_reset( ctx ) ) != 0 )
goto cleanup;
memcpy( md1, work, md_size );
for( i = 1; i < c; i++ )
{
// U2 ends up in md1
//
if( ( ret = mbedtls_md_hmac_update( ctx, md1, md_size ) ) != 0 )
goto cleanup;
if( ( ret = mbedtls_md_hmac_finish( ctx, md1 ) ) != 0 )
goto cleanup;
if( ( ret = mbedtls_md_hmac_reset( ctx ) ) != 0 )
goto cleanup;
// U1 xor U2
//
for( j = 0; j < md_size; j++ )
work[j] ^= md1[j];
}
use_len = ( dklen < md_size ) ? dklen : md_size;
memcpy( out_p, work, use_len );
dklen -= (uint32_t) use_len;
out_p += use_len;
for( i = 4; i > 0; i-- )
if( ++counter[i - 1] != 0 )
break;
}
cleanup:
/* Zeroise buffers to clear sensitive data from memory. */
mbedtls_platform_zeroize( work, MBEDTLS_MD_MAX_SIZE );
mbedtls_platform_zeroize( md1, MBEDTLS_MD_MAX_SIZE );
return( ret );
}
#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_SHA1_C)
#define MAX_TESTS 6
/**
* \brief Checkup routine
*
* \return 0 if successful, or 1 if the test failed
*/
int mbedtls_pkcs5_self_test( int verbose )
{
static const size_t plen_test_data[MAX_TESTS] =
{ 8, 8, 8, 24, 9 };
static const unsigned char password_test_data[MAX_TESTS][32] =
{
"password",
"password",
"password",
"passwordPASSWORDpassword",
"pass\0word",
};
static const size_t slen_test_data[MAX_TESTS] =
{ 4, 4, 4, 36, 5 };
static const unsigned char salt_test_data[MAX_TESTS][40] =
{
"salt",
"salt",
"salt",
"saltSALTsaltSALTsaltSALTsaltSALTsalt",
"sa\0lt",
};
static const uint32_t it_cnt_test_data[MAX_TESTS] =
{ 1, 2, 4096, 4096, 4096 };
static const uint32_t key_len_test_data[MAX_TESTS] =
{ 20, 20, 20, 25, 16 };
static const unsigned char result_key_test_data[MAX_TESTS][32] =
{
{ 0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, 0x71,
0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, 0x12, 0x06,
0x2f, 0xe0, 0x37, 0xa6 },
{ 0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c,
0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, 0x41, 0xf0,
0xd8, 0xde, 0x89, 0x57 },
{ 0x4b, 0x00, 0x79, 0x01, 0xb7, 0x65, 0x48, 0x9a,
0xbe, 0xad, 0x49, 0xd9, 0x26, 0xf7, 0x21, 0xd0,
0x65, 0xa4, 0x29, 0xc1 },
{ 0x3d, 0x2e, 0xec, 0x4f, 0xe4, 0x1c, 0x84, 0x9b,
0x80, 0xc8, 0xd8, 0x36, 0x62, 0xc0, 0xe4, 0x4a,
0x8b, 0x29, 0x1a, 0x96, 0x4c, 0xf2, 0xf0, 0x70,
0x38 },
{ 0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d,
0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3 },
};
mbedtls_md_context_t sha1_ctx;
const mbedtls_md_info_t *info_sha1;
int ret, i;
unsigned char key[64];
mbedtls_md_init( &sha1_ctx );
info_sha1 = mbedtls_md_info_from_type( MBEDTLS_MD_SHA1 );
if( info_sha1 == NULL )
{
ret = 1;
goto exit;
}
if( ( ret = mbedtls_md_setup( &sha1_ctx, info_sha1, 1 ) ) != 0 )
{
ret = 1;
goto exit;
}
for( i = 0; i < MAX_TESTS; i++ )
{
if( verbose != 0 )
mbedtls_printf( " PBKDF2 (SHA1) #%d: ", i );
ret = mbedtls_pkcs5_pbkdf2_hmac( &sha1_ctx, password_test_data[i],
plen_test_data[i], salt_test_data[i],
slen_test_data[i], it_cnt_test_data[i],
key_len_test_data[i], key );
if( ret != 0 ||
timingsafe_bcmp( result_key_test_data[i], key, key_len_test_data[i] ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
ret = 1;
goto exit;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
}
if( verbose != 0 )
mbedtls_printf( "\n" );
exit:
mbedtls_md_free( &sha1_ctx );
return( ret );
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_PKCS5_C */